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Background: Natural killer (NK) cells are a type of innate immune cell that
recognize and eliminate tumor cells and infected cells, without prior
sensitization or activation. Herein, we aimed to construct a predictive model
based on NK cell-related genes for hepatocellular carcinoma (HCC) patients and
assess the feasibility of utilizing this model for prognosis prediction.

Methods: Single-cell RNA-seq data were obtained from the Gene Expression
Omnibus (GEO) database to identify marker genes of NK cells. Univariate Cox and
lasso regression were performed to further establish a signature in the TCGA
dataset. Subsequently, qPCR and immunohistochemistry (IHC) staining were
employed to validate the expression levels of prognosis signature genes in
HCC. The effectiveness of the model was further validated using two external
cohorts from the GEO and ICGC datasets. Clinical characteristics, prognosis,
tumor mutation burden, immune microenvironments, and biological function
were compared for different genetic subtypes and risk groups. Finally, molecular
docking was performed to evaluate the binding affinity between the hub gene and
chemotherapeutic drugs.

Results: A total of 161 HCC-related NK cell marker genes (NKMGs) were identified,
28 of which were significantly associated with overall survival in HCC patients.
Based on differences in gene expression characteristics, HCC patients were
classified into three subtypes. Ten prognosis genes (KLRB1, CD7, LDB2,
FCER1G, PFN1, FYN, ACTG1, PABPC1, CALM1, and RPS8) were screened to
develop a prognosis model. The model not only demonstrated excellent
predictive performance on the training dataset, but also were successfully
validated on two independent external datasets. The risk scores derived from
the model were shown to be an independent prognosis factor for HCC and were
correlated with pathological severity. Moreover, qPCR and IHC staining confirmed
that the expression of the prognosis genes was generally consistent with the
results of the bioinformatic analysis. Finally, molecular docking revealed favorable
binding energies between the hub gene ACTG1 and chemotherapeutic drugs.
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Conclusion: In this study, we developed a model for predicting the prognosis of
HCC based on NK cells. The utilization of NKMGs as innovative biomarkers showed
promise in the prognosis assessment of HCC.
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natural killer cells, hepatocellular carcinoma, prognosis, immune microenvironment,
ScRNA-seq

Introduction

Hepatocellular carcinoma (HCC) is the most common type of
liver cancer and a leading cause of cancer-related deaths worldwide
(Llovet et al., 2016; Villanueva, 2019). The incidence of HCC has
been increasing in recent years, and it is estimated that
approximately 1 million will have been diagnosed by 2025 (Bray
et al., 2018). HCC is a complex disease characterized by persistent
inflammatory harm, cellular regeneration and death (Forner et al.,
2018). Irregularities in genetic expression and the tumor
microenvironment were the fundamental factors that promote
cancer cell survival (Hanahan and Weinberg, 2011).

Natural killer (NK) cells, a subset of innate lymphocytes, were
involved in the early defense against cancer and certain viral
infections and also played a key role in the immune response
against HCC (Vivier et al., 2008; Yu and Li, 2017). In the early
stages of HCC, NK cells limited tumor growth and spreaded by
mechanisms such as direct killing of tumor cells and secretion of
toxic cytokines (Sun et al., 2015). However, the
immunosuppressive tumor microenvironment in HCC might
compromise NK cell function. With the development of HCC,
tumor cells evaded NK cell surveillance and attack through
various mechanisms, such as reducing the expression of NK
cell activation receptors NKG2D and ULBP, or increasing the
expression of inhibitory receptors (Mantovani et al., 2020).
Therefore, clarifying the interplay between HCC and NK cells
is critical for the development of effective immunotherapeutic
strategies against this deadly disease.

In this study, we identified distinct genetic subtypes in order to
unravel the tumor heterogeneity of HCC. Moreover, we developed a
prognosis model based on NK cells. We aimed to demonstrate the
value of NK cell-related genes for assessing the prognosis of HCC
patients through a comprehensive analysis of genomic data and
explored differences in tumor genetics and immune landscape
in HCC.

Materials and methods

Data source and acquisition

The single cell (sc) transcriptome file of GSE146115 was
downloaded from the Gene Expression Omnibus (GEO) database
(http://www.ncbi.nlm.nih.gov/geo/). The training datasets (LIHC)
were obtained from The Cancer Genome Atlas (TCGA; https://tcga-
data.nci.nih.gov/tcga/). The validation datasets (GSE14520 and
LIRI-JP) were downloaded from the GEO database and the
International Cancer Genome Consortium (ICGC; http://www.
icgc.org), respectively.

