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Purpose: Tacrolimus (Tac) is a widely used immunosuppressive agent in kidney
transplantation. Cytochrome P450 (CYP), especially CYP3A4 enzymes are
responsible for the metabolism of drugs. However, the correlation between
plasma Tac concentration and CYP3A4*22 gene variants is controversial. This
meta-analysis aims to evaluate the association between CYP3A4*22
polymorphism and the dose-adjusted trough concentration (C0/D) of Tac in
adult kidney transplant patients.

Methods: We conducted a literature review for qualifying studies using the
PubMed, Web of Science, and Embase databases until July 2023. For the
continuous variables (C0/D and daily dose), mean difference (MD) and
corresponding 95% confidence intervals (CIs) were calculated to evaluate the
association between theCYP3A4*22 and Tac pharmacokinetics. We performed an
additional analysis on the relationship of CYP3A5*3with Tac PKs and analyzed the
effects of CYP3A4*22 in CYP3A5 non-expressers.

Results: Overall, eight eligible studies with 2,683 renal transplant recipients were
included in this meta-analysis. The CYP3A4*22 allele was significantly associated
with a higher C0/D (MD 0.57 ng/mL/mg (95% CI: 0.28 to 0.86; p = 0.0001) and
lowermean daily dose requirement (MD -2.02 mg/day, 95% CI: −2.55 to −1.50; p <
0.00001). An additional meta-analysis demonstrated that carrying the CYP3A5*3
polymorphism greatly impacted Tac blood concentration. From the result with
CYP3A5 non-expressers, CYP3A4*22 showed significant effects on the Tac C0/D
and dose requirement even after adjusting the effect of CYP3A5*3.

Conclusion: Patients with CYP3A4*22 allele showed significantly higher plasma
C0/D of Tac and required lower daily dose to achieve the therapeutic trough level
after kidney transplantation. These findings of our meta-analysis may provide
further evidence for the effects of genetic polymorphism in CYP3A4 on the PKs of
Tac, which will improve individualized treatment in a clinical setting.
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1 Introduction

Tacrolimus (Tac) is a widely used maintenance
immunosuppressive agent to prevent graft rejection in kidney
transplantation. Tac suppresses T-cell activation by inhibiting
the calcineurin activity and exhibits excellent graft survival with
a low incidence of rejection (Shapiro et al., 1999; Hamawy,
2003). However, its narrow therapeutic index requires close
monitoring of Tac concentration to maintain the level within an
optimal range (Venkataramanan et al., 1995). A
supratherapeutic level results in drug toxicity and infection
while a subtherapeutic level can lead to allograft rejection
(Robles-Piedras and González-López, 2009).

Tac is also characterized by its high inter-individual variability
in its pharmacokinetics (PKs) (Venkataramanan et al., 1995). This
makes it difficult to predict the trough concentration and determine
the optimal dose. Moreover, hepatic dysfunction, age, sex, ethnicity,
albumin concentration, and gene polymorphism affect the PKs of
Tac (Staatz and Tett, 2004).

As Tac is a dual substrate of P-glycoprotein and cytochrome
P450 (CYP) 3A4 and 3A5, genetic polymorphisms related to the
expression of these proteins have been studied to explain the
between-subject PK variability (Saeki et al., 1993; Dai et al.,
2006; de Jonge et al., 2009). Among them, CYP3A5*3 (rs776746;
6986A>G) is the most significant genetic determinant of Tac
PKs (Kuehl et al., 2001; Billing et al., 2017; Khan et al., 2020).
This polymorphism is known to decrease the metabolic activity
of the CYP3A5 enzyme. Several studies showed that patients

with the CYP3A5*3/*3 variant exhibited a higher trough
concentration and required a lower dose of Tac to achieve
the target concentration than those with wild-type allele
(Tang et al., 2011; Zong et al., 2017; Khan et al., 2020).
According to pharmacogenetic-based dosing guidelines such
as Clinical Pharmacogenetic Implementation Consortium
(CPIC) and the Dutch Pharmacogenetic Working Group
(DPWG), lower doses of Tac are recommended for
CYP3A5 non-expressers than CYP3A5 expressers (Birdwell
et al., 2015; KNMP, 2020).

