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Background: Colorectal cancer (CRC) ranks the second malignancy with high
incidence and mortality worldwide. Cancer stem cells (CSCs) function critically in
cancer progression and metastasis via the interplay with immune cells in tumor
microenvironment. This study aimed to identify important CSC marker genes and
parsed the role of these marker genes in CRC.

Materials and methods: CRC samples’ single-cell RNA sequencing data and bulk
transcriptome data were utilized. Seurat R package annotated CSCs and identified
CSC marker genes. Consensus clustering subtyped CRC samples based on CSC
marker genes. Immune microenvironment, pathway and oxidative stress analysis
was performed using ESTIMATE, MCP-counter analysis and ssGSEA analysis. A
prognostic model was established by Lasso and stepAIC. Sensitivity to
chemotherapeutic drugs was determined by the biochemical half maximal
inhibitory concentration with pRRophetic R package.

Results: We identified a total of 29 CSC marker genes related to disease-specific
survival (DSS). Two clusters (CSC1 and CSC2) were determined, and CSC2 showed
shorter DSS, a larger proportion of late-stage samples, and higher oxidative stress
response. Two clusters exhibited differential activation of biological pathways
associated with immune response and oncogenic signaling. Drug sensitivity
analysis showed that 44 chemotherapy drugs were more sensitive to
CSC2 that those in CSC1. We constructed a seven-gene prognostic model
(DRD4, DPP7, UCN, INHBA, SFTA2, SYNPO2, and NXPH4) that was effectively
to distinguish high-risk and low-risk patients. 14 chemotherapy drugs were more
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sensitive to high-risk group and 13 chemotherapy drugs were more sensitive to
low-risk group. Combination of higher oxidative stress and risk score indicated
dismal prognosis.

Conclusion: The CSC marker genes we identified may help to further decipher the
role of CSCs in CRC development and progression. The seven-gene prognostic
model could serve as an indicator for predicting the response to immunotherapy
and chemotherapy as well as prognosis of CRC patients.

KEYWORDS

colorectal cancer, cancer stem cells, single-cell analysis, CSC marker genes, clustering,
prognostic model, oxidative stress, drug sensitivity

Introduction

According to global cancer statistics in 2020, colorectal cancer
(CRC) is one of the most contributable malignancies worldwide,
resulting in around 9.8% of new cancer cases and 9.2% of new cancer
deaths worldwide (Sung et al., 2021). Males have both higher
incidence and mortality rates than females, which may result
from more frequent smoking in males. The gender disparity also
varies greatly by age. For instance, incidence of aging from 55–74 is
40%–50% higher in male population than in females, while the close
incidence is shown between men and women in ages beneath
45 years (Murphy et al., 2011). The incidence markedly escalates
with the increasing age from 40 years, presented with almost or even
over double increase per 10 years (Siegel et al., 2020). With the
developing and popularization of screening methods like
colonoscopy, the incidence rate of CRC drastically declined from
late 20th century to 2017 (Laiyemo et al., 2010; Fedewa et al., 2017).
Nevertheless, survival rate for 5 years is still extremely low, about
12% for metastatic CRC patients (Siegel et al., 2019). Further
investigation on molecular mechanisms and screening or
prognosis predicting methods is needed for facilitating survival of
CRC patients.

In recent years, molecular stratification therapy based on tumor
biological characteristics has improved the prognosis of patients
with advanced colorectal cancer to some extent. For example, anti-
D-1 and anti-CTLA-4 monoclonal antibodies for metastatic disease
with MSI or high TMB (Hong et al., 2016; Tamura, 2018) and
verofinil for colorectal cancer with BRAFV600E. Dienstmann et al.
(Dienstmann et al., 2017) pointed out that precision therapy for
colorectal cancer will shift from single-gene single-drug to multi-
gene-multi-drug as well as multi-molecular multi-drug, i.e., from a
clonal perspective to a clone-stromal-immune perspective, which
represents the future direction of colorectal cancer treatment.