Identification of NK cell marker genes by
single cell RNA-seq analysis

To ensure the retention of high-quality scRNA-seq data, three
filtering criteria were implemented on the raw data matrix for
each cell. Specifically, only genes that exhibited expression in a
minimum of five single cells were retained, cells expressing fewer
than 100 genes were discarded, and cells with greater than 5%
expression of mitochondrial genes were excluded from analysis.
The Seurat R package (Stuart et al., 2019) was utilized to
preprocess the single-cell transcriptome datasets based on its
functions. The data were initially normalized using the
NormalizeData function with a scale factor of 10,000 and the
LogNormalize normalization method. Next, the top 1,500 most
variable genes were identified using the FindVariableFeatures
method. Principal component analysis (PCA) was performed
using the RunPCA function, and statistically significant PCs
were identified using the Jackstraw function based on the
proportion of variance explained. Cell clustering was executed
by using FindNeighbors and FindClusters functions with default
parameters. Subsequently, t-distributed stochastic neighbor
embedding (t-SNE) was performed using the RunTSNE
function. The function FindAllMarkers was used to analyze
differentially expressed genes (DEGs) between various cell
types. For identifying marker genes for each cluster, an
adjusted p-value <0.05 and |log2 (fold change) | >1 was
utilized. For cluster annotation, a reference-based annotation
was performed using reference data from the Human Primary
Cell Atlas (Mabbott et al., 2013). Lastly, we used SingleR (Aran
et al., 2019) to annotate the clustering outcomes acquired via
Seurat.

Consensus clustering analysis

The consensus clustering analysis was performed to investigate
the heterogeneity of NKRG expression in HCC, using the
ConsensusClusterPlus algorithm (Wilkerson and Hayes, 2010) to
reclassify patients. To determine the optimal number of subtypes,
the cumulative distribution function (CDF) and consensus matrices
were used.

Tumor mutation burden and
immunogenomic landscape analysis

The analysis involved creating a waterfall plot of the mutation
landscape using the R package “maftools” (Mayakonda et al.,
2018), which highlighted the genes with the highest mutation
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frequency (Top 20). The frequencies of copy number variation
(CNV) were also calculated, and the resulting data were presented
in lollipop plots. Additionally, the “RCircos” package in R
software was utilized to visualize the locations of these genes
on the chromosomes. The “estimate” package was employed to
compute the immune or stromal fraction of the tumor
microenvironment (TME) using the ESTIMATE algorithm
(Yoshihara et al., 2013). The CIBERSORT algorithm (http://
cibersort.stanford.edu/) was utilized to evaluate the infiltration
of immune cells. To determine the frequency of each immune cell
type, ssGSEA analysis was performed, yielding ssGSEA scores
(Hänzelmann et al., 2013).

Pathway and function enrichment analysis

The R package “clusterProfiler” was used to perform Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analysis (Yu et al., 2012). A p-value of <0.05 was considered
to indicate significant enrichment.

Cell culture

HCC cells (Huh7 and HepG2) and LO2 cells (as control cells)
were obtained from Fubo Bio (Beijing, China) and maintained in
Dulbecco’s modified eagle medium (DMEM) supplemented with
10% fetal bovine serum (FBS), 100 U/mL penicillin, and 100 μg/
mL streptomycin. The 5 × 105 LO2, HepG2, and Huh7 cells were
seeded in 6-well plates at 37°C in 5% CO2 with saturated
humidity.

Quantitative real-time PCR

Total RNA was extracted from human tissues or cells using the
TRIzol reagent (Invitrogen, CA, United States) according to the
manufacturer’s instructions and was quantified using Nanodrop
2000 (Wilmington, DE, United States). Total RNA (1 mg) was used
as the template for cDNA synthesis using the cDNA reverse
transcription kit (Toyobo, Jan). The quantitative reverse
transcription-polymerase chain reaction (qRT-PCR) assay was
conducted using the Real-time PCR Detection System (Agilent
Technologies, United States) with the SYBR Green Real-time
PCR Master Mix (Toyobo, Jan). The primers used in this study
are provided in Table S1, using GAPDH as an internal control gene.
The experiments were performed in triplicate and repeated three
times.

Immunohistochemistry analysis

The protein-level expression was evaluated through
immunohistochemistry (IHC) staining of tumor and normal
clinical samples using the Human Protein Atlas database (HPA,
http://www.proteinatlas.org). The HPA database provided
photomicrographs of IHC staining in HCC and matching normal
tissues, along with pathology and tissue sections.

