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Acute respiratory distress syndrome (ARDS) is the most common respiratory
disease in ICU. Although there are many treatment and support methods, the
mortality rate is still high. The main pathological feature of ARDS is the damage of
pulmonary microvascular endothelium and alveolar epithelium caused by
inflammatory reaction, which may lead to coagulation system disorder and
pulmonary fibrosis. Heparanase (HPA) plays an significant role in inflammation,
coagulation, fibrosis. It is reported that HPA degrades a large amount of HS in
ARDS, leading to the damage of endothelial glycocalyx and inflammatory factors
are released in large quantities. HPA can aggrandize the release of exosomes
through syndecan-syntenin-Alix pathway, leading to a series of pathological
reactions; at the same time, HPA can cause abnormal expression of
autophagy. Therefore, we speculate that HPA promotes the occurrence and
development of ARDS through exosomes and autophagy, which leads to a
large amount of release of inflammatory factors, coagulation disorder and
pulmonary fibrosis. This article mainly describes the mechanism of HPA on ARDS.
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1 Introduction

Acute respiratory distress syndrome (ARDS) is an acute respiratory failure characterized
by pulmonary edema, progressive dyspnea and refractory hypoxemia caused by increased
alveolar capillary permeability (Thompson et al., 2017). The prevalence of ARDS in intensive
care units (ICU) in 50 countries is 10.4% (Murray et al., 2019). Although ARDS has been
widely studied, its mortality rate is still as high as 34.9%–46% (Zhang et al., 2017). In recent
years, many COVID-19 cases have developed into ARDS (Batah and Fabro, 2021).

There are a lot of inducing factors for the occurrence and development of ARDS,
including direct lung injury (bacterial and viral pneumonia, inhalation of gastric contents
and pulmonary contusion) and indirect extrapulmonary injury (sepsis, severe trauma, blood
transfusion, pancreatitis, drug reaction etc.). Once these inducing factors occur, the
pathophysiology of ARDS will be manifested in the complex interaction between the
inflammatory, coagulation, immune system and the alveolar capillary barrier, which will
eventually lead to fiber proliferation (Hughes and Beasley, 2017). It includes the following
three aspects: (1) Acute inflammatory response (Simeonovic et al., 2013): increased
permeability of alveolar capillaries, injury of alveolar epithelial cells, decreased secretion
of pulmonary surfactant, impaired clearance of alveolar fluid, increased expression of
adhesion molecules, extravasation of white blood cells and their released products,
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immune system disorder, and finally tissue destruction; (2)
Coagulation disorder (Freeman and Parish, 1998): intravascular
coagulation, fibrin deposition and hyperfibrinolysis; (3) Fibrosis:
regeneration of alveolar endothelial cells and epithelial type I/II cells,
fiber proliferation (Fernandez-Francos et al., 2021). So far, despite
the progress in understanding the biology, physiology and pathology
of ARDS, there is no effective drug for the treatment of ARDS, and
its treatment scheme is mainly limited to supportive therapy (Neff
et al., 2003). Therefore, there is a need for pioneering methods to
achieve effective treatment of ARDS.

Heparanase (HPA) is the only functional endoglycosidase
capable of cleaving heparan sulfate (HS) chains (Vlodavsky et al.,
1999). HPA specifically induces the degradation of HS in glycocalyx,
thereby aggravating the injury of pulmonary endothelial barrier
(Chappell et al., 2008) and the increase of alveolar permeability12,
leading to the formation of ARDS (Coulson-Thomas et al., 2015;
Chen et al., 2017), affecting the recovery of lung injury (LaRiviere
et al., 2020). HPA also has non enzymatic functions (Secchi et al.,
2015), such as regulating gene expression, promoting cell adhesion
(Nadir, 2014; Sanderson et al., 2017). HPA increased the release of
exosomes and caused abnormal expression of autophagy. It has been
reported that there is a relationship between the development of
ARDS and exosomes, autophagy (Yamada, 2021). Therefore, we
searched “ARDS, heparanase, inflammation, immune, coagulation,
fibrosis, exosome, autophagy” in electronic databases such as
“PubMed” and “Web of Science,” to explore the mechanism of
HPA participating in the occurrence and development of ARDS.