The substantial proliferation and invasion of cancer cells are
tightly linked to cancer stem cells (CSCs). CSCs possess a solid self-
renewal ability to expand cancer cell growth and promote
tumorigenesis (Bjerkvig et al., 2005). In addition to the self-
renew, CSCs can also differentiate into other cell types such as
endothelial cells that are responsible for angiogenesis (Xiong et al.,
2009; Ricci-Vitiani et al., 2010). Therefore, CSCs generate intra-
tumor heterogeneity by differentiating a range of different cell types.
On top of that, CSCs interact with epithelial–mesenchymal
transformation (EMT) process to promote cancer cell invasion
and migration (Kong et al., 2011). CSCs share some of same
pathways with normal stem cells, such as Hedgehog signaling,

Wnt/β-catenin, and Notch signaling pathways that maintain their
self-renewal ability as well as confer the resistance to chemotherapy
and radiotherapy in CRC (Baumann et al., 2008; Dylla et al., 2008;
Colak et al., 2014; Yang et al., 2020). A Phase II clinical trial study
confirmed the effect of metformin on CSCs in ovarian cancer,
suggesting that epigenetic changes in tumor stroma may drive
platinum sensitivity in vitro (Brown et al., 2020). Overall, the
properties of CSCs endow them to complicate tumor
microenvironment and enhance resistance to clinical therapy.
Consequently, targeting CSCs could be a promising strategy for
CRC treatment. For example, a phase I/II clinical trial employed
CSC-loaded dendritic cells as vaccine using in metastatic CRC
patients (https://clinicaltrials.gov/ct2/show/NCT02176746).

Given that CSCs function critically in cancer progression and
therapy, we sought to emphasize and decipher the role of CSC
markers in CRC development and therapy. Single-cell RNA
sequencing data of CRC samples was analyzed for accurately
annotating CRC marker genes. We identified two clusters
through molecular subtyping based on CRC marker genes and
parsing the difference of two clusters from various aspects
including prognosis, immune microenvironment, biological
pathways, and response to clinical therapy. Importantly, we
established a CRC-based prognostic model which was reliable
and effective for the survival prediction of CRC.

Materials and methods

The acquisition and preprocessing of bulk
transcriptome data

The bulk RNA sequencing (RNA-seq) data of CRC samples and
para-cancerous (normal) samples were obtained from The Cancer
Genome Atlas (TCGA) database through Sangerbox platform in
30 September 2022 (named as TCGA dataset) (Tomczak et al., 2015;
Shen et al., 2022). Microarray data of CRC samples (GSE17538 and
GSE39582) were downloaded from Gene Expression Omnibus
(GEO, specific links please see https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE17538, https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE39582) (Clough and Barrett, 2016).

For RNA-seq data of TCGA dataset, we removed the samples
without clinical information and survival information. Ensembl IDs
were transferred to gene symbols, and averaged expression levels
were selected in the condition that one gene had multiple Ensembl
IDs. Finally, 438 CRC samples were included in TCGA dataset

Frontiers in Pharmacology frontiersin.org02

Chen et al. 10.3389/fphar.2023.1200017

https://clinicaltrials.gov/ct2/show/NCT02176746
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE17538
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE17538
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39582
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39582
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1200017


(Supplementary Table S1). For microarray data, only samples with
survival information were remained. Probes were transferred to gene
symbols. We eliminated probes matching to multiple genes and
selected averaged expression value when one gene had multiple
probes. After preprocessing, a total of 232 and 556 CRC samples
were remained in GSE17538 and GSE39582 datasets, respectively
(Supplementary Tables S2, S3).

The acquisition and processing of single-cell
RNA sequencing data

Single-cell RNA sequencing (scRNA-seq) dataset (GSE200997)
was downloaded from GEO. We retained 16 CRC samples in the
dataset. ScRNA-seq data was filtered under following conditions: 1)
each gene expressed at least in three cells; 2) each cell expressed at
least 250 genes; 3) the percentage of mitochondria is less than 10%;
4) UMI of each cell >500 and log10(GenesPerUMI) > 0.8. After
preprocessing, we analyzed the scRNA-seq data using Seurat R
package according to following procedures (Gribov et al., 2010).
Firstly, the expression profiles were log-normalized. Then we
removed the batch effects of 16 tumor samples using
FindVariableFeatures and FindIntegrationAnchors functions, and
integrated data through IntegrateData function. Next, ScaleData
function was conducted to scale data and identify the anchor for
principal component analysis (PCA). Single cells were clustered with
dim = 40 and Resolution = 0.5 based on FindNeighbors and
FindClusters functions. Subsequently, we annotated the cell
clusters according to the cell markers of eight cell types (B cells,
T cells, CSCs, endothelial cells, fibroblasts, mast cells, myeloid cells,
NK cells, and T cells) from CellMarker 2.0 and previous studies
(Supplementary Table S4) (Peng et al., 2019; Zhang et al., 2019; Lee
et al., 2021; Su et al., 2021). Finally, FindAllMarkers function was
performed to discriminate differentially expressed genes (DEGs)
among eight cell types.