Construction and validation of prognosis
signature based on NK cell marker genes

Limma (Ritchie et al., 2015) were used to identify
differentially expressed genes between tumor and normal
tissue. Univariate Cox regression analysis was performed to
evaluate the prognostic value of NK cell marker genes for
overall survival (OS) in the TCGA cohort, with genes having
p < 0.05 deemed as prognosis genes. LASSO Cox proportional
hazards regression was then employed using the “glmnet”
package to assess the prognosis genes, with 10-fold cross-
validation conducted to select the best model. A multivariate
Cox regression analysis was carried out to identify the prognostic
values of specific gene signatures, with the risk model constructed
by a linear combination of the mRNA expression of genes and the
relevant risk coefficient. The patients were classified into low- or
high-risk groups based on the median cut-off value. The
discrimination and calibration of the risk model were assessed
using receiver operating characteristics (ROC) curves and
calibration curves. To assess the model’s diagnostic value and
applicability, the clinical impact curve (CIC) were performed by
using the resample bootstrap method (bootstrap replications =
1,000). The continuous net reclassification improvement (NRI)
and integrated discrimination improvement (IDI) were
computed in order to evaluate the improvement and
applicability of the new model in reclassification. Confidence
intervals for NRI and IDI were generated with the bootstrap
method with 1,000 replications. The 10-fold and 1000-time
bootstrap resampling were used to assess the stability of the
model.

Protein-Protein interaction and molecular
docking

Protein-Protein interaction (PPI) analysis were performed with
STRING (http://string-db.org). The protein structures were
downloaded from the Uniprot database (http://www.uniprot.org),
and the drug structures were downloaded from the Pubchem
database (https://pubchem.ncbi.nlm.nih.gov). Molecular docking and
binding energies were calculated by SwissDock (http://www.swissdock.
ch/docking). Interactions between protein and drug were analyzed
using the Protein-Ligand Interaction Profiler (PLIP; https://plip-tool.
biotec.tu-dresden.de/plip-web/plip/index). The visualization of the
docking structure was performed using PyMol software (version 2.5.4).

Statistical analysis

The analysis of data in this study was carried out using the R
software (version 4.2.0) for statistical analysis, and the Sangerbox
platform (Shen et al., 2022) for bioinformatics analysis. The
Wilcoxon rank-sum test was utilized to compare variables that were
not normally distributed, while the independent Student’s t-test was
used to compare continuous variables between two groups. Categorical
variable data were analyzed using the chi-squared test. Correlations
were examined using the Pearson chi-square test. P < 0.05 was set as a
significant threshold.
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Results

Identification of HCC-related NK cell marker
genes

Based on scRNA-seq data from GSE146115, we obtained gene
expression profiles of 3,200 cells from four HCC samples. We
conducted PCA using the top 1,500 variable genes to reduce the
dimensionality, and 18 cell clusters were identified (Figure 1A).
Subsequently, the cells were annotated using a reference dataset
from the Human Primary Cell Atlas and cells in the pink cluster
were defined as NK cells (Figure 1B). 161 genes exhibited

different expression profiles from other clusters and were
defined as HCC-related NK cell marker genes (NKMG)
(Figure 1C, Supplementary Table S2).

Identification of three NK-related subtypes
in HCC patients

111 HCC-related NKMGs were significantly different
between normal and HCC patients (Figure S1). After analysis
of these genes expression characteristics by unsupervised
clustering, patients with HCC in the TCGA cohort were

FIGURE 1
Single-cell RNA-sequencing analysis identified NK cell marker genes (A) tSNE clustering colored by groups. (B) The annotation of each cluster based
on marker analysis. (C) Heatmap showing the top 5 marker genes in each cell cluster.
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divided into three subtypes (Figures 2A–C). Among them, we
found a unique cluster 1 (C1), which had an extremely poor
prognosis, and its median survival time was significantly
lower than that of cluster 2 (C2) and cluster 3 (C3), almost
one-third of theirs (p < 0.001, Figure 2D). Therefore, we further
explored the differences in gene expression among the three
subtypes and found that genes related to ribose-phosphate
pyrophosphokinase (RPS) and prolactin (PRL) were
significantly upregulated in C1 (Figure 2E). The functional
enrichment, including GO and KEGG analysis, showed that
the differential gene expression was mostly related to RNA
transcription and protein synthesis, such as structural
constituents of the ribosome, rRNA binding, SRP-dependent
cotranslational protein targeting to the membrane, and
nuclear-transcribed mRNA catabolic processes (Supplementary
Figure S2).