CYP3A4 plays a significant role in the drug metabolism of
numerous drugs (Wrighton et al., 2000; Danielson, 2002). Due
to its wide variation in enzyme activity among the population,
CYP3A4 polymorphisms could influence the PKs and efficacy of
related drugs (Shiraga et al., 1994; Macphee et al., 2002; Mulder
et al., 2021). CYP3A4*22 (rs35599367; g.15389C>T), a novel
variant of CYP3A4, has been reported to have low messenger
RNA (mRNA) expression and low activity of CYP3A4;
accordingly, its relationship with drug response has been
widely studied (Wang et al., 2011; Elens et al., 2013).
Especially for Tac, several studies also have analyzed the
effects of CYP3A4*22 on its PKs (Tavira et al., 2013; De
Jonge et al., 2015; Lloberas et al., 2017). However, the results
are still controversial, and a meta-analysis on the topic has not
been conducted yet. Therefore, this meta-analysis aims to
elucidate the correlation between CYP3A4*22 polymorphism
and Tac concentration in adult patients with renal
transplantation.

FIGURE 1
The selection process of the eligible studies in this meta-analysis.
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2 Methods

2.1 Search strategy of literature

This meta-analysis followed the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines
(Moher et al., 2009). A comprehensive search was performed for
articles published before 13 July of 2023 in PubMed, Web of Science,
and Embase based on PICO elements (Supplementary Table S1).
The search strategy by using the following keywords:
(Transplantation) AND (Polymorphis* OR SNP* OR mutation*
OR variant*OR genotyp*OR allele*) AND (Tacrolimus OR FK506)
AND (CYP3A4*) (Supplementary Table S2).

2.2 Study selection

The eligible studies were selected in the analysis if they 1) were
cohort studies; 2) involved the adult renal transplantation patients
who took tacrolimus; 3) evaluated the association between
CYP3A4*22 genotypes and trough concentrations (C0) of Tac at
steady state; 4) adjusted C0 by daily dose; and 5) expressed data as
the mean with standard deviation (SD) or the median with range.

The studies were excluded if they were 1) not original articles
(e.g., conference abstracts, letters, or reviews); 2) in vitro or in vivo
studies; or 3) were conducted on patients with a single dose of Tac. If
there was possibility of data overlap among the studies, only the
most recent and comprehensive data was included.

2.3 Data extraction

Two authors (JSK and SS) performed the initial screening
independently using Endnote to exclude duplicate studies. Next,
the list of studies was compared, and consensus was achieved
through discussion. Subsequently, both reviewers (JSK and SS)
independently assessed the titles and abstracts, excluding studies
that did not meet the inclusion and exclusion criteria. Throughout
this process, the reviewers ensured methodological consistency and
error reduction in the extraction techniques. Then, both authors
(JSK and SS) independently evaluated the full text of all relevant
studies to determine their eligibility. All studies that did not meet the
eligibility criteria during the second screening were documented,
along with the reasons for their exclusion. In case of any
disagreements on study selection, a consensus was reached
through discussion with a third reviewer (JY). For each study,
extracted data were as follows: first authors, publication years,
study design, country, ethnic background, characteristics of
participants (population size, age, and weight),
immunosuppressive protocol, alleles studied, genotyping
methods, measurement methods for the C0 of Tac, the allele
frequency of CYP3A4*22, dose-adjusted trough concentration
(C0/D), and the daily dose of Tac according to post-
transplantation period.

C0/D was calculated by the plasma trough concentration (ng/
mL) of Tac divided by daily dose (mg), expressed as ng/mL per mg
(Schütte-Nütgen et al., 2019). For continuous data, the mean and SD
were extracted. For the studies providing data in the median with

range, the method of Hozo et al. (2005) was used to estimate the
mean and SD.

2.4 Quality assessment

The Newcastle-Ottawa Scale (NOS) system was adopted to rate
the quality of the evidence. The total score of NOS ranges from 0 to
9; 0–4 points were assigned for the selection of the population,
0–2 points for comparability, and 0–3 points for the outcomes. For
comparability, 1 point each was awarded if studies matched or
adjusted with the age or other known risk factors.

2.5 Statistical analysis

For the continuous variables (C0/D and daily dose), mean
difference (MD) and corresponding 95% confidence intervals
(CIs) were calculated to evaluate the association between the
CYP3A4*22 and Tac PKs.

All analyses were conducted using Review Manager (RevMan)
version 5.4 (The Cochrane Collaboration, Copenhagen, Denmark)
and R software (version 3.6.0). A p < 0.05 was considered statistically
significant. Heterogeneity was evaluated via chi-square test and I2

statistic. An I2 < 50% was considered low heterogeneity, whereas an
I2 ≥ 50% high heterogeneity. If a low level of heterogeneity was
observed, the fixed-effect model (Mantel-Haenszel method) was
used; if not, the random-effect model (DerSimonian-Laird method)
was applied (Biondi-Zoccai et al., 2011). Begg’s test and Egger’s test
were used to identify publication bias (Begg and Mazumdar, 1994;
Egger et al., 1997).

