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Introduction: Colon adenocarcinoma (COAD) is a special pathological subtype of
colorectal cancer (CRC) with highly heterogeneous solid tumors with poor
prognosis, and novel biomarkers are urgently required to guide its prognosis.

Material and methods: RNA-Seq data of COAD were downloaded through The
Cancer Genome Atlas (TCGA) database to determine cuproptosis-related
lncRNAs (CRLs) using weighted gene co-expression network analysis
(WGCNA). The scores of the pathways were calculated by single-sample gene
set enrichment analysis (ssGSEA). CRLs that affected prognoses were determined
via the univariate COX regression analysis to develop a prognostic model using
multivariate COX regression analysis and LASSO regression analysis. The model
was assessed by applying Kaplan–Meier (K-M) survival analysis and receiver
operating characteristic curves and validated in GSE39582 and GSE17538. The
tumor microenvironment (TME), single nucleotide variants (SNV), and
immunotherapy response/chemotherapy sensitivity were assessed in high- and
low-score subgroups. Finally, the construction of a nomogram was adopted to
predict survival rates of COAD patients during years 1, 3, and 5.

Results: We found that a high cuproptosis score reduced the survival rates of
COAD significantly. A total of five CRLs affecting prognosis were identified,
containing AC008494.3, EIF3J-DT, AC016027.1, AL731533.2, and ZEB1-AS1.
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The ROC curve showed that RiskScore could perform well in predicting the
prognosis of COAD. Meanwhile, we found that RiskScore showed good ability in
assessing immunotherapy and chemotherapy sensitivity. Finally, the nomogram
and decision curves showed that RiskScore would be a powerful predictor
for COAD.

Conclusion: A novel prognostic model was constructed using CRLs in COAD, and
the CRLs in the model were probably a potential therapeutic target. Based on this
study, RiskScore was an independent predictor factor, immunotherapy response,
and chemotherapy sensitivity for COAD, providing a new scientific basis for COAD
prognosis management.
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Introduction

Colorectal cancer (CRC) is the third most frequent malignant
solid tumor among young populations, with the third highest
mortality rate among solid tumors (Miller et al., 2020). CRC has
shown a high degree of heterogeneity, even though the same type of
tumor often exhibited different biological behavior in different
populations (Punt et al., 2017). Colonic adenocarcinoma
(COAD), the most frequent histological subtype of CRC, largely
occurs in the intestinal mucosa and is highly aggressive, leading to
high morbidity and mortality (Benson et al., 2018; Ferlay et al.,
2021). Due to the absence of signature early symptoms, most
patients are already metastatic when diagnosed, which leads to a
lower 5-year survival rate of only 14% even with systemic therapy
(Siegel et al., 2022). As the existing prognostic indicators for COAD
cannot reveal its biological heterogeneity, it is crucial to tap more
accurate predictive tools that can combine clinicopathological and
molecular characteristics (Yang et al., 2022).

Currently, Tsvetkov et al. (2022) proposed a newly programmed
cell death regulated through accumulating copper ions known as
cuproptosis, which differs from foregone cell death mechanisms
such as apoptosis, autophagy, and ferroptosis. It has been found that
copper can still induce cell death when known cell death
mechanisms become blocked. During mitochondrial respiration
in eukaryotic cells, the lipid acylation component of the
tricarboxylic acid cycle adsorbs free copper ions from the
cytoplasmic matrix, leading to the aggregation of lipid acylated
proteins, which contributes to cuproptosis. Furthermore, the co-
protein levels of Fe-S clusters are reduced. Both of these induce a
proteotoxic stress response and eventually lead to cell death
(Tsvetkov et al., 2022). In addition, the copper levels are
probably correlated with ferroptosis, which is caused via ROS
accumulation (Gao et al., 2021). However, the exact molecular
mechanism of cuproptosis has not yet been elucidated. This new
cell death mechanism can help researchers improve their insights
into the functioning of copper in cancer and provide potential ideas
for the development of novel anti-tumor drug development.