Analysis of cancer stemness

We used mRNA stemness index (mRNAsi) to measure cancer
stemness at RNA expression level. Following a previous study, one-
class logistic regression (OCLR) machine-learning algorithm was
used to calculate the mRNAsi (Malta et al., 2018). The DEGs of CSCs
were determined as CSC marker genes. Single sample gene set
enrichment analysis (ssGSEA) calculated the score of CSC
marker genes through GSVA R package (Hänzelmann et al.,
2013). The mRNAsi and ssGSEA score of CSC marker genes
were calculated for each tumor and normal sample in TCGA,
GSE17538 and GSE39582 datasets. Pearson correlation analysis
assessed the correlation between mRNAsi and CSC marker genes
using Hmisc R package.

Mutation analysis

Copy number variation (CNV) and single nucleotide variation
(SNV) data were obtained from TCGA dataset, where SNV data had
been processed by mutect2 software. Genes mutated in more than

three tumor samples were retained and examined by Fisher’s exact
test to determine significantly mutated genes (p < 0.05). The top
15 highly mutated genes were visualized.

Molecular subtyping based on CSC marker
genes

First of all, to identify disease-specific survival (DSS)-associated
CSC marker genes (p < 0.05), we performed univariate Cox
regression analysis. Then based on the expression profiles of
DSS-associated CSC genes, tumor samples were subtyped by
unsupervised consensus clustering in ConsensusClusterPlus R
package with parameter settings were as follows: reps = 50,
pItem = 0.8, pFeature = 1, and distance = Euclidean (Wilkerson
and Hayes, 2010). We determined the optimal cluster number k
referring to cumulative distribution function (CDF) curves, relative
area change under CDF curves, and consensus matrix.

Immune and pathway analysis

We obtained a group of gene sets of 28 immune cells, innate and
adaptive immunity from previous research (Charoentong et al.,
2017; He et al., 2018), and measured their enrichment scores
using ssGSEA. ESTIMTAE algorithm evaluated the enrichment
scores of immune cells and stromal cells, and outputted an
ESTIMATE score representing the combined immune and
stromal scores (Yoshihara et al., 2013). Microenvironment Cell
Populations (MCP)-counter method was employed to assess the
enrichment scores of nine immune cells and fibroblasts (Becht et al.,
2016). We obtained a total of 47 immune checkpoint genes from a
previous study (Danilova et al., 2019). For pathway analysis,
hallmark pathways (h.all.v7.4. symbols.gmt) were collected from
Molecular Signature Database (MSigDB) (Liberzon et al., 2015). The
ssGSEA score for each pathway was calculated and compared
between different groups.

Assessment of oxidative stress

Oxidative stress related genes were collected from “GOBP_
RESPONSE_TO_OXIDATIVE_STRESS” in MSigDB. Distribution
of this GOBP gene set was analyzed in GSE17538, GSE39582, and
TCGA. Pearson’s correlation analysis was performed to evaluate the
relationship between risk score and oxidative stress. surv_cutpoint
function embedded in survminer package was employed to
determine the optimal cutoff and generate survival curves.

Predicting the response to immunotherapy
and chemotherapy

Tumor Immune Dysfunction and Exclusion (TIDE) algorithm
(http://tide.dfci.harvard.edu/) was implemented to estimate the
potential response of tumor samples to immune checkpoint
inhibitors (ICIs) (Jiang et al., 2018). A higher TIDE score is
positively correlated with a higher possibility of immune escape
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from ICIs. T cell exclusion and T cell dysfunction were examined by
TIDE, and the enrichment scores of immunosuppressive cells
including tumor-associated macrophages (TAM), myeloid-derived
suppressor cells (MDSC), cancer-associated fibroblasts (CAF) were
also calculated. The sensitivity to chemotherapeutic drugs was
determined by the biochemical half maximal inhibitory
concentration with pRRophetic R package (Geeleher et al., 2014).

Constructing and validating a prognostic
model

Under the threshold of |fold change| > 1.5 and false discovery
rate (FDR) < 0.05, DEGs between different clusters were identified
by limma R package (Ritchie et al., 2015). WebGestaltR package was
used to annotate significantly enriched KEGG pathways for DEGs
(Liao et al., 2019). Then TCGA dataset was randomly assigned at a
ratio of 1:1 into training and testing groups. We screened DSS-
associated DEGs through univariate Cox regression analysis in the
training group (p < 0.01). To reach an optimal prognostic model, we
conducted least absolute shrinkage and selection operator (Lasso)
with glmnet package and stepwise Akaike information criterion
(stepAIC) with MASS package to determine the most contributable
genes to the model (Friedman et al., 2010; Zhang, 2016). The
prognostic model was defined as: risk score = Σβi×Expi, where β
indicates Lasso coefficients and Exp indicates the expression levels of
prognostic genes (i).