Sensitivity analyses were conducted to evaluate the robustness of
the results by omitting the factor to assess its influence on the overall
estimate. The first sensitivity analysis was performed by excluding
each post-transplantation period at a time sequentially, and another
sensitivity analysis by omitting studies that scored lower than 7 on
the NOS system. We performed an additional analysis on the
relationship of CYP3A5*3 with Tac C0 and daily dose. In order
to observe the independent influence of CYP3A4*22 while
controlling for CYP3A5*3, we analyzed the effects of CYP3A4*22
in CYP3A5 non-expressers.

3 Results

A total of 950 studies were retrieved by the literature search and
475 duplicates were removed (Figure 1). After excluding 448 studies
based on the titles and abstracts, 27 papers remained. We excluded
19 studies that did not investigate concentration (n = 7), did not
adjust concentration by dose (n = 6), did not investigate CYP3A4*22
(n = 4), could not express data in mean with SD (n = 1), and
administered a single dose (n = 1). Finally, eight cohort studies were
selected, including data of 2,624 patients in the meta-analysis. The
main characteristics of the eligible studies are presented in Table 1.
All included studies were performed in hospital settings between
2013 and 2018. Most were performed on European patients. The
mean age (years) and weight (kg) ranged from 48.6 to 54.4 and from
70.8 to 87.5, respectively. NOS ranged from 5 to 8.
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TABLE 1 Characteristics of included studies.

First
author
(year)

Country Ethnic
background

Sample
size

(male %)

Age (years)
(mean ± SD)

Weight (kg)
(mean ± SD)

Immuno-
suppressive
protocol

Alleles
studied

Genotyping
method

Tac
measurement

method

CYP3A4*22
allele

frequency (%)

NOS

Tavira et al.
(2013)

Spain Caucasians 206 (NA) 48.6 ± 13.6 NA Tac, MMF, PD
CYP3A5*3

TaqMan CLIA 4.9 7

CYP3A4*1B

Kuypers et al.
(2014) Belgium Caucasians 246 (59.8) 53.0 ± 14.2 70.8 ± 13.5 Tac, MMF, mPD

CYP3A5*3
TaqMan MEIA NA 7

POR*28

Lunde et al.
(2014)

Norway Caucasians 123 (70.7) 48.8 ± 9.8 87.5 ± 19.1 Tac, MMF, steroids

CYP3A5*3

PCR equencing CMIA 4.9 5
POR*28

PPARA
(rs4253728,
rs4823613)

De Jonge et al.
(2015)

Belgium Caucasians 80 (70.0) 54.6 ± 12.5 75.6 ± 14.7 Tac, MMF, mPD
CYP3A5*3

TaqMan LC-MS NA 8

Lloberas et al.
(2017) Spain Caucasians 272 (65.8) 51.0 ± 15.0 69.6 ± 13.7 Tac, MMF, PD CYP3A5*3 TaqMan

EMIT,
4.5 7

LC-MS

Madsen et al.
(2017)

Denmark Caucasians 52 (57.7) 49.3 ± 12.3 77.0 ± 20.0 Tac, MMF, steroids

CYP3A5*3

TaqMan Immunoassay 2.9 6
POR*28

PPARA
(rs4253728)

Vanhove et al.
(2017)

Belgium NA 279 (63.4) 53.0 ± 13.0 73.4 ± 15.2 Tac, MMF, mPD CYP3A5*3 OpenArray MEIA 3.4 7

Scheibner et al.
(2018)

U.S.A Caucasians 1,366 (63.3) 51.3 ± 13.0 83.7 ± 19.6 Tac, MMF CYP3A5*3 NA CLIA 5.6 7