Immune checkpoint blockade therapies have been used for a
variety of cancers, most of which are CTLA-4 and PD-1/PD-L1
(Darvin et al., 2018). Several drugs have been developed for clinical
applications, such as tremelimumab, ipilimumab, avelumab,
atezolizumab, and pembrolizumab (Bagchi et al., 2021). However,
not all patients respond positively to immunotherapy, and there are

no predictors of benefit from immunotherapy (Bagchi et al., 2021).
Therefore, uncovering the clinical indicators that have the potential
to positively predict the response to immunotherapy will provide
guidance for clinical practice and the implementation of precise and
personalized treatment modalities for cancer patients, which is
expected to improve a patient’s quality of life as well as overall
survival rates. The benefits of adjuvant chemotherapy in the
adjuvant treatment of lymph node–positive colon cancer are well
established, and standard treatment options include fluorouracil
(FU) or capecitabine with or without oxaliplatin (Gelibter et al.,
2019). As there are individual differences between patients and
chemotherapy drugs that may induce drug resistance in tumor cells,
predicting the therapeutic effect of chemotherapy has become the
focus of clinical attention.

This study utilized TCGA and GEO databases of COAD
expression profiles to identify cuproptosis-related lncRNAs
(CRLs). The RiskScore for COAD prognosis was constructed
using the WGCNA and COX regression. Furthermore, we
investigated the potential link between RiskScore and prognosis,
immune microenvironment, and treatment response. Our study
potentially provides a novel approach for assessing COAD prognosis
and treatment guidance that can be applied in a clinical setting.

Materials and methods

Data set downloading and pre-processing

RNA-Seq data, clinical data, and SNV data for the TCGA-
COAD sequencing project were all from the TCGA portal (https://
portal.gdc.cancer.gov/). Meanwhile, the GSE39582 and
GSE17538 cohorts with the corresponding clinical information
were all from the GEO portal (https://www.ncbi.nlm.nih.gov/geo/
). A total of 13 cuproptosis-associated genes were taken from
Tsvetkov et al. (2022). This study considered the TCGA-COAD
cohort as the training set, and the GSE39582 and GSE17538 cohorts
as the external validation set.

The RNA-Seq data of TCGA-COAD were processed in three
steps: primary solid tumor samples with expression profiles and
overall survival times were retained as the training subjects (Miller
et al., 2020), Ensembl IDs were converted to Gene Symbols (Punt
et al., 2017), and expression cases with multiple Gene Symbols were
taken as their median (Ferlay et al., 2021).
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The following processes were performed for the GSE39582 and
GSE17538 data sets: samples with expression profiles and overall
survival information were retained as training subjects (Miller et al.,
2020), and probe sequences were re-annotated using the SeqMap to
convert probes to Gene Symbol (Punt et al., 2017).

Investigation of the correlation of COAD
prognosis with cuproptosis score

Based on 13 cuproptosis-related genes (CRGs), the cuproptosis
score for each sample in the TCGA-COAD and GSE39582 cohorts
was calculated by the single-sample gene set enrichment analysis
(ssGSEA) (Barbie et al., 2009). By means of the surv_cutpoint
function integrated with the survminer package, the samples were
classified according to the best cutoff parameters of survival
information into different cuproptosis score groups for the K-M
survival analysis.

WGCNA analysis to identify cuproptosis-
associated gene modules and lncRNAs

The WGCNA package (Langfelder and Horvath, 2008) was
employed to build a weighted gene co-expression network on
tumor samples in the TCGA-COAD cohort. The module
eigengene (ME) of gene modules screened via the principal
component analysis was calculated. The gene modules and
lncRNAs that significantly correlated with cuproptosis via the
Pearson correlation were screened to compare the correlation of
ME with cuproptosis, age, and stage. The Kyoto Encyclopedia of
Genes and Genomes (KEGG) biological pathways involved in gene
modules were analyzed based on the WebGestaltR package (Liao
et al., 2019).

Identification of prognostic CRLs and
construction of predictive model in COAD

The training and validation cohorts were divided into the
TCGACOAD cohort according to the 7:3 ratio. Univariate COX
regression analysis was considered on CRLs to dig out COAD
prognosis–related lncRNAs (p < 0.05). The approach with
LASSO COX was then conducted using the glmnet package
(Simon et al., 2011) to select the best lambda to compress the
number of lncRNAs to refine the model based on 10-fold cross-
validation. Ultimately, the approach with multivariate COX was
performed to construct the best clinical prognostic model via
selecting the minimum Akaike information criterion (Pages et al.,
2018) value using the stepAIC function of the MASS package
(https://cran.r-project.org/web/packages/MASS/MASS.pdf). The
RiskScore of the prognostic model was obtained via the following
formula:

RiskScore � ∑ coefi*Exp lncRNAsi

where coef indicates the regression coefficient of lncRNAsi and Exp
lncRNAsi indicates the expression of lncRNAsi.