According to the optimal cut-off determined by survminer R
package, each tumor sample obtained a risk score and was classified
into high-risk and low-risk groups. Survival time between two risk
groups was shown by Kaplan-Meier survival analysis. Receiver
operation characteristic (ROC) curve analysis was used to predict
the efficiency of the prognostic model in predicting different survival
time through timeROC R package (Blanche et al., 2013). The
effectiveness and reliability of the model was validated in TCGA
and GSE17538 datasets.

Statistical analysis

The statistical analysis in this study was conducted and
outputted by R software (version 4.1.0). Two-group statistical
difference was examined by Wilcoxon test. Log-rank test was
used in survival analysis and univariate Cox regression analysis.
We considered p < 0.05 as statistically significant.

Results

Identification of CSC markers and their
relation with mRNAsi

First of all, we used scRNA-seq data to identify different cell
types based on their markers. Single cells were filtered to ensure the
quality of data (see details in materials and methods). The gene
counts, UMI counts, and mitochondrial percentage of 16 CRC
samples before and after quality control were shown in
Supplementary Figure S1. After quality control, we normalized

the data and removed the batch effects based on highly variable
genes (Supplementary Figure S2). Then single cells were further
scaled and grouped into 21 clusters (Supplementary Figure S3).
Using cell markers from CellMarker 2.0 and based on previous
research, we annotated cells into eight cell types including B cells,
T cells, endothelial cells, fibroblasts, mast cells, cancer stem cells,
myeloid cells, and NK cells (Figures 1A, B; Supplementary Table S4).
T cells contributed the largest proportion followed by B cells and
CSCs in most tumor samples (Figure 1C). Subsequently,
differentially expressed genes (DEGs) were identified from each
cell type and the top five DEGs (bright yellow) were visualized
(Figure 1D). For CSCs, we identified a total of 257 DEGs
(Supplementary Table S5).

To evaluate the reliability of 257 DEGs as marker genes of CSCs,
we introduced mRNA stemness index (mRNAsi) to assess the
correlation between 257 DEGs and mRNAsi. We firstly
calculated the ssGSEA score of 257 DEGs and mRNAsi score in
three independent datasets (TCGA, GSE17538, and GSE39582). By
comparing the ssGSEA score and mRNAsi score in normal and
cancer samples, we observed that cancer samples had higher scores
of both ssGSEA and mRNAsi than normal samples in TCGA and
GSE39582 datasets (p < 0.001, Figures 2A, B). In addition, the
ssGSEA score of CSC marker genes was significantly positively
related to mRNAsi score, with coefficients of 0.443, 0.380, and
0.477 in TCGA, GSE39582, and GSE17538, respectively (p <
0.0001, Figures 2A–C). Therefore, it is reasonable to determine
the 257 DEGs as CSC marker genes.

Identification of molecular subtypes based
on CSC marker genes

To identify which CSC marker genes were associated with CRC
progression, we performed univariate Cox regression based on DSS
time. Of 257 CSC marker genes, we identified a total of 29 genes
(20 risk genes and 9 protective genes) significantly associating with
DSS (Supplementary Figure S4A; Supplementary Table S6). Within
these 29 genes, 22 of them were differently expressed in cancer and
para-cancerous samples (Supplementary Figure S4B). We also
analyzed the gene mutations and genomic variations of 29 genes
in cancer samples. PLEC, PLCG2, and LENG8 were the top three
frequently mutated genes, with mutation frequencies of 10%, 7%,
and 5%, respectively (Supplementary Figure S4C). CNV results
showed that the frequency of gain of CNVs was larger than that
of loss of CNVs (Supplementary Figure S4D). Especially, BRI3,
CEBPB, HSPB1, and PLEC had frequencies of gain of CNVs over
than 25%.

Given that 29 CSC marker genes were closely related to patients’
prognosis, we then studied the role of these marker genes in CRC.
Therefore, the expression profiles of 29 CSC marker genes in TCGA
dataset were used in consensus clustering on CRC samples.
According to CDF curve and consensus matrix, cluster number
k = 2 was determined as the optimal and samples were classified into
two clusters (CSC1 and CSC2) (Figures 3A–C). In GSE17538 and
GSE39582 datasets, we used the same method to cluster samples and
consensus matrix results showed that samples were evidently
divided into two clusters (Figures 3D, E). Then we compared the
prognosis of two clusters in three datasets. In TCGA dataset,
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CSC1 and CSC2 showed significantly different disease-specific
survival (DSS) (p < 0.0001), progression-free interval (PFI) (p =
0.0011), and overall survival (OS) (p = 0.00023) (Figure 3F). In
GSE39582 dataset, CSC1 and CSC2 had different prognosis on
recurrence-free survival (RFS) (p = 0.026) and OS (p = 0.018)
(Figure 3G). In GSE17538 dataset, two clusters had different DSS
(p = 0.048) and disease-free survival (DFS) (p = 0.005), but no
significant difference on OS (Figure 3H). Overall, CSC1 had better
prognosis than CSC2. PCA plot presented that two clusters were
evidently separated (Figure 3I). Therefore, we considered that the
clustering of CRC samples based on 29 CSC marker genes was
effective and reliable.