Tumor mutation burden and tumor immune
microenvironments in three NK-related
subtypes

The mutation frequencies of the HCC-related NKMGs (top 20)
in HCC were initially identified in the three subtypes (Figures
3A–C). The mutations were mainly concentrated on four genes:
TP53, CTNNBA, TTN, andMUC16. The mutation of CTNNB1 was
the most important mutation event in C2 and C3 (accounting for
25% and 30%, respectively). However, the CTNNB1 mutation
accounted for only 22% of the total mutational events in C1,
which had the lowest percentage of CTNNB1 mutation events
among the three subgroups. Compared to the other two
subgroups, the mutation frequency of TP53 in C1 was the
highest, reaching up to 37%. Most of the gain-of-function
mutations were found in NLRP3 and LY96, whereas most of the

FIGURE 2
Identification and prognostic evaluation of three subtypes based onNKMGs in HCC. (A)Consensus clustering cumulative distribution function (CDF)
for k = 2 to 9. (B) Relative change in the area under the CDF curve for k = 2 to 9. (C) HCC patients in the TCGA cohort were divided into four distinct
clusters when k= 3. (D) K-M survival analysis of theOS status of HCC patients in three subtypes. (E)Heatmap of the differential NKMGs expression in three
subtypes.
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loss-of-function mutations were located in NLRP3 and TLR3
(Figures 3D–F). Then, we explored the heterogeneity of immune
microenvironments among different subtypes. Although there were

differences between the groups, the results indicated that the tumor
purity, stromal scores, and immune scores of C1 were mostly
intermediate between those of C2 and C3 (Figures 3G, H).

FIGURE 3
Tumor mutation burden and Immune microenvironment of three subtypes in HCC patients. (A–C) Waterfall maps of the somatic mutation
landscape in three subtypes. (D–F) Lollipop diagrams of the copy number abnormalities indicates the degree of copy number loss (green) or gain (red).
The stromal scores, immune scores (G), and tumor purity (H) for three subtypes by Mann-Whitney U-test (I) The boxplot of immune infiltration cells
between three subtypes of HCC. (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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FIGURE 4
Identification and external validation of the HCC-related NK cell prognostic signature. (A) Forest plot based on univariate Cox analysis in the TCGA
cohort. (B) LASSO coefficients of the NKMGs (C) Tenfold cross-validation for tuning parameter selection in the Least absolute shrinkage and selection
operator (LASSO) model. Ten genes were selected by the LASSO Cox models (D)The expression levels of 10 genes in human normal liver cell line (LO2)
and two HCC cell lines (HepG2 and Huh7) were examined by qRT-PCR. (E) The expression level of genes determined by immunohistochemistry in
cancer tissues and normal tissues obtained from HPA datasets. Scale bar, 100 μm.

Frontiers in Pharmacology frontiersin.org07

Li et al. 10.3389/fphar.2023.1200114

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1200114


FIGURE 5
Establishment and validation of the HNK-10models in HCC. Time-dependent receiver operating characteristic (ROC) curve analysis in the TCGA (A),
GEO (B), and ICGC (C) cohorts. ROC curves of clinical parameters in the TCGA (D), GEO (E), and ICGC (F) cohorts. The calibration curves for 1-, 2-, and 3-
year overall survival in the TCGA (G), GEO (H), and ICGC (I) cohorts. Clinical impact curves for predicting OS in HCC patients in the TCGA (J), GEO (K), and
ICGC (L) cohorts. Univariate (M) and multivariate (N) Cox regression analysis of clinicopathological features.
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Subsequently, we employed the CIBERSORT algorithm to conduct
further analysis of the immunological infiltration among different
subgroups in order to observe the inherent differences in immune
cell composition (Figure 3I; Supplementary Figure S2). The results
showed that in C1, the expression levels of several immune cells were
significantly upregulated, including T cells CD8, T cells
CD4 memory activated, macrophages M0, dendritic cells
activated, and mast cells resting. On the other hand, the
expression levels of plasma cells, T cells follicular helper,
monocytes, and eosinophils were significantly downregulated
(p < 0.05).