Predictive evaluation by RiskScore

High- and low-score groups of COAD patients in the training
set were categorized by the best RiskScore grouping cutoff. The K-M
analysis was applied to assess the overall survival (OS) differences
between the different groups. The ROC curve was drawn using the
timeROC package to obtain the area under ROC (AUC) values
(Blanche et al., 2013). The model predictive ability was then
evaluated in the validation cohort and external cohorts
GSE39582 and GSE17538.

Differences in clinicopathological
characteristics and SNV in high- and low-
score groups

We further explored the differences in clinicopathological
characteristics in distinct subgroups in the TCGA-COAD,
GSE39582, and GSE17538 cohorts using chi-square tests to assess
categorical data. The OS differences in distinct clinicopathological
characteristics subgroups were assessed by the K-M survival curve.
Mutation data processed by Mutect2 were downloaded from the
TCGA dataset. Genomic mutation differences between samples
were resolved using the Fisher’s test for those with mutation
frequencies greater than or equal to 3, and the mutation
landscape Waterfall map was plotted using the GenVisR package
(Skidmore et al., 2016). Finally, the immune landscape signature
(fraction altered, the number of segments, tumor mutation burden,
and homologous recombination defects) of COAD were
downloaded from a previous study (Thorsson et al., 2018) using
the Wilcoxon test for difference comparison of these immune
signatures in different risk groups (p < 0.05).

TME differences

In the GSE39582 cohort, immune cell infiltration in COAD
patients was assessed by the expression of immune cell marker
genes. Immune cell infiltration in TME was calculated by MCP-
counter (Becht et al., 2016) and ssGSEA, respectively. StromalScore,
ImmuneScore, and ESTIMATEScore were calculated using the
Estimation of STromal and Immune cells in MAlignant Tumor
tissues using Expression data (ESTIMATE) (Yoshihara et al., 2013).
Then, the immune checkpoint expression (Danilova et al., 2019) was
contrasted in different risk groups. A two-tailed t-test was
performed to analyze the differences in StromalScore,
ImmuneScore, ESTIMATEScore, and immune checkpoint
expression levels. p < 0.05 was considered statistically different.

Immunotherapy response/chemotherapy
drug sensitivity analysis

The TIDE scores were sourced from the Tumor Immune
Dysfunction and Exclusion database (TIDE, http://tide.dfci.
harvard.edu/) of the GSE39582, GSE17538, and TCGA-COAD
cohorts. Higher TIDE scores indicate higher vulnerability to
immune escape, indicating less benefit from taking
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immunotherapy (Jiang et al., 2018). The half maximal inhibitory
concentration (IC50) of COAD patients to the conventional
chemotherapeutic agents, such as cisplatin, PHA-665752, AZ628,
crizotinib, S-trityl-L-cysteine, and imatinib, was then analyzed using
pRRophetic to assess chemotherapeutic drug sensitivity (Geeleher
et al., 2014).

Construction of decision trees and
nomogram

Combining the clinicopathological characteristics information
of the GSE39582 cohort, a decision tree was constructed using the
rpart package (https://cran.r-project.org/web/packages/rpart/index.
html) to identify the clinicopathological characteristics that affect
prognosis. Univariate and multivariate COX analyses were
conducted to identify independent clinical prognostic factors. A
nomogram to predict 1-, 3-, and 5-year survival in patients with
COAD was constructed via the rms package (https://cran.r-project.
org/web/packages/rms/rms.pdf), and calibration curves reflected the
predictive accuracy of the nomogram. Then, the ROC curve was
plotted to evaluate the prognostic predictive power of the

nomogram, RiskScore, TNM stage, and age. Finally, the clinical
benefits of RiskScore and the nomogram were evaluated using the
decision curve.

Statistical analysis

The data analysis in this study was conducted with R 4.1.1. The
t-test, chi-square test, Wilcoxon test, and Fisher’s test were applied
for statistical analysis of the data. The K-M method was used for the
survival analysis of groups, and the log-rank test was used to assess
the significance of differences. In this study, p < 0.05 was considered
statistically significant. The Sangerbox contributed to this report
(Shen et al., 2022).

Results

High cuproptosis score reducedOS in COAD

Initially, the cuproptosis score of each patient was assessed
utilizing ssGSEA in the TCGA-COAD and GSE39582 cohorts.