2 Heparanase

HPA is an endonuclease-β-D-glucuronidase, the only
endoglycosidase to degrade basement membrane extracellular
matrix (ECM) and heparan sulfate glycoprotein (Vlodavsky
et al., 2007). The gene expression of HPA can be regulated by
early growth response genes in tumor cells (de Mestre et al., 2005),
inflammatory cytokines and fatty acids in endothelial cells (Chen
et al., 2004). The human HPA gene is located on chromosome
4q22 and has two splice variants (Dong et al., 2000). Its cDNA
(complementary deoxyribonucleic acid) contains an open reading
frame of 1629 base pairs. Cleavage of the N-terminal signal peptide
generates a 65kda inactive HPA precursor (Vreys and David,
2007).

According to the effect of HPA on heparin and HS, the enzymes
are divided into three categories: HPA I (heparin lyase I), which
mainly acts on heparin; HPA II (heparin lyase II), acting on heparin
and HS; HPA III (heparin lyase III) mainly acts on HS (Yamada and
Sugahara, 1998; Hu et al., 2015). HPA I is known to destroy specific
binding points between glucosamine residues (called s-domain),
where sulfate groups bind to uronic acid (Bame, 2001; Gingis-
Velitski et al., 2004; Reiland et al., 2004). HPA III can cleave
bioactive HS fragments by degrading HS (Kato et al., 1998).

The physiological expression of HPA is limited to a few cell and
tissue types, such as platelets, immune cells and placenta
(Vlodavsky et al., 1992; Goshen et al., 1996; Hulett et al., 1999;
Gutter-Kapon et al., 2016; Putz et al., 2017). In adults, HPA may
play a role in wound repair, tissue regeneration and immune
monitoring. HPA plays a role in cell adhesion, migration and

survival (Goldshmidt et al., 2003). HPA can affect the migration of
inflammatory cells, inflammatory cell specific cytokine interferon-
γ (IFN-γ) and tumor necrosis factor (TNF) can stimulate
endothelial cells to produce HPA and enhance the activity of
HPA (Bartlett et al., 1995; Edovitsky et al., 2006; Ilan et al.,
2006), destroy the cell barrier by degrading HS (Simeonovic
et al., 2013), causes a series of inflammatory reactions.
Therefore, HPA can cause inflammatory reaction under
pathological conditions, leading to a series of reactions in the body.

HPA has both enzymatic and non enzymatic activities. HPA
selectively cleaves HS polymers to produce fragments of variable
size, usually 10–20 sugar units, indicating that only a limited
proportion of glucuronic acid bonds in the HS chain are
vulnerable to the enzyme (Goldshmidt et al., 2003). HPA plays a
role by releasing growth factors from ECM (Ilan et al., 2006),
participates in the degradation and remodeling of extracellular
matrix, promotes cell invasion related to inflammation metastasis
(Myler and West, 2002). The cleavage of HS seems to be the key for
leukocytes to pass through the basement membrane (Finkel, 1999a;
Bame, 2001). Its activity is related to inflammatory acidosis
(McKenzie et al., 2003). Its enhanced activity can also regulate
macrophage activation (cytokine expression induced by c-fos)
(Parish, 2006), promotes the recruitment of immune cells to the
injury site (remodeling through extracellular matrix) (Shteingauz
and Vlodavsky, 2015) and enhances the neuroinflammatory effect of
autophagy (Dai et al., 2014). Non enzymatic HPA can induce
endothelial cell invasion and migration through PI3K/Akt
pathway (Gingis-Velitski et al., 2004; Yuan et al., 2012). Non
enzymatic HPA also enhance T cell adhesion, mediated by
integrin β (Sotnikov et al., 2004). After the non enzymatic active
HPA is activated through PKA (protein kinase A) and PKC (protein
kinase C) signaling pathways, the lysosome secretes the active form
of HPA (Shafat et al., 2006).