Identification and external validation of the
NK cell prognosis signature in HCC

To develop a prognosis signature based on NKMGs, we first
utilized the TCGA cohort as the training set to conduct a univariate
Cox regression analysis. As a result, we identified 28 NK cell marker
genes that were significantly associated with overall survival (OS)
(Figure 4A). We subsequently performed LASSO Cox regression

analysis, of which 10 were selected for inclusion in the prognosis
signature, as shown in Figures 4B, C. These NKcell-related prognosis
genes (NKPGs) were KLRB1, CD7, LDB2, FCER1G, PFN1, FYN,
ACTG1, PABPC1, CALM1, and RPS8.

To further elucidate the relationship between prognosis genes
and HCC, we conducted qPCR analysis on a human normal liver
cell line (LO2) and two HCC cell lines (HepG2 and Huh7)
(Figure 4D). The results demonstrated that the expression of
FCER1G, PFN1, ACTG1, PABPC1, CALM1, and RPS8 was
significantly upregulated in the liver cancer cells, whereas
KLRB1, LDB2, and FYN exhibited the opposite trend. These
findings were consistent with results obtained from the TCGA
cohort, except for FCER1G (Supplementary Figure S2). While
CD7 and FCER1G displayed an upward trend in HCC, there were
no significant differences between the groups. Except for RPS8,
which was not available in the HPA database, we explored the
protein expression of other NKPGs in HCC tissues (Figure 4E).
Compared with normal liver tissue, FCER1G, PFN1, ACTG1,
PABPC1, and CALM1 were found to be highly expressed, while
KLRB1, LDB2, and FYN were found to be lowly expressed
in HCC.

FIGURE 6
The discrimination of HNK-10 model for immune-related HCC patients. Time-dependent receiver operating characteristic (ROC) curve analysis in
the internal (A) and external (B) cohorts. ROC curves of clinical parameters in the internal (C) and external (D) cohorts.

Frontiers in Pharmacology frontiersin.org09

Li et al. 10.3389/fphar.2023.1200114

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1200114


Establishment and validation of the HCC-
related NK cell prognosis model

We constructed a Prognosis model using the 10 NKPGs selected
above and named it HNK-10. The risk score of each HCC patient

was calculated as follows: Risk score = (−0.414 × KLRB1 expression)
+ (0.067 × CD7 expression) + (−0.003 × LDB2 expression) +
(0.157 × FCER1G expression) + (0.068 × PFN1 expression) +
(−0.133 × FYN expression) + (0.105 × ACTG1 expression) +
(0.087 × PABPC1 expression) + (0.403 × CALM1 expression) +

FIGURE 7
The risk score was related to HCC prognosis and pathological state. (A) K-M survival analysis of the ICDRGs risk model in the TCGA (A), GEO (B), and
ICGC (C) cohorts for HCC patients. (B) Risk triple plots, including risk dispersion plots, survival time scatter plots, and heatmaps of model gene expression
in the TCGA (D), GEO (E), and ICGC (F) cohorts. Boxplots of risk scores in HCC patients with different status of survival (G–I) and stages (J–L). Status: 0 =
alive, 1 = death.
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(0.083 × RPS8 expression). To validate the performance of the
model, we conducted a time-dependent ROC analysis in three
independent cohorts. In the TCGA cohort, the AUCs for 1-year,
2-year, and 3-year OS were 0.770, 0.745, and 0.734, respectively
(Figure 5A). In the GSE14520 cohort, the corresponding AUCs were
0.645, 0.665, and 0.635 (Figure 5B). In the ICGC cohort, the AUCs
were 0.774, 0.679, and 0.664, respectively (Figure 5C). The risk
scores demonstrated superior discrimination compared to age,
gender, tumor stage, and pathological grade, as evidenced by
significantly higher AUC values (Figures 5D–F). The calibration
curves showed a favorable level of concordance between the model
predictions and the actual observed probabilities (Figures 5G–I).
Moreover, the clinical impact curves indicated that the model had a
positive impact on clinical decision-making, further supporting its
efficacy (Figures 5J–L). As demonstrated in Figures 5M, N,
univariate and multivariate Cox regression analysis revealed that
the risk scores were independent predictors of OS compared to other
clinical indications. The NRI and IDI showed that the HNK-10
model had better predictive accuracy than other clinical parameters
(Supplementary Table S3). The 1000-time bootstrap accuracy was
70.68% and 10-fold accuracy was 71.18%, which showed good
robustness of the HNK-10 model.