FIGURE 1
Association between cuproptosis and COAD prognosis in TCGA-COAD andGSE39582 cohorts (A, B). Sample cuproptosis score in tumor group and
normal group (C, D). K-M survival curves for high- and low-cuproptosis-score groups.
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When compared with normal samples, it was visualized that the
cuproptosis score of the tumor tissue was significantly higher (p =
1.5e-05/0.0013, Figures 1A, B). Then, based on the best cutoff values,
the samples in the TCGA-COAD and GSE39582 cohorts were
clustered into high- and low-cuproptosis-score groups. To
explore the potential relationship between the cuproptosis score
and OS, we plotted K-M survival curves. The OS of patients with low
scores in the TCGA-COAD and GSE39582 cohorts was significantly
better (p = 0.0032/0.036, Figures 1C, D). These results imply an
association between the cuproptosis score obtained based on CRGs
and COAD prognosis.

Identification of cuproptosis-related gene
modules and lncRNAs

The CRGs modules and lncRNAs were identified by the
WGCNA. Five was determined as the optimal soft threshold in
building a scale-free network, and 11 gene modules were obtained

according to the average linkage hierarchical clustering and dynamic
shearing tree (Figures 2A–D). The gene number of each module is
shown in Figure 2E. It is observable that the turquoise module is
noticeably positively related to cuproptosis (R = 0.38, p < 0.001), and
the rest of the gene modules are negatively correlated with
cuproptosis (Figure 2F). Therefore, we selected the turquoise
module for the next analysis. Additionally, the KEGG enrichment
analysis demonstrated that in the turquoise module, genes were
mainly enriched in the p53 signaling pathway, colorectal cancer,
mismatch repair, autophagy, and homologous recombination
pathways (Figure 2G).

Construction of a prognostic model related
to cuproptosis in COAD

Using 1,897 CRLs identified in the WGCNA, prognosis-related
lncRNAs in COAD were identified via univariate COX regression in
the training set. A total of 78 lncRNAs capable of influencing the OS

FIGURE 2
WGCNA analysis on tumor samples in the TCGA-COAD cohort. (A) Hierarchical clustering tree of tumor samples. (B) Analysis of the scale-free fit
index for various soft-thresholding powers (β). (C) Analysis of the mean connectivity for various soft-thresholding powers. (D) Dendrogram of all co-
expressed genes/lncRNAs clusters based on a dissimilarity measure (1-TOM). (E) Number of genes within the 11-gene module. (F) Pearson correlation of
11-gene-module ME with clinical information. (G) KEGG pathway annotation of genes within the turquoise module.
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of COAD were identified. Owing to the high number, which was not
conducive to clinical detection, the LASSO COX compressed model
was implemented. For this procedure, the model was found to be
optimal at lambda = 0.04559461 under 10-fold cross-validation,
which contained RFPL3S, AC034236.2, EIF3J-DT, ZEB1-AS1,
AL731533.2, LINC00638, AC008494.3, and AC016027.1. Finally,
multivariate COX regression identified five lncRNAs associated with
CRGs (Supplementary Figures S1A–C) to construct a clinical
prediction model for COAD prognosis (Supplementary Figures
S1D–F). The patient’s RiskScore was computed by using the
formula: RiskScore = −1.177 × AC008494.3 + 1.098 × EIF3J-
DT − 0.981 × AC016027.1 + 0.813 × AL731533.2 + 0.651 ×
ZEB1_AS1.

Based on this formula and the optimal group cutoff determined
by the survminer package, the COAD samples in the training and
validation sets were divided into high-score and low-score groups,
and we plotted the K-M survival curves and ROC curves for
prognostic assessment. It was observed that patients in the high-
score group in the training set had worse OS (p < 0.0001), and the
ROC curve showed that the AUC values of RiskScore for predicting
1-, 3-, and 5-year survivals were 0.75, 0.7, and 0.83, respectively
(Figure 3A). The high-score group in the validation set had a better
prognosis (p = 0.00011), with AUC values of 0.82, 0.61, and 0.44 at 1,

3, and 5 years, respectively (Figure 3B). It could be seen that the
AUC values of RiskScore in the validation set for predicting 3-year
and 5-year survival of patients were not satisfactory, which may be
attributed to the small number of samples. Therefore, the model was
verified in the TCGA-COAD, GSE39582, and GSE17538 cohorts,
respectively. The TCGA-COAD, GSE39582, and GSE17538 cohorts
all exhibited worse prognosis in the high-score group, and RiskScore
predicted 1-, 3-, and 5-year AUC values greater than 0.6 with a
sufficiently sizeable sample (Figures 3C–E). These results illustrate
that RiskScore exhibited good overall predictive performance.