3 Heparanase promotes ARDS through
inflammation and immune disorders

The pathogenesis of ARDS is complex, and the disorder of
inflammatory regulation plays an important role (Matthay et al.,
2019). In the early stage of ARDS, microvascular endothelial cells
are first affected and are less resistant to injury than epithelial cells
(Wiener-Kronish et al., 1991; Matthay et al., 2019). Extensive
damage of endothelial cell (EC) barrier and inflammatory
cascade lead to increased permeability, which is the core
pathogenesis of ARDS (Wiener-Kronish et al., 1991; Han and
Mallampalli, 2015). Macrophages in the lung secrete a large
number of proinflammatory factors, leading to the recruitment
of macrophages and activation of effector T cells. These processes
further exacerbate the inflammatory response and tissue damage
patients with ARDS (Aggarwal et al., 2014; Long et al., 2019; Park
et al., 2019), an inflammatory response called “cytokine storm”

may lead to multiple organ failure and increase patient mortality
(Chappell et al., 2008). With the secretion of inflammatory factors,
cytokines increase abnormally in other tissues and organs,
interfere with the immune system, cause excessive immunity,
and lead to diffuse lung cell injury, pulmonary fibrosis and
multiple organ injury (Zhang et al., 2021a). The innate immune
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response is initially triggered by pulmonary epithelial cells,
alveolar macrophages and neutrophils (Rokni et al., 2020). In
mucosal immune response, interleukin-22 (IL-22) upregulates
mucin, fibrinogen and anti-apoptotic protein; therefore, IL-22
may contribute to the formation of life-threatening edema, and
the lungs may be rich in mucin and fibrin, leading to the progress
of ARDS (Wu and Yang, 2020). When the immune system is
reduced by lymphocytes, it may be one of the mechanisms leading
to the development of ARDS (Yazdanpanah et al., 2020). The
substances in ARDS may have a binding and signal transduction
mode similar to that of lung tissue cells, and may be responsible for
the recruitment and activation of corresponding immune cells and
acute lung injury (Lee, 2017). Therefore, the occurrence and
development of ARDS are related to the aggravation of
inflammation and immune disorders.

HPA can affect the migration of inflammatory cells and
destroy the cell barrier by degrading HS (Simeonovic et al.,
2013). Inflammatory cell specific cytokine IFN-γ and TNF can
stimulate endothelial cells to produce HPA and enhance the
activity of HPA (Bartlett et al., 1995; Edovitsky et al., 2006; Ilan
et al., 2006). Therefore, HPA derived from endothelial cells can
also promote the migration of lymphocytes and granulocytes,
macrophages and dendritic cells through bone marrow (BM)
and ECM under endothelium (Parish et al., 2013). HPA
produced by leukocytes can be induced by various cell
activation stimuli (de Mestre et al., 2003; Chen et al., 2004;
Putz et al., 2017), promoting leukocyte migration (Poon et al.,
2014; Digre et al., 2017), cell rolling and adhesion (Lever et al.,
2014; Changyaleket et al., 2017), proinflammatory factors are
upregulated (Goodall et al., 2014) and activation of innate
immune cells (Gutter-Kapon et al., 2016). In colitis, epithelial
derived HPA regulates the inflammatory phenotype of
macrophages, prevents inflammation from fading, and converts
macrophage responses to chronic inflammatory patterns (Lerner
et al., 2011). HPA also enhanced macrophage activation in vitro
through lipopolysaccharide (LPS) and increased TNF-α, IL-6 and
IL-12. Activated macrophages in turn can induce epithelial HPA
expression and promote self-sustaining inflammatory circuits
through increased secretion of cathepsin-l (Lerner et al., 2011).
HPA is involved in the recruitment of pulmonary inflammatory
factors in allergic asthma models (Morris et al., 2015). HPA causes
the degradation of endothelial glycocalyx in sepsis associated lung
injury, which aggregates neutrophils and inflammatory factors
(Schmidt et al., 2012), causing a series of inflammatory
reactions. Inhibition of HPA activity can prevent endotoxemia
related loss of pulmonary endothelial glycocalyx, thus alleviating
sepsis induced inflammatory lung injury in mice (Schmidt et al.,
2012). In sepsis related intestinal injury, HPA inhibitors prevent
the destruction of glycocalyx of intestinal mucosa, inhibit
neutrophil infiltration, protect mucosal integrity, and inhibit
inflammatory response by inhibiting HPA activity (Chen et al.,
2017). Heparin and heparin derived compounds can compete with
HS chain to bind HPA and inhibit the activity of HPA (Goldshmidt
et al., 2004; Waterman et al., 2007), so they are potent HPA
inhibitors (Bar-Ner et al., 1987). It plays an anti-inflammatory
role in the treatment of asthma, patients undergoing
extracorporeal circulation and cataract surgery (Mousavi et al.,
2015).