The HNK-10 model had better
discrimination for immune-related HCC
patients

We computed immune scores for patients using the ESTIMATE
algorithm. Patients with immune scores exceeding 1,000 were classified
as immune-related patients. They were put into the model as the
internal (TCGA) and external (GEO) cohorts. In the internal cohort,
the AUCs for 1-year, 2-year, and 3-yearOSwere 0.751, 0.797, and 0.818,
respectively (Figure 6A). In the external cohort, the AUCs for 1-year, 2-
year, and 3-yearOSwere 0.818, 0.836, and 0.699 (Figure 6B). Compared
to other clinical parameters, risk scores demonstrated better
discrimination (Figures 6C, D). These results suggested that the
HNK-10 model had more accurate predictive power in immune-
related HCC patients compared to the full cohort of patients.

The relationship between risk score,
prognosis and pathological state

The median risk score was 5.315, which divided the patient
population into low-risk (n = 185) and high-risk (n = 185) groups.

FIGURE 8
Differences in Tumor microenvironment and biological functions between different risk groups. The lollipop diagrams of the copy number
abnormalities in the low-(A) and high-(B) risk groups (loss for green; gain for red). Circus plots of the chromosome distributions of selected genes in the
low-(C) and high-(D) risk groups. Waterfall maps of the somaticmutation landscape in the low-(E) and high-(F) risk groups. The bar plot of the GO (G) and
KEGG (H) pathways enrichment. (I)The gene set enrichment analysis (GSEA) for GO and KEGG for high-risk and low-risk groups of HCC patients.
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The KM survival curves revealed significantly lower OS in the
high-risk group compared to the low-risk group in three cohorts
(p < 0.05, Figures 7A–C). The relationship between risk scores

and vital status among HCC patients was illustrated using scatter
plots and risk curves (Figures 7D–F). Additionally, higher risk
scores were significantly associated with poor survival status

FIGURE 9
The docking conformation and interaction force analysis between ACTG1 and sorafenib, lenvatinib, regorafenib and cabozantinib. Color symbols:
yellow sticks for drugmolecules, cyan sticks for amino acid residues, blue lines for hydrogen bonding, green lines for halogen bonding, yellow lines for π-
Stacking, and gray dashed lines for hydrophobic interaction.
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(Figures 7G–I) and advanced tumor stages (Figures 7J–L) across
all three cohorts.

Tumor mutation burden and
microenvironment landscape in different
HCC risk groups

In the low-risk group, most of the gain-of-function mutations
were observed in PIK3CA, while most loss-of-function mutations
were found in TP53 (Figure 8A). In the high-risk group, most of
the gain-of-function mutations were observed in STAT1, while
most loss-of-function mutations were located in HGMB1
(Figure 8B). The chromosome locations of these gene
mutations were shown in Figures 8C, D. Furthermore, we
compared the mutation profiles of the top 20 genes in
different HCC subtypes (Figures 8E, F). Notably, the high-risk
group had a higher frequency of TP53 mutations (37%) compared
to the low-risk group (15%).

Differences in biological functions between
different risk groups of HCC

In order to identify the molecular mechanisms regulating
prognosis, we further identified the key 2170 DEGs in high-
and low-risk groups (Supplementary Figure S5) and then
performed GO and KEGG pathway enrichment analysis on the
above DEGs. Based on the results of the GO analysis, the DEGs
were predominantly enriched in pathways related to nuclear
division, organelle fission, mitotic cell cycle phase transition,
chromosomal region and spindle (Figure 8G). Based on the
results of the KEGG analysis, the DEGs were predominantly
enriched in pathways related to cell cycle, complement and
coagulation cascades, drug metabolism, DNA replication, and
metabolism of xenobiotics by cytochrome P450 (Figure 8H).
We additionally conducted GSEA analysis, as demonstrated in
Figure 8I. Based on the results of GO enrichment analysis,
biological processes highly associated with cell cycle process,
mitotic cell cycle process, and regulation of cell cycle in the
high-risk group. Cellular lipid metabolic process, lipid metabolic
process, monocarboxylic acid metabolic process, organic acid
metabolic process, and small molecule metabolic process were
enriched in the low-risk groups. Based on the results of KEGG
enrichment analysis, biological processes highly associated with
cell cycle, DNA replication, oocyte meiosis, p53 signaling pathway,
and progesterone mediated oocyte maturation in the high-risk
group. Complement and coagulation cascades, drug metabolism
cytochrome p450, metabolism of xenobiotics by cytochrome p450,
retinol metabolism and steroid hormone biosynthesis were
enriched in the low-risk groups.