Differences in clinicopathological
characteristics and mutational
characteristics among high- and low-score
groups

Furthermore, we counted the differences in clinicopathological
characteristics between the high- and low-score groups in the
TCGA-COAD, GSE39582, and GSE17538 cohorts. In the TCGA-
COAD cohort, we found a higher proportion of patient deaths, high
tumor TNM stage, and Stage patients in the high-score groups (p <
0.05) (Figures 4A–E), whereas there were no significant differences

FIGURE 3
Construction of a clinical prognostic risk model for COAD: (A) training set, (B) validation set, (C) TCGA-COAD, (D) GSE39582, (E) GSE17538 K-M
survival curves and ROC curves in the high-score and low-score groups.
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in age and gender (Figures 4F, G). In the GSE39582 cohort, the
event, TNM stage, and stage trends were consistent with those of the
TCGA-COAD cohort, with the difference that there were more
elderly patients in the high-score group (Supplementary Figures
S2A–G). By contrast, a higher proportion of deaths and high-stage
conditions were observed in the high-score groups in GSE17538

(Supplementary Figures S3A–E). These results have further
confirmed that patients in the high-score group have a poorer
prognosis and that the majority of the patients have a higher
clinicopathological stage. Naturally, genomic mutations were
counted in the TCGA-COAD cohort for each sample in the
high- and low-score groups and waterfall plots were drawn to

FIGURE 4
Differences in clinicopathological characteristics as well as mutational characteristics among high- and low-score groups. (A–G) Statistics of event,
T stage, N stage, M stage, stage, age, and gender information of patients in the TCGA-COAD cohort in the high-score and low-score groups, with the
lower half being the proportion of cases and the upper half being statistically significant statistics. (H) Waterfall plot of the top 20 genes in mutation
frequency. (I) Boxplots of homologous recombination defects, fraction altered, number of segments, and tumor mutation burden.
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show the 20 genes with the highest mutation frequencies
(Figure 4H). We found that the majority of the 20-gene
mutations were higher in the low-score group, which may be one
of the factors for a good prognosis of the low-score group. Finally, we
downloaded the cancer immune landscape of COAD from previous
studies and found that homologous recombination defects and
fraction altered scores were higher in the high-score group (p <
0.05), while the number of segments and tumor mutation burden
were not significantly different (Figure 4I).

Performance of RiskScore in
clinicopathology subgroups

In the TCGA-COAD cohort, to demonstrate that RiskScore is an
equally favorable predictor in different clinical characteristic
subgroups, we sketched the K-M curves in different subgroups of
the high- and low-score groups.We noted that among the subgroups
of age, gender, TNM stage, and stage, all subgroups showed poor
prognosis in the high-score group except for the T1 + T2 subgroups
(Figures 5A–L). The following analyses were conducted in the
GSE17538 and GSE39582 cohorts. In addition, a similar analysis
was done in the GSE17538 and GSE39582 cohorts. The outcomes of

the overall survival showed that the clinicopathology of all patients
with a high score was significantly shorter (Figures 6A–L,
Supplementary Figures S4A–I). The aforementioned results
suggest that RiskScore is a reliable prognostic indicator.

Association between RiskScore and immune
microenvironment

To determine differences in the abundance of infiltrating
immune cells in the TME of COAD patients in the high- and
low-score groups, MCP-counter, ssGSEA, and ESTIMATE
algorithms were employed to analyze the differences in the
immune microenvironment of GSE39582 cohort patients.
Figure 7A displays the results of the MCP-counter analysis.
Significant differences could be observed in the infiltration of NK
cells, myeloid dendritic cells, T cells, monocytic lineage, cytotoxic
lymphocytes, and B lineage in different risk groups. Then, the
stromal and immune cell scores in the TME were analyzed via
the ESTIMATE. The results showed significantly higher
StromalScore, ImmuneScore, and ESTIMATEScore in the high-
score group (Figure 7B). Similarly, ssGSEA analysis detected
most of the higher immune cell infiltration scores in the high-

FIGURE 5
K-M survival curves for high- and low-score groups in the clinicopathological subgroups of the TCGA-COAD cohort. (A, B) Age subgroup, (C, D)
gender subgroup, (E, F) T stage subgroup, (G, H) N stage subgroup, (I, J) M stage subgroup, and (K, L) stage subgroup.
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score group (Figure 7C). Additionally, in the high- and low-score
groups, a comparison of the immune checkpoint gene expression
showed a high expression of the vast majority of immune checkpoint
genes in the high-score group (Figure 7D). The TCGA-COAD and
GSE17538 cohorts were similarly processed and showed similar
trends to those in the GSE39582 cohort (Supplementary Figures
S5A–D, Supplementary Figures S6A–D).