CLIA, chemiluminescent immunoassay; CMIA, chemiluminescent microparticle immunoassay; EMIT, enzyme multiplied immunoassay technique; LC-MS, liquid chromatography-mass spectrometry; MEIA, microparticulate enzyme immunoassay; MMF,

mycophenolate mofetil; mPD, methylprednisolone; NA, not available; NOS, Newcastle–Ottawa score; PCR, polymerase chain reaction; PD, prednisolone; SD, standard deviation; Tac, tacrolimus.
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The effects of the CYP3A4*22 genetic polymorphism on C0/
D were evaluated by meta-analysis (Figure 2) (Tavira et al.,
2013; Kuypers et al., 2014; Lunde et al., 2014; De Jonge et al.,
2015; Lloberas et al., 2017; Madsen et al., 2017; Vanhove et al.,
2017; Scheibner et al., 2018) Data from each study were
analyzed by classifying post-transplant periods into 1 week,
2 weeks, 4–6 weeks, 3 months, 6 months, and 1 year. When
data were combined in all study periods, the CYP3A4*22
carriers exhibited 0.57 ng/mL/mg higher C0/D than
CYP3A4*1/*1 recipients (95% CI 0.28 to 0.86; p = 0.0001).
Except for the first 2 weeks post-transplantation, statistically
notable differences in the C0/D of Tac were detected according
to CYP3A4*22 genotypes. Although substantial heterogeneity
across the studies was found (I2 = 76%, p < 0.00001), no
subgroup difference was reported among the six different
time periods (p = 0.78). Begg’s and Egger’s tests indicated no

evidence of publication bias (p = 0.733 and p = 0.453,
respectively).

Six studies (Tavira et al., 2013; Kuypers et al., 2014; De Jonge
et al., 2015; Lloberas et al., 2017; Vanhove et al., 2017; Scheibner
et al., 2018) were analyzed to investigate the influence of the
CYP3A4*22 variant on the daily dose of Tac (Figure 3). When
data in all study periods were combined, CYP3A4*22 carriers
required a 2.02 mg/day less dose to attain the optimal trough
level than non-carriers (95% CI -2.55 to −1.50; p < 0.00001).
Except for 1-year post-transplantation, significant differences in
the daily dose were observed between CYP3A4*22 carriers and
CYP3A4*1/*1 carriers. Similar to C0/D, there were substantial
heterogeneity (I2 = 75%, p < 0.00001) but no subgroup
significant difference (p = 0.49). Results from Begg’s and Egger’s
tests indicated no statistical evidence of publication bias (p =
0.177 and p = 0.568, respectively).

FIGURE 2
Forest plot showing the association between CYP3A4*22 polymorphism and C0/D.
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The first sensitivity analysis was performed by excluding each
post-transplantation period at a time (Supplementary Table S3). In
the sensitivity analysis of C0/D, heterogeneity was mitigated when
data measured in the first week after transplantation (Biondi-Zoccai
et al., 2011; Tavira et al., 2013; Lloberas et al., 2017) were excluded (I2

= 30%, p = 0.13). The results of the dose requirement showed anMD
range of −2.19 to −1.85 mg/day with an I2 range of 15%–80%. For
dose requirements, heterogeneity was greatly reduced when data
measured 1 year after transplantation (Moher et al., 2009; De Jonge
et al., 2015; Lloberas et al., 2017) were omitted (I2 = 15%, p = 0.30).
Another sensitivity analysis was performed with the studies that
scored 7 or higher on the NOS system (Supplementary Table S4).
The MD of C0/D was 0.60 ng/mL/mg, which was comparable to the
main result.

As Tac is a substrate of CYP3A5, we performed an additional
meta-analysis of the relationship between CYP3A5*3 and Tac PKs
in the same cohorts. The CYP3A5*3/*3 carriers exhibited 1.23 ng/
mL/mg higher C0/D than CYP3A5*1 carriers (95% CI 1.06 to 1.41,

p < 0.00001; Supplementary Figure S1A). In order to attain the
optimal trough level, CYP3A5*3/*3 carriers required 4.96 mg/day
less dose than patients with CYP3A5*1 allele (95% CI
−5.91 to −4.00, p < 0.00001; Supplementary Figure S1B).

To further investigate the independent effect of CYP3A4*22
while adjusting for CYP3A5*3, we analyzed the effects ofCYP3A4*22
in CYP3A5 non-expressers. Four studies (Egger et al., 1997; Moher
et al., 2009; Tavira et al., 2013; De Jonge et al., 2015) elucidated the
impact of the CYP3A4*22 genotype on C0/D and the dose
requirement of Tac in CYP3A5 non-expressers. The evaluation of
outcomes occurred within 3 to 6 months after kidney
transplantation. When the effect of CYP3A5 was adjusted, the
C0/D of CYP3A4*22 carriers was 0.67 ng/mL/mg higher (95% CI
0.44 to 0.89, p < 0.00001; Figure 4A) and dose requirement was
1.83 mg/day lower (95% CI − 2.59 to −1.06, p < 0.00001; Figure 4B)
than patients with CYP3A4*1/*1. Therefore, the significant effect of
CYP3A4*22 on C0/D and the dose requirement of Tac remained
evident even after adjusting for CYP3A5*3.