The docking conformation and interaction
force analysis of HNK-10 hub gene

We used molecular docking to explore the role of NKPGs in
chemotherapy. We first performed PPI analysis on 10 prognosis

genes. Among them, ACTG1, which had the highest degree, was
identified as the hub gene (Supplementary Figure S6). Molecular
docking of ATCG1 was performed with the main chemotherapeutic
agents [sorafenib, lenvatinib, regorafenib, and cabozantinib (Llovet
et al., 2021)] used in first- and second-line clinical practice. Docking
conformation and interaction force analysis of ACTG1 with four
mainstream chemotherapeutic agents were shown in Figure 9. The
results indicated that sorafenib forms four hydrophobic interactions,
four halogen bonds, and 1 π-Stacking with amino acid residues of
ACTG1, with a binding energy of −9.01 kcal/mol. Lenvatinib forms
five hydrophobic interactions and four hydrogen bonds with amino
acid residues of ACTG1, with a binding energy of −8.84 kcal/mol.
Regorafenib forms four hydrophobic interactions, one hydrogen
bond, and one halogen bond with the amino acid residues of
ACTG1, with a binding energy of −8.43 kcal/mol. Cabozantinib
forms 4 hydrophobic interactions, 1 hydrogen bond, and 2 π-
Stacking with amino acid residues of ACTG1, with a binding
energy of −8.70 kcal/mol.

Discussion

The emergence of HCC was gradual and unnoticeable, and the
initial symptoms were not typical and posed difficulty in diagnosis.
To address this challenge, our study aimed to develop an NK-related
prognosis model consisting of 10 genes to predict the prognosis of
HCC patients effectively. The results also highlighted the
heterogeneity of the tumor immune microenvironment in
different subtypes and risk groups, which might help to
elucidating the immunological and biological mechanisms of
poor prognosis.

According to the NKMGs signatures, we identified three
distinct subtypes. The subtypes showed tumor heterogeneity
mainly in terms of extensive genomic alterations and immune
microenvironment. Notably, the clusters with the poorest
prognosis had higher expression levels of the RPS and PRL
protein families. The RPS protein family refers to the S family
of ribosomal proteins on the ribosome, which are involved in the
structure and function of the ribosome. Several studies have
shown that members of the RPS family promote the
development and metastasis of hepatocellular carcinoma
mainly by increasing the proliferation and invasive ability of
hepatocellular carcinoma cells (Calvisi et al., 2011; Guo et al.,
2018). The PRL protein family is a group of proteins that are
involved in a variety of physiological processes, including
lactation, reproduction, and immune function. Some PRL
family members mediated the phosphorylation of FAK, thus
promoting the progression of hepatocellular carcinoma (Zhou
et al., 2020). The results suggested that tumor cells might evade
immune surveillance by NK cells by regulating ribosome
synthesis and functional protein secretion to metastasize and
invade tissues.

Next, we explored the heterogeneity of immune
microenvironments among different subtypes. By analyzing the
immune infiltration of the three subtypes, we found significant
changes in the distribution and number of immune cells. As for
the immune score, stromal score, and tumor purity in the three
subtypes, interestingly, the subtype with the worst prognosis had
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scores almost in between the other two subtypes. This indicated that
alterations of the immune microenvironment caused by differences
in gene expression might be a key factor affecting prognosis.
However, the ratio of immune cells to stromal cells might not be
the basic reason for prognosis differences, but rather the ratio of
various immune cells.

To better apply NKMGs to the clinical diagnosis of HCC, we
screened 10 prognosis genes (KLRB1, CD7, LDB2, FCER1G, PFN1,
FYN, ACTG1, PABPC1, CALM1, and RPS8). In vitro cell
experiments and IHC, the expression of these genes in HCC was
validated. Subsequently, we developed a new prognosis model
(HNK-10). In the training and two external validation cohorts,
the HNK-10 model demonstrated steady and reliable predictive
performance. More importantly, the risk score calculated based on
the model is an independent prognosis risk factor for HCC patients.
Interestingly, we found that the HNK-10 model had better
discrimination for immune-related HCC patients, which
suggested that our model might be more applicable for the
prognosis diagnosis of immune-related patients.