Association between RiskScore and
immunotherapy response/chemotherapy
sensitivity

Presently, most cancer patients do not respond well to
immunotherapy (Bagchi et al., 2021). To clarify the potential of
RiskScore in predicting immunotherapy response in COAD
patients, we analyzed the variability in immunotherapy response
in two risk score groups. We calculated the TIDE score, dysfunction
score, and exclusion score in the TIDE software for COAD patients
in the TCGA-COAD and GSE17538 cohorts. We observed higher
TIDE scores in the high-score group in the two cohorts. The lower
dysfunction scores and higher exclusion scores were observed in

both TCGA-COAD and GSE17538 in the high-score group (Figures
8A, B). These overall results have indicated that patients with a low
RiskScore possibly responded better to immunotherapy, while an
increased potential for immune escape occurred in the high-score
group, resulting in poor immunotherapy outcomes. Meanwhile, to
predict the response of RiskScore to immunotherapy, we found that
the proportion of patients in the low-score group responding to
immunotherapy was 51% and 52% in the TCGA-COAD and
GSE17538 cohorts, respectively (Figures 8A, B).

To analyze the sensitivity of COAD patients to conventional
chemotherapeutic drug treatment, the IC50 of cisplatin, PHA-
665752, AZ628, crizotinib, S-trityl-L-cysteine, and imatinib was
assessed via the pRRophetic package. The results in the TCGA-
COAD, GSE39582, and GSE17538 cohorts were consistent, with
significantly higher IC50s for all six drugs in the low-score group
than in the high-score group, indicating that patients in the low-
score group were more sensitive to cisplatin, PHA-665752, AZ628,
crizotinib, S-trityl-L-cysteine, and imatinib treatments (Figures
9A–C). The abovementioned results indicate that low-score
COAD patients respond better to immunotherapy and
chemotherapy and that RiskScore is a potential biomarker for
predicting treatment response.

FIGURE 6
K-M survival curves for high- and low-score groups in the clinicopathological subgroups of the GSE39582 cohort. (A, B) Age subgroup, (C, D) gender
subgroup, (E, F) T stage subgroup, (G, H) N stage subgroup, (I, J) M stage subgroup, and (K, L) stage subgroup.
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Nomogram for predicting COAD survival

Based on age, gender, TNM stage, stage, and group, a decision
tree was constructed, and four subgroups, namely, C1, C2, C3, and
C4 were determined (Figure 10A). The decision tree showed that
group, age, and M stage were the major contributors in the
subgroups. The K-M survival analysis showed significant
differences in OS among the four subgroups, with the best
prognosis in the C1 subgroup and the worst prognosis in the
C4 subgroup (Figure 10B). We found that all patients in the
C1 and C2 subgroups were in the low-score group, and all
patients in the C3 subgroup were in the high-score group
(Figure 10C). The differences in the survival status of patients in
different subgroups are shown in Figure 10D. Univariate and
multivariate COX regression analyses were performed based on
age, gender, TNM stage, stage, and group to validate whether the
group was an independent prognostic factor for COAD. The results
showed that the group was an independent prognostic factor for
COAD (p < 0.001) (Figures 10E, F). The ROC curves showed that
there was a positive predictive power with stage, TNM stage, age,
and RiskScore (Figure 10G).

Then, based on the major contributors in the decision tree, a
nomogram was built to predict the 1-, 3-, and 5-year OS of COAD
patients (Figure 10H). The calibration curves showed that the

prediction curves for predicting the 1-, 3-, and 5-year OS of
COAD based on the nomogram fit well with the actual observed
curves, which suggests that the nomogram had a promising
predictive performance (Figure 10I). Finally, the DCA was used
to assess model reliability, and it was observed that both the
RiskScore and nomogram achieved significantly higher benefits
than the extreme curves, and both the nomogram and RiskScore
showed the strongest survival prediction ability as shown in Figures
10G, J when compared to other clinicopathological characteristics.