Mutation and clinical characteristics of two
clusters

We assessed the mutation data of TCGA dataset, and identified a
total of 380 genes that had significantly higher mutation frequencies
in CRC samples that in normal samples. The top 15 mutated genes
were visualized, where XIRP2 and SCN1A had frequencies of over
than 10% (Supplementary Figure S5A). However, there was no
significant difference on tumor mutation burden between cancer
and normal samples (Supplementary Figure S5B).

In addition, we compared the clinical characteristics including
gender, age, stage Ⅰ toⅣ, TNM stage in two clusters. The distribution
of different ages and genders did not show significant differences
between two clusters (Supplementary Figure S5C, D). Noteworthy,
CSC2 had markedly larger proportions of the samples with late
stages than CSC1, with ratios of 0.14 and 0.09 in T4 stage, 0.24 and
0.12 in N2 stage, 0.22 and 0.10 in M1 stage, 0.21 and 0.09 in stageⅣ
for CSC2 and CSC1 respectively (Supplementary Figure S5E–H).
The findings suggested that CSC marker genes may have an
influence on the progression of CRC.

Immune microenvironment and oxidative
stress differences of CSC1 and CSC2 clusters

We applied different methods to evaluate the immune
microenvironment in CSC1 and CSC2. SsGSEA on the gene sets
of 28 immune cells showed that 14 immune cells were differently
enriched in two clusters, and CSC1 had higher enrichment scores
in most of them such as natural killer cells, activated CD4 T cells,
memory B cells (Figure 4A). In the response of adaptive and innate
immunity, CSC1 also performed higher enrichment score than
CSC2 but the difference was not significant in the innate immune
response (Figure 4B). ESTIMATE analysis revealed higher

FIGURE 1
Analysis of scRNA-seq data. (A) T-SNE plot showed the distribution of eight cell types with different colors. (B) The expression of cell markers in
different cell types. Pct. exp (dot) indicates the percentage of cells expressing marker genes. Blue color from light to dark indicates the expression from
low to high. (C) The percentage of eight cell types in 16 tumor samples. 16 samples were indicated in the left and percentage was indicated in the bottom.
(D) The top five DEGs of eight cell types. Yellow and purple represents high and low normalized expression respectively.
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infiltration of immune cells and stromal cells in CSC1 than that in
CSC2 (Figure 4C). Moreover, MCP-counter manifested that of
10 immune-related cells, three cell types including monocytic
lineage, endothelial cells, myeloid dendritic cells had noticeably
higher enrichment scores in CSC1 compared with CSC2
(Figure 4D). The above results assessed by different methods
were consistent with each other, suggesting a difference of
immune cell infiltration and immune microenvironment
between two clusters. Immune checkpoints are essential linkage
of different immune cells for enhancing or inhibiting the
cytotoxicity of immune cells. The expression levels of a total of
47 immune checkpoints were compared in two clusters. As a result,
26 of 47 immune checkpoints showed a significant difference
between two clusters, with most of them were higher expressed
in CSC1 (Figure 4E). Different expression levels of these immune

checkpoints may contribute to the difference immune response
between two clusters.

Furthermore, we reckoned the scores of hallmark pathways
using ssGSEA to unveil the potential molecular mechanisms
resulting in different prognosis in two clusters. As a result,
25 pathways were differently enriched between two clusters
(Figure 4F). CSC1 displayed relatively enhanced activation of
immune-correlated pathways, for example, complement and
inflammatory response, IL2-STAT5 signaling, in accordant with
the result of immune analysis. In addition, reactive oxygen species
pathway, p53 signaling pathway and Wnt signaling pathway that
were associated with oncogenesis were more activated in
CSC2 compared with CSC1. Moreover, Figure 5 revealed that the
score of “GOBP_RESPONSE_TO_OXIDATIVE_STRESS” was
significantly increased in CSC2 in GSE17538 and GSE39582.