KLRB1 was the gene encoding CD161, which has been shown
to inhibit the cytotoxicity of NK cells. Thus,
KLRB1 downregulates the inhibitory molecule CD161 and
enhances the ability of NK cells to kill infected or transformed
cells (Aldemir et al., 2005). CD7 was a transmembrane
glycoprotein normally expressed by the majority of peripheral
T-cells and NK cells and their precursors, serving as a co-
stimulatory protein aiding T-cell activation and interaction
with other immune subsets (Rabinowich et al., 1994; Gomes-
Silva et al., 2017). The stimulation of plate-bound anti-CD7
induced the production of IFN-γ and the proliferation of NK
cells (Milush et al., 2009). Yu et al. (2017) identified a potential
role for LDB2 in the pathogenesis of HCC, as significant
downregulation of LDB2 was observed in most HCC samples
and the ability of LDB2 to inhibit the proliferation and migration
of HCC cells. While the function of FCER1G in HCC is not yet
fully understood, a study by Dong et al. (2022) suggested that
FCER1G was associated with macrophage infiltration and played
a role in promoting unfavorable prognosis by affecting tumor
immunity in clear cell renal cell carcinoma. PFN1 was mainly
responsible for the polymerization of actin filaments and
responds to extracellular signals, which were associated with
cell proliferation and motility (Witke, 2004). Xie et al. (2018)
suggested that PFN1 was a risk factor for poor prognosis in HCC.
This was consistent with our findings. However, PFN1 was
considered to be a suppressor molecule in breast cancer and
its deletion leads to enhanced motility and invasiveness of breast
cancer cells (Zou et al., 2007). Previous studies suggested that
overexpression of PFN1 upregulated PTEN and inhibited AKT
activation in breast cancer cells (Das et al., 2009). This difference
may be due to the heterogeneity of the tumor. It was shown that
mice overexpressing FYN had significantly reduced tumor
volume and weight, suggesting that FYN significantly inhibits
malignancy and promotes apoptosis of tumor cells (Huang et al.,
2022). ACTG1 promoted HCC proliferation by regulating the cell
cycle through downregulation of cell cycle proteins and cell cycle
protein-dependent kinases, as well as inhibiting apoptosis
through extra-mitochondrial pathways (Yan et al., 2019). High
expression of PABPC1 was associated with low overall survival in

HCC and was an independent prognosis factor in HCC (YuFeng
and Ming, 2020). CALM1 was identified as one of the
overexpressed genes in various cancers, mainly associated with
cell proliferation, programmed cell death, and autophagy (Adeola
et al., 2016; Zamanian Azodi et al., 2018; Zhang et al., 2018; Liu
et al., 2021). RPS8 was confirmed to be highly expressed in
alcohol-related HCC (Bi et al., 2020).

Using the HNK-10 model, we calculated the risk score for
each HCC patient and found it to be an independent risk factor
for poor prognosis. In addition, multiple bioinformatics analyses
showed significant differences in gene mutation and
immunological status between the high- and low-risk groups.
Next, we conducted enrichment analysis on differentially
expressed genes between high- and low-risk groups, and found
that the main pathways were concentrated in the cell cycle, such
as cell division and DNA replication. NK cells recognized and
killed certain abnormal cells, including those with excessive DNA
damage or in preparation for division during the cell cycle (Wu
et al., 2020). In this case, NK cells destroy these abnormal cells by
releasing cytotoxins or inducing apoptosis, thereby maintaining
immune balance and homeostasis in the body. Interestingly, we
also found that another part of the pathways was enriched in
metabolism, especially drug metabolism in KEGG enrichment,
which caught our attention. This suggested that NKMGs may not
only play a role in immune regulation, but may also be effective in
chemical drug therapy, which becoming a bridge between
immunotherapy and chemotherapy. Therefore, we identified
the hub gene ACTG1 among 10 prognosis genes through PPI
analysis, and conducted molecular docking with four
chemotherapy drugs in clinical practice. The binding energies
were all less than −8.0 kcal/mol, indicating that the active
ingredients have strong affinity with the target, and were
stably bound to the target protein of ACTG1.

Our study still had some limitations. First, since this study
was a retrospective investigation, prospective studies with real-
world analysis are necessary to validate the application of this
strategy. Second, our experimental validation was cell-based
in vitro. If these results could be validated in animal models or
clinical patients samples, it might increase the persuasiveness of
this study.

In conclusion, this study concluded by identifying NKMGs in
HCC patients, developing and validating a model for predicting the
prognosis of HCC patients, which exhibited robust predictive
capabilities. We also explored the differences of genetic
mutations and immunological microenvironment to observe
tumor heterogeneity from the perspective of NK cells. Our study
contributed to a better understanding of the role of NK cells in HCC
progression and provided evidence for NK-related genes as
innovative predictors of prognosis in HCC.
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