Discussion

In recent years, despite early screening measures such as
colonoscopy and tumor biomarkers testing, the incidence of
COAD had been greatly reduced (Sung et al., 2021). However,
frustratingly, features such as metastasis, recurrence, and
chemotherapy resistance in COAD patients have caused the
mortality rate to remain high, with a 5-year survival rate of only
12% according to statistics (Shah et al., 2016; Miller et al., 2019;
Parseghian et al., 2019). The review by Chen and Shen (2020) has
indicated that lncRNAs play a crucial role in the pathogenesis,
progression, and treatment of COAD and that lncRNAs may be
potentially promising biomarkers for tumor therapy. The report by

FIGURE 7
Analysis of immune cell infiltration in TME in the GSE39582 cohort: (A) MCP-counter analysis, (B) ESTIMATE analysis, (C) ssGSEA analysis, and (D)
immune checkpoint gene expression.
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Deng et al. (2017) has indicated that serum lncRNAs are a novel
detection and prognostic biomarker that are easily accessible, non-
invasive, and appropriately tested at a cost relative to conventional
colonoscopy, and notably, lncRNAs demonstrate excellent accuracy
and utility in clinical diagnosis and prognostic predictive
management. Several COAD prognosis–related lncRNAs have
been reported. lncRNA LBX2-AS1 contribute to the development
of distal metastasis in COAD patients by regulating the miR-627-5p/
RAC1/PI3K/AKT axis, and LBX2-AS1 is a novel biomarker of
prognosis in COAD (Fang et al., 2022). O’Brien et al. (2022)
noted that elevated lncRNA H19 expression affects the KRAS
mutation status and increases the risk of distal metastasis in
COAD patients, and H19 could be a potential molecular
biomarker for the prognosis and treatment of COAD.
Cuproptosis is a newly discovered mode of cell death, and given
the role of copper homeostasis in cancer progression and copper
complexes as potential therapeutic options (Tsvetkov et al., 2022; Li,
2020; da Silva et al., 2022), this report is the first to screen prognostic
CRLs in COAD via a bioinformatics approach.

First, we found an association between the cuproptosis score and
COAD prognosis; based on this finding, the prognostic CRLs in
COADwere obtained by theWGCNA and COX regression analysis,
and the model contained AC008494.3, EIF3J-DT, AC016027.1,
AL731533.2, and ZEB1-AS1. Previous studies have confirmed
that AC008494.3, EIF3J-DT, AC016027.1, and ZEB1-AS1 are
correlated with COAD prognosis, treatment resistance, and
malignant disease progression. For example, two recent studies
have reported that AC008494.3 and AC016027.1 are prognostic

biomarkers for COAD and CRC, respectively (Wang et al., 2021;
Zhang et al., 2021). EIF3J-DT was shown to be a prognostic
biomarker associated with autophagy in COAD (Zhou et al.,
2020). Through in vivo and in vitro assays, Luo et al. (2021)
identified that lncRNA EIF3J-DT regulated autophagy and drug
resistance in gastric cancer cells by targeting ATG14. lncRNA ZEB1-
AS1 high expression was correlated with poor prognosis in COAD,
and ZEB1-AS1 acted as a sponge in adsorbing to miR-455-3p and
bound to it to regulate COAD cell growth and metastasis by
targeting the action of PAK2 (Ni et al., 2020). While
AL731533.2 is a newly identified COAD prognostic gene, its
function remains to be further explored in subsequent studies. In
this study, AC008494.3, EIF3J-DT, AC016027.1, AL731533.2, and
ZEB1-AS1 were identified as COAD prognostic CRGs, of which
AC008494.3 and AC016027.1 serve as protective factors, and EIF3J_
DT, AL731533.2, and ZEB1_ AS1 are the as risk factors. Combined
with previous studies, this study further demonstrates that these
lncRNAs could be used as prognostic biomarkers for COAD, which
might be complementary to existing prognostic biomarkers and
have important implications for clinical guidance of COAD
prognosis.

In the study, we observed differences between infiltrating
immune cells and immunotherapy responses in patients with
different RiskScore groups. Therefore, we speculate that this
novel pattern of cell death in cuproptosis might have
immunological relevance. AC008494.3 was reported to be the
prognostic lncRNA associated with iron death in COAD (Xu
et al., 2022). Interestingly, the accumulation of ROS caused by

FIGURE 8
Prediction of response to immunotherapy: (A) TCGA-COAD and (B) GSE17538 TIDE score and prediction of response to immunotherapy.

Frontiers in Pharmacology frontiersin.org11

Li et al. 10.3389/fphar.2023.1200054

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1200054


cuproptosis led to the ferroptosis of cells (Gao et al., 2021). A report
indicated that ferroptosis and immune cells exhibited synergistic
effects together to maintain tumor immune microenvironment
homeostasis and that the process of ferroptosis in tumor cells
could expose tumor antigens and enhance immunogenicity to
enhance immunotherapeutic response (Zhang et al., 2019). The
connection between cuproptosis, ferroptosis, and immunity
indicates that CRGs are promising and potential therapeutic
targets for future tumor therapy, and it is important to explore
their mechanisms to guide anti-tumor therapy.