FIGURE 2
The relation between CSC markers and mRNAsi. (A) The ssGSEA score of CSC markers and mRNAsi in normal and tumor samples in TCGA dataset.
Pearson correlation analysis between CSC markers and mRNAsi. (B) The ssGSEA score of CSC markers and mRNAsi in normal and tumor samples in
GSE39582 dataset. Pearson correlation analysis between CSC markers and mRNAsi. (C) Pearson correlation analysis between CSC markers and mRNAsi
in GSE17538 dataset.
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The predicted response of two clusters to
immunotherapy and chemotherapy

We employed TIDE analysis to estimate the response to
immunotherapy for two clusters. No significant difference was

detected in TIDE score between two clusters. Higher TIDE score
suggested lower sensitivity to immunotherapy. Although two
clusters showed similar response to immunotherapy,
CSC2 had higher score of T cell dysfunction and higher
enrichment of MDSC, but lower score of CAF than CSC1

FIGURE 3
Molecular subtyping based on CSC markers. (A, B) CDF curves and relative change under CDF curves when cluster number k was 2–10 in TCGA
dataset. (C–E) Consensus matrix when k = 2 in TCGA (C), GSE39582 (D) and GSE17538 (E) datasets. (F–H) Kaplan-Meier survival curves of CSC1 and
CSC2 for different survival time in TCGA (F) GSE39582 (G) and GSE17538 (H) datasets. (I) PCA plots of CSC1 and CSC2 in three datasets. OS, overall
survival; DSS, disease-specific survival; DFI, disease-free interval; PFI, progression-free interval; RFS, recurrence-free survival; DFS, disease-free
survival.
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(Figure 6A). The function of T cells and infiltration levels of
immunosuppressive cells (MDSC and CAF) can affect the
response to immunotherapy.

In the predicted response of two clusters to chemotherapy, we
evaluated a number of chemotherapeutic drugs using pRRophetic
package. We identified a total of 51 chemotherapeutic drugs with

FIGURE 4
Immune microenvironment and pathway analysis of two clusters in TCGA dataset. (A) The estimated proportion of 28 immune-related cells by
ssGSEA. (B) The ssGSEA score of adaptive and innate immune cells. (C) The stromal and immune scores measured by ESTIMATE. (D) MCP-counter
assessed the enrichment score of 10 immune-related cells. (E) The expression levels of immune checkpoints. (F) A heatmap showed the z-score
expression levels of differentially enriched pathways between two clusters. ns, not significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

FIGURE 5
Difference of oxidative stress response of two clusters in TCGA, GSE17538 and GSE39582 datasets.
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different sensitivities to two clusters, where 44 drugs were more
sensitive to CSC2 and 7 drugs were more sensitive to CSC1
(Figure 6B). Therefore, we inferred that CSC marker genes for
molecular subtyping may be involved in the response to these
chemotherapeutic drugs.

Constructing a prognostic model based on
DEGs between CSC1 and CSC2

In the above sections, we illustrated that CSC1 and
CSC2 exhibited different prognosis, immune microenvironment
and activated pathways. To identify which genes had a difference
to the outcome of clusters, we performed differential analysis on the

expression profiles between CSC1 and CSC2and screened DEGs
under |log Foldchange (FC)| > 1.5 and FDR <0.05. Consequently,
598 DEGs including 214 downregulated genes and 384 upregulated
genes were identified in CSC1 (Supplementary Figure S6A). The
DEGs were significantly enriched in pathways like drug metabolism,
TGF-β signaling pathway, and gap junction, as shown by KEGG
pathway analysis (Supplementary Figure S6B).

TCGA dataset was randomly divided into two groups, training
and testing groups at a ratio of 1:1. To determine prognostic genes,
we performed univariate Cox regression on 598 DEGs in the training
group and screened 26 genes significantly related to DSS
(Figure 7A). Furthermore, we used Lasso and stepAIC to
decrease the number of prognostic genes for constructing a
prognostic model efficiently applied in clinics. Lasso regression