Therefore, HPA maybe promote the activity of inflammatory
cells and immune disorders, increases the aggregation of
neutrophils, degrades HS in the glycocalyx of lung endothelium,
and causes the permeability of alveolar vascular wall to increase, thus
leading to ARDS. But the specific mechanism is still unclear, further
discussion is needed.

4 Heparanase promotes ARDS through
coagulation

Thrombosis and coagulation disorder maybe the main factors
leading to ARDS (Helms et al., 2020). However, the underlying
mechanism remains unclear. Tissue factor (TF) can be produced
by endothelial cells, smooth muscle cells, neutrophils and
monocytes to respond to various stimuli in vivo and in vitro
(DelGiudice and White, 2009; Kambas et al., 2012), which is a
key link in the process of coagulation in vivo (Rapaport and Rao,
1995; Mackman et al., 2007). Platelets are the key to thrombosis.
During blood transfusion, activated platelets can induce acute lung
injury (Caudrillier et al., 2012). In recent corona virus disease 2019
(COVID-19) pathology, activated platelets from patients showed
the production of TF bearing nets, inducing thrombotic activity of
human aortic endothelial cells (HAECs) (Skendros et al., 2020).
Experiments have proved that (Zhang et al., 2021b) in the plasma
of patients with ARDS, the TF expression of neutrophils is
significantly increased and reticular cells are exposed. Thrombin
is reported to be necessary for protease activated receptor-1 (PAR-
1) to activate platelets (Petzold et al., 2020). Thrombin activated
platelets can increase the formation of TF network and subsequent
immune thrombosis in patients with ARDS (Zhang et al., 2021b).
With the support of immune cells, platelets and coagulation related
molecules, immune thrombosis is considered to be a key event in
the pathophysiology of ARDS. When sepsis mediated ARDS
occurs, neutrophils are activated and then form TF rich
neutrophil extracellular traps in pulmonary vessels (the first
step), resulting in thrombin production; Platelets are activated
by thrombin and then interact with neutrophils to form TF
networks (step 2). All these factors lead to a vicious circle
leading to a large number of thrombosis (Zhang et al., 2021b).
Therefore, the development of ARDS may be closely related to
coagulation.

Under normal conditions, HPA activity is limited to placental
and skin tissues, as well as blood cells, such as neutrophils,
monocytes, mast cells, T lymphocytes and platelets. Among
them, platelets have the highest HPA activity and are used as a
source of activated HPA (Freeman and Parish, 1998; Freeman
et al., 1999). There is evidence that HPA may also affect the
coagulation system (Matzner et al., 1985; El-Assal et al., 2001;
Koliopanos et al., 2001). HPAmay be a co-factor of TF and directly
participate in the activation of coagulation factors (Nadir et al.,
2010). Increased HPA regulates the expression of coagulation
factor TF13 and interacts with TFPI (tissue factor pathway
inhibitor) on the cell membrane surface of endothelial cells and
tumor cells, resulting in the dissociation of TFPI, thereby
increasing the coagulation activity on the cell surface (El-Assal
et al., 2001). In addition, HPA can directly enhance TF activity,
increase the production of factor Xa, and then activate the
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coagulation system (Rohloff et al., 2002). Over expression of HPA
in human leukemia, glioma and breast cancer cells leads to a
significant increase in TF level. HPA may promote angiogenesis by
inducing the expression of angiogenesis promoting factor (VEGF)
and reducing the expression of angiogenesis inhibitory
(thrombospondin) mediators by TF (Zhang et al., 1994; Abe
et al., 1999). Discovery that natural anticoagulant heparin can
inhibit the spread of cancer in animals (Finkel, 1999b). It can
prevent platelets from coagulating around cancer cells, and even if
the anticoagulant activity of heparin is exhausted, it can still inhibit
tumor metastasis (Eccles, 1999), so heparin inhibits HPA activity
by competing with HS to bind heparin or HS binding domain
(HBD) (Levy-Adam et al., 2005).