We observed lower immune checkpoint expression and TIDE
scores in the low-score group, suggesting that low-score group
patients were more sensitive to immunotherapy. It was also
demonstrated that the percentage of patients responding to
immunotherapy was higher in the low-score group. These results
have suggested that RiskScore could be used as a novel biomarker for
immunotherapy and immune response rates. ImmuneScore was
confirmed to be a reliable prognostic indicator as a complement to
TNM staging for predicting disease recurrence and mortality in
COAD (Pages et al., 2018). The K-M curves, ROC curves, and
nomogram all show RiskScore to be a reliable prognostic factor for
COAD, and DCA curves show that both nomogram and RiskScore
exhibit the most powerful survival prediction ability. These results

show that RiskScore constructed from CRLs could be used as a
complement to existing clinical prognostic factors.

Furthermore, in somatic mutation analysis, we found that the
majority of patients in the low-risk group had a higher mutation
frequency than patients in the high-risk group. It is generally
believed that cancer cells with high mutation frequency can
attenuate the immune checkpoint suppressive effect of immune cells
on tumor sources (Schumacher and Schreiber, 2015; Miao et al., 2018).
This observation is also supported by numerous studies. The adult
neural tube cell tumors represent low tumor mutational burden (TMB)
tumors that upregulated IDO1 expression in an inflammatory
environment and enhanced IDO1 expression shaped a suppressive
microenvironment by suppressing T-cell activity, which is one of the
mechanisms of immune evasion in adult neural tube cell tumors
(Folgiero et al., 2016; Munn and Mellor, 2016). Samstein et al.
(2019) used the statistical analysis of 7,033 cancer patients
(immunotherapy treatment: 1,662; no immunotherapy treatment:
5,371) with TMB data and survival time and found that high TMB
improved survival in multiple cancers. Our study suggests that high-
frequency somatic mutations in patients in the low-risk group, where
cancer cells might be more easily recognized by immune cells and
immune escape suppressed, could also have contributed to the good
clinical outcome of patients.

FIGURE 9
Sensitive analysis of chemotherapy drugs (A) TCGA-COAD, (B) GSE39582, and (C) GSE17538, and the IC50 of cisplatin, PHA-665752, AZ628,
crizotinib, S-trityl-L-cysteine, and imatinib.
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We developed a novel and highly accurate cuproptosis-related
prognostic factor for COAD patients. In addition, based on
RiskScore and clinical factors, we developed a nomogram for
predicting 1-, 3-, and 5-year OS in COAD. However, this study
still has shortcomings. First, due to insufficient annotated files in the
GEO database, this study was performed by dividing the TCGA
cohort sample using a 7:3 ratio for model construction, and a large

sample of data sets to construct the model would have been more
convincing. Secondly, five CRLs were identified in this study, and the
specific molecular mechanisms of action of these lncRNAs remain
unclear, subsequent wet assays, such asWestern blot, RT-qPCR, and
immunohistochemistry need to be undertaken in further studies.
These are important directions that will be explored in our
subsequent work.

FIGURE 10
Construction of decision trees and nomogram. (A) Patients with full-scale annotations that include RiskScore, stage, gender, and age were used to
build a survival decision tree to optimize risk stratification. (B) Significant differences of K-M survival were observed among the four risk subgroups. (C, D)
Distribution of patients in different subgroups. (E, F) Univariate and multivariate COX analysis of RiskScore and clinicopathological characteristics. (G)
Compared with other clinicopathological features, the nomogram exhibited the most powerful capacity for survival prediction. (H) Nomogram
predicting survival at 1, 3, and 5 years for patients with COAD. (I)Calibration curves for 1-, 3-, and 5-year survival rates. (J)Decision curves for nomogram.
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Conclusion

We constructed a novel prognostic model using CRLs in
COAD, and the CRLs in the model were potential therapeutic
targets for COAD. According to our study, RiskScore is a
new potential predictor of independent prognostic factors,
immunotherapy response, and chemotherapy sensitivity in
COAD. Based on the decision curves and nomogram, it was
shown that RiskScore possesses strong robustness in
prognostic assessment and is a reliable clinical prognostic
guideline, providing a new scientific basis for the prognostic
management of COAD.
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