FIGURE 6
The sensitivity of two clusters to immunotherapy and chemotherapy. (A) TIDE analysis showed the scores of TIDE, T cell function, and infiltration of
immunosuppressive cells. (B) A heatmap showed the estimated half maximal inhibitory concentration (IC50) of two clusters to different
chemotherapeutic drugs. The drugs with significantly different IC50 in two clusters were visualized. MDSC, myeloid-derived suppressor cells; CAF,
cancer-associated fibroblasts; TAM. M2, M2 tumor-associated macrophages. ns, not significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 7
Construction and validation of the prognostic model. (A) Volcano plot of 26 CSC marker genes significantly associated with DSS in the training
group. (B, C) Lasso regression analysis on 26 CSC marker genes. The coefficients of marker genes close to zero with the increasing value of lambda. Red
dotted line and red dot represents the optimal lambda value of the model. (D) The Lasso coefficients of seven prognostic genes in the prognostic model.
(E, F) Kaplan-Meier survival plots based on DSS of high-risk and low-risk groups in the TCGA training and testing groups. (G) Kaplan-Meier survival
plots for DSS, OS, PFI, and DFI of high-risk and low-risk groups in TCGA dataset. (H) Kaplan-Meier survival plots for DSS, DFS and OS of high-risk and low-
risk groups in GSE17538 dataset.
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analysis determined 14 prognostic genes when the lambda value
reached the optimal (lambda = 0.023, Figures 7B, C). Then stepAIC
compressed 14 genes to 7 for the final prognostic genes in the model.
Finally, the prognostic model was defined as: risk score =
0.722*DRD4 + 0.619*DPP7 +0.358*UCN +0.335*INHBA
+0.162*SFTA2 + 0.279*SYNPO2 + 0.151*NXPH4.

We calculated risk score for each sample in TCGA dataset and
classified samples into two groups (high risk and low risk) by the
optimal cut-off determined by survminer package. In both training
and testing groups, high-risk group showed evidently inferior DSS
than low-risk group (p < 0.0001, Figures 7D, E). ROC curve analysis
presented favorable AUC values of the model in predicting 1-year, 3-
year, and 5-year DSS with over than 0.70 (Figures 7E, F). We verified
the effectiveness of the prognostic model in the whole TCGA
dataset. The model showed a good performance in predicting
patient survival with different status (Figure 7G). Moreover, we
used an independent dataset (GSE17538) to validate the reliability of
the prognostic model (Figure 7H). In the DSS, DFS, and OS
prediction and classification, the model showed a good efficiency
(Figure 7H). In addition, samples with advanced T stage, N stage, M
stage and Stage had a higher risk score in TCGA dataset, and

similarly situation was observed in GSE17538 dataset samples along
with Stage and Grade (Supplementary Figure S7).

Pathway analysis of two risk groups

Next, we assessed the enrichment of biological pathways in two
risk groups to identify key pathways in tumor progression. Using
ssGSEA we distinguished a total of 26 pathways that were
differentially enriched in high-risk and low-risk groups (p < 0.05,
Figures 8A, B). High-risk group exhibited relatively more activated
oncogenic pathways than low-risk group, such as P53 signaling,
angiogenesis, EMT, hypoxia, and Notch signaling pathways. Also,
we examined the correlation between risk score and these pathways
delineated by a heatmap. The result showed that risk score was
positively correlated with most of these pathways, such as Notch
signaling (R = 0.41), Hedgehog signaling (R = 0.40), apical junction
(R = 0.48), EMT (R = 0.34), angiogenesis (R = 0.33), hypoxia (R =
0.36), P53 signaling (R = 0.37), reactive oxygen species pathway (R =
0.30), KRAS signaling down (R = 0.41) and Wnt-beta catnin
signaling (R = 0.43) (Figure 8C).

FIGURE 8
Analysis of hallmark pathways in two risk groups in TCGA dataset. (A) A heatmap displayed the normalized ssGSEA score of 26 pathways in two risk
groups. (B) Box plots of ssGSEA score of 26 pathways in two risk groups. (C) Pearson correlation analysis between risk score and 26 pathways. Red and
blue represents positive and negative correlation respectively. Fork indicates not significant.
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FIGURE 9
Oxidative stress analysis of two risk groups. (A), Distribution of GOBP gene set in TCGA and GSE17538 datasets. (B, C), Pearson correlation analysis of
risk score with the response to oxidative stress in TCGA and GSE17538 datasets. (D), Pearson correlation analysis of risk score and risk genes with the
response to oxidative stress in TCGA and GSE17538 datasets. (E, F), Kaplan-Meier survival curves of two risk groups or combination of risk score and
oxidative stress in TCGA. (G, H), Kaplan-Meier survival curves of two risk groups or combination of risk score and oxidative stress in GSE17538.
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Oxidative stress analysis of two risk groups

In addition, we emphatically analyzed the relation between risk
score and response to oxidative stress. Figure 9A showed that high
risk patients in GSE17538 possessed higher oxidative stress score
that of low risk patients (p = 8.6e-10). Not surprisingly, risk score
was positively correlated with GOBP response to oxidative stress in
both TCGA (R = 0.288, p = 1.74e-09) and GSE17538 datasets (R =
0.457, p = 1.54e-10) (Figures 9B, C). Besides, GOBP response to
oxidative stress was positively correlated with INHBA, SFTA2, and
SYNPO2 both in TCGA and GSE17538 datasets (Figure 9D).
Furthermore, we found that high patients exhibited dismal
prognosis in TCGA (p = 0.0041) and GSE17538 (p = 0.015).
Meanwhile, patients with high risk combined with high oxidative
stress had the poorest prognosis (Figures 9E–H).