In conclusion, the occurrence of ARDS is related to the
disorder of the coagulation system, and HPA leads to the
disorder of the coagulation system. Therefore, HPA may cause
the occurrence and development of ARDS through the disorder of
the coagulation system. However, there is no specific report that
HPA can cause ARDS through coagulation disorder, so further
study is needed.

5 Heparanase promotes ARDS through
fibrosis

Tissue fibrosis is an unregulated wound healing response
characterized by gradual accumulation and reduced remodeling
of ECM (Rockey et al., 2015a). In organs such as heart, lung,
kidney or liver, the accumulation of fibrous tissue can gradually
change its normal structure and function, and may cause
destructive results (Rockey et al., 2015b; Jun and Lau, 2018).
The main pathogenesis of pulmonary fibrosis is that the injury
of alveolar epithelial cells activates lung fibroblasts and promotes
their transformation into matrix producing myofibroblasts.
Replacing normal lung parenchyma with fibrotic tissue will
lead to irreversible reduction of oxygen diffusion capacity
(Sakai and Tager, 2013). The acute exudative inflammation
stage of ARDS is followed by the proliferation stage
characterized by the proliferation of alveolar epithelial cells
(Matthay et al., 2019), some ARDS survivors will further
develop fibroblast proliferation responses, including fibroblast
aggregation, deposition of collagen and other pulmonary ECM
components (Burnham et al., 2014). In the ARDS animal model,
type II alveolar epithelial intracellular stress is regulated by
inducing abnormal mucin expression (Hancock et al., 2018),
increased endoplasmic reticulum (ER) stress (Lawson et al.,
2011), induce local tissue hypoxia (Xi et al., 2017; Burman
et al., 2018), impairing the normal repair process and
aggravating the fibrotic response (Michalski et al., 2022). It has
recently been reported that high levels of heat shock protein 90
(HSP90) play an important role in the development of pulmonary
fibrosis (Sontake et al., 2017). HSP90 is a highly expressed
molecular chaperone protein that is important for the
physiological function of human cells (Wu et al., 2018).
HSP90 is critical in the treatment of lung injury (Sibinska
et al., 2017; Marinova et al., 2020). HSP90 has a
proinflammatory role in the development and progression of
ARDS, and inhibition of HSP90 can maintain pulmonary

endothelial integrity (Barabutis and Siejka, 2020) and anti-
inflammatory effects (Barabutis et al., 2018). HSP90 inhibitors
can promote protein ubiquitination and protease degradation, and
significantly improve pulmonary fibrosis (Marinova et al., 2020;
Colunga Biancatelli et al., 2021). Therefore, pulmonary fibrosis is
the final development result of ARDS, but its specific mechanism
has not been clarified, so finding the specific mechanism of
pulmonary fibrosis is an important target to improve its prognosis.