FIGURE 3
Forest plot showing the association between CYP3A4*22 polymorphism and a daily dose.
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4 Discussion

This is thefirstmeta-analysis to evaluate the effects of theCYP3A4*22
variants on C0/D and the dose of Tac in adult renal transplant patients.
Compared to patients with CYP3A4*1/*1, CYP3A4*22 carriers tend to
exhibit increased C0/D and require a lower dose of Tac. Considering that
C0/D is considered as a surrogate marker to determine the Tac
metabolism rate (Thölking et al., 2014), this finding implies that
CYP3A4*22 carriers may have lower CYP3A4 activity than
CYP3A4*1/*1 carriers, thereby leading to overexposure to Tac,
especially from first 4 weeks to 1 year after transplantation.

CYP3A4*22, an intronic variant of CYP3A4, occurs when C is
substituted with T in intron 6 (Wang et al., 2011). In both in vitro
and in vivo studies, this variant was associated with increased
production of a non-functional CYP3A4 alternative splice variant
with partial intron 6 retention (Wang and Sadee, 2016). This
resulted in decreased functional mRNA and protein production
compared to the wild-type (Wang et al., 2011; Klein et al., 2012).
Hence, it can be speculated that those with CYP3A4*22 may have
lower CYP3A4 enzymatic activity and exhibit higher plasma
concentration, which can lead to drug-induced toxicities.

In line with our results, several clinical studies showed that
CYP3A4*22 was related to decreased metabolism and increased
exposure to CYP3A substrate drugs. For example, CYP3A4*22
carriers showed 20% higher simvastatin plasma concentrations
and 58% higher plasma concentration of simvastatin acid
(Tsamandouras et al., 2014; Luzum et al., 2015). Similarly,
CYP3A4*22 carriers showed a 2.5-fold concentration and 1.7-fold
higher C0/D of quetiapine (van derWeide and van derWeide, 2014).
For cyclosporine, another immunosuppressive agent, CYP3A4*22
was associated with increased concentration by 50% and decreased
clearance by 15% (Lunde et al., 2014; Moes et al., 2014).

CYP3A5*3 is one of the most significant genetic determinants of
Tac PKs (Kuehl et al., 2001; Billing et al., 2017; Khan et al., 2020). An
additional meta-analysis demonstrated that carrying the CYP3A5*3

polymorphism greatly impacted Tac blood concentration. From the
result with CYP3A5 non-expressers, CYP3A4*22 showed significant
effects on the Tac trough concentration and dose requirement.
Furthermore, there was no linkage disequilibrium between
CYP3A5*3 and CYP3A4*22 reported in the included studies
(Moher et al., 2009; De Jonge et al., 2015) and GBR/FIN
populations of the 1000 Genomes Project (r2 = 0.004). This
finding indicates that the CYP3A4*22 and CYP3A5*3
polymorphisms are independently associated with Tac exposure.

This meta-analysis revealed a significant degree of heterogeneity
among the included studies. Statistical heterogeneity can be attributed to
the small number of included studies and the wide range of sample
sizes, varying from 52 to 1,366 patients. Also, some factors that can
potentially contribute to clinical heterogeneity, including variances in
analytic methods and target trough concentration. In the sensitivity
analysis of C0/D, the heterogeneity was reduced when data collected
within the first week after transplantation was excluded. This suggests
that the observed heterogeneity may be attributed to the early post-
transplant period, which is characterized by the insufficient function of
the transplanted graft.

This study has several limitations. First, all included studies were
conducted in European populations. This was because CYP3A4*22 is
rarely found in African or Asian descent, whereas the allele
frequency of CYP34*22 is approximately 8% in Caucasians
(Okubo et al., 2013). Second, there is considerable heterogeneity
in the clinical setting, such as immunosuppressive protocol, target
trough level, and comorbidities. Lastly, confounding factors that
could affect the PKs of Tac, including age, body weight, and co-
medication were not adjusted.

5 Conclusion

CYP3A4*22 allele carriers showed significantly higher
plasma C0/D of Tac and required a lower daily dose to

FIGURE 4
Forest plot showing the association between CYP3A4*22 polymorphism and (A) C0/D (B) daily dose in CYP3A5 non-expressers.
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achieve the therapeutic trough level after kidney
transplantation. These findings of our meta-analysis may
provide further evidence for the effects of genetic
polymorphism in CYP3A4 on the PKs of Tac, which will
improve individualized treatment in a clinical setting.
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