The responses of two risk groups to
immunotherapy and chemotherapy

Similarly, we applied ESTIMATE algorithm to evaluate immune
cell infiltration and stromal cell infiltration in two risk groups. High-
risk group manifested both higher stromal score and immune score
than low-risk group, but immune score was not significantly different
(Figure 10A). Generally, high immune infiltration is beneficial to
immune response and prognosis. To address this puzzle, we further
used TIDE analysis to predict the T cell function. As a result, high-risk
group displayedmore significant impairment of T cell function, where

higher scores of T cell dysfunction and exclusion were shown in high-
risk group in comparison to low-risk group (Figure 10B).
Accordingly, high-risk group had higher TIDE score, indicating a
higher immune escape possibility in the high-risk
group. Supportively, risk score had a highly positive correlation
with TIDE, T cell exclusion, T cell dysfunction, in accordant with
the above findings (Figure 10C). The result also demonstrated that
risk score was a potential indicator to predict the response to
immunotherapy and T cell function. Furthermore, TIDE analysis
generated the association of seven prognostic genes with T cell
dysfunction, T cell exclusion, immune checkpoint blockade (ICB)
outcome, and the efficiency of tumor killing in CRISPR-based models
(Figure 10D). but, no significance of TMB was observed in high-risk
group and low-risk group (Supplementary Figure S8A). 17 of
47 immune checkpoint genes expressions were enhanced in high-
risk group (Supplementary Figure S8B). Drug sensitivity analysis
revealed that two risk groups had different sensitivity to
27 chemotherapeutic drugs in which 14 drugs were more sensitive
to high-risk group and 13 drugs were more sensitive to low-risk group
(Figure 10E). Based on the above findings, we could speculate that risk
score was predictive to indicate the response of CRC patients to
different chemotherapeutic drugs.

Discussion

The important roles of CSCs in cancer development and
metastasis have been substantially demonstrated in the previous

FIGURE 10
Prediction of response of two risk groups to immunotherapy and chemotherapy in TCGA dataset. (A) ESTIMATE analysis calculated the stromal score
and immune score of two risk groups. (B) TIDE analysis predicted the response to immune checkpoint inhibitors. (C) Pearson correlation analysis of risk
score with TIDE score, T cell dysfunction and T cell exclusion. (D) Enrichment of seven prognostic genes in T cell dysfunction score (how a gene interacts
with cytotoxic T cells to influence patient survival outcome), ICB outcome (genes whose activities are correlated with ICB benefit), log-fold change
(logFC) in CRISPR screens (the efficacy of lymphocyte-mediated tumor killing in cancer models) and T cell exclusion score (the gene expression levels in
immunosuppressive cell types). Colors from red to blue indicates expression levels from high to low. (E) The estimated IC50 of two risk groups shown as
heatmap. ns, not significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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studies (Ayob and Ramasamy, 2018; Prager et al., 2019). In this
study, we focused on CSCs and screened a group of CSC marker
genes based on scRNA-seq data of CRC samples. Using the
expression profiles of CSC marker genes, we subtyped CRC
samples into two clusters (CSC1 and CSC2). We compared
clinical characteristics, immune microenvironment and biological
pathways in two clusters. Based on DEGs between CSC1 and CSC2,
we established a prognostic model for predicting the prognosis and
therapeutic response of CRC patients.

From scRNA-seq data, we detected 257 CSC marker genes that
showed a consistent performance with mRNAsi score. The mRNAsi
score denotes the stemness degree using expression profiles (Malta
et al., 2018). Compared with the normal samples, the ssGSEA score
of CSC marker genes and mRNAsi score were both significantly
higher in CRC samples. Moreover, CSC marker genes was
noticeably positively related to mRNAsi, which proved the
reliability of identification method for CSC marker genes. Of
257 CSC marker genes, 29 of them were found to be significantly
related to DSS. Some CSCmarker genes showed extremely disparate
expression levels between normal and tumor samples, such as
PLCG2, DDX11, IER5L, LENG8, HAGHL and CPNE7
(Supplementary Figure S4). They were reported to contribute
cancer progression and metastasis. For example, small cell lung
cancer cells with PLCG2-high phenotype had stem-like and pro-
metastatic features (Chan et al., 2021). DDX11 is