The involvement of HPA in fibrosis depends on the fact that
HPA promotes the release and diffusion of various HS linked
molecules, rather than the catalytic activity responsible for
cutting HS side chains (Masola et al., 2020). HPA is a key
regulator of fibroblast growth factor-basic 2 (FGF-2) and
transfroming growth factor-β (TGF-β) activities, and is a
major pro-fibrotic factor and inducer of kidney (Masola et al.,
2012; Masola et al., 2014). The increase of HPA activity at the
renal tubular level can regulate the epithelial to mesenchymal
transition (EMT) of proximal renal tubular cells, thus forming a
profibrotic environment (Secchi et al., 2017), lack of HPA can
prevent the overexpression of TGF- β (Masola et al., 2014), HPA
deficient mice did not show TGF-α increased without fibrosis (Gil
et al., 2012), HPA regulates TGF-β by releasing syndecan-1, and
the upregulation of TGF-β is associated with intestinal fibrosis in
vivo (Davids et al., 2010). In non cancerous tissues, HPA
expression was negatively correlated with fibrosis stage
(Ikeguchi et al., 2003). HPA levels were elevated in the fibrotic
livers of thioacetamide treated rats (Goldshmidt et al., 2004;
Ohayon et al., 2008). HPA activity in the plasma of patients with
mild and severe liver fibrosis increased, while HPA activity in the
plasma of patients with cirrhosis decreased to the basal level
(Secchi et al., 2017). High mobiliby group box 1 (HMGB1) can
activate fibroblasts to myofibroblasts and activate NF through its
receptor RAGE-κB and increased HPA expression. Upregulated
HPA releases TGF stored in ECM by decomposing HS-β, thus
promoting the progress of pulmonary fibrosis (He et al., 2016). At
the same time, a related protein also plays a related role in
pulmonary fibrosis in ARDS. Matrix metalloproteinases
(MMPs) are zinc-dependent endopeptidases whose main role
is to degradw collagen and ECM components and can also act on
cell surface proteins (Zinter et al., 2019). Elevated plasma MMP-3
levels in sepsis patients are associated with endothelial damage
and impaired oxygenation in ARDS (Zinter et al., 2019). MMPs
not only play an important role in physiological tissue
remodeling and wound repair (Page-McCaw et al., 2007;
Hadler-Olsen et al., 2011), but also are associated with
pathological processes such as rheumatoid arthritis, cancer,
liver, kidney, heart and lung fibrosis (Zuo et al., 2002; Green
et al., 2003; Heymans et al., 2005; Uchinami et al., 2006; Rosas
et al., 2008). MMP-3, MMP-7 and MMP-9 can all promote the
formation of pulmonary fibrosis (Craig et al., 2015). At present,
the relationship between HPA and MMP is still unclear, and
whether they interact with each other in the occurrence and
development of ARDS needs further exploration.

In conclusion, ARDS eventually develops into pulmonary
fibrosis, and HPA leads to pulmonary fibrosis. Therefore, HPA
may lead to the development of ARDS through pulmonary fibrosis.
However, there is no specific report on HPA causing ARDS through
fibrosis, so further research is needed.
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6 Heparanase may affect ARDS through
exosomes and autophagy

ARDS is a destructive clinical syndrome characterized by non
cardiogenic pulmonary edema, respiratory distress and
hypoxemia (Murray et al., 2019). Autophagy is a multi-step
dynamic process in cells: damaged or dysfunctional proteins
and organelles are separated by double membrane vesicles and
fused with lysosomes to form autolysosomes for degradation and
recycling (Klionsky et al., 2008; Barth et al., 2010). Under
physiological conditions, autophagy is expressed at a low level,
which is essential to maintain the stability of the intracellular
environment (Sanderson et al., 2017). However, autophagic
disorders were observed in different lung diseases, including
lung injury (Chang et al., 2015; Chu et al., 2018) and
pulmonary fibrosis (Meng et al., 2019). Light chain 3 (LC3) is
a major regulator of autophagy formation (Sou et al., 2006). In
lung diseases, the penetration of acinetobacter baumannii
activates autophagy, which is caused by the Beclin1 dependent
AMPK-ERK-mTOR pathway (Liao et al., 2019). MSCs may
alleviate LPS induced ALI by downregulating miR-142a-5p to
enable pulmonary epithelial cells (PECs) to undergo beclin
mediated autophagy (Zhou and You, 2016). The most
important cell types involved in the pathogenesis of ARDS are
macrophages, epithelial cells and neutrophils (Saidi et al., 2018).
During the occurrence of ARDS, the relationship between these
cell types is mutual influence and interaction, and one cell type
“indicates” that another cell type changes its phenotype, while the
other type refutes in turn. In the microenvironment (alveolar
lavage fluid BALF), the information transmitted between these
cells is assembled into some small goods, such as exosomes, which
are released from one cell into BALF and then obtained by another
cell to decode signals (Lee, 2016) (Soni et al., 2016). Exosomes are
nano double lipid membranes secreted by cells in the secretory
body, with a diameter of 30–100nm, which are generated in large
cells with multiple vesicles (Jun and Lau, 2018). Bidirectional
communication occurs in microenvironment through exosomes
and microbubbles (MVs) (Stahl and Raposo, 2019). Exosomes
carry nucleic acids, proteins and lipids between different cells in
the tumor microenvironment, which affects many ways in
biology. Bone marrow mesenchymal stem cells (MSCs) are
increasingly used to treat ARDS and sepsis because of their
immunomodulatory and regenerative properties (Walter et al.,
2014). MSC can also inhibit proinflammatory cytokines secretion,
thereby potentially relieving the subsequent cytokine storm (Ye
et al., 2020). In fact, preliminary preclinical and clinical results
show that bone marrow mesenchymal stem cells can alleviate lung
dysfunction in animal lung injury models (Curley et al., 2012),
ARDS and patients with neocoronal pneumonia (Zheng et al.,
2014; Xiao et al., 2020). Bone marrow derived exosomes are a new,
multi-target next-generation biological agent, which may be the
key to downregulate cytokine storm and reverse host antiviral
defense inhibition characterized by neocoronal pneumonia
(Hessvik and Llorente, 2018). The exosomes contain a whole
set of chemokines, growth factors, mRNA and microRNAs with
anti-inflammatory, regenerative and immune regulatory
functions. They are paracrine and endocrine mediators, which
endow BMSCs with healing characteristics (De Jong et al., 2014;

Yu et al., 2014; Alipoor et al., 2016; Hessvik and Llorente, 2018).
The exosomes secreted by bone marrow mesenchymal stem cells
(BMSCs) are a new therapy for ARDS, but the mechanism
between them and HPA is still unclear.

HPA exists in autophagy and promotes autophagy (Shteingauz
et al., 2015). The level of LC3II was found to be decreased in cells
and tissues obtained from HPA knockout mice, while the level of
LC3-II was found to be increased in transgenic mice
overexpressing HPA (Shteingauz et al., 2015). The mechanism
of HPA induced autophagy is not completely clear, but it may
involve mTOR1 (Dunlop and Tee, 2014). Overexpression of HPA
is associated with decreased mTOR1 activity (Shteingauz et al.,
2015). Electron microscope analysis of cells overexpressing HPA
showed that not only more autophagic vacuoles were found, but
also a large number of vesicles were released on the cell surface,
which may be exosomes (Thompson et al., 2013; Roucourt et al.,
2015). HPA localizes to the surface of exosomes secreted by
various cell type (Sanderson et al., 2017; Nawaz et al., 2018).
HPA affects the composition of protein and mRNA in exosomes,
participates in mediating the secretion and function of exosomes,
and enhances the secretion of exosomes (Thompson et al., 2013).
HPA stimulates endosomal budding of syntenin and syndecan,
and Alix is required to achieve these effects. Therefore, HPA is an
activator of the syndecan-syntenin-Alix pathway of exosome
biogenesis (Roucourt et al., 2015). In myeloma cells, HPA
stimulates the accumulation of syndecan-1 and specific cargoes
such as hepatocyte growth factor and VEGF in exosomes
(Thompson et al., 2013). Recently, HPA has also been involved
in the autophagy process. Exosomes and autophagy are connected
through the endolysosomal pathway, and there is a strong
interaction between them (Xu et al., 2018). HPA exists in
autophagy and promotes autophagy, making HPA
overexpressing cells more resistant to stress and chemotherapy.
The mechanism of increased autophagy is not fully understood,
but may involve decreased mTOR1 activity (Shteingauz et al.,
2015; Sanderson et al., 2017).

In conclusion, HPA can increase the release of exosomes and
promote autophagy. However, the specific mechanism of ARDS is
still unclear. Therefore, exploring the specific mechanism between
HPA and exosomes, autophagy and ARDS can become an important
way to treat ARDS.

7 Summary

With the increase of research on HPA, the influence of HPA in
disease is increasing. This review summarizes that HPA can
aggravate inflammation, immune system disorder, coagulation
dysfunction and tissue fibrosis, which may play a significant
role in the occurrence and development of ARDS through
inflammation, immune disorder, coagulation disorder and
fibrosis. However, the specific mechanism needs to be further
explored. At the same time, we speculate that HPA may affect the
occurrence and development of ARDS through some signaling
pathway of exosomes or autophagy, which needs further study.
Therefore, HPA may affects the occurrence and development of
ARDS, which may become a new idea to reduce the mortality of
ARDS. (Figure 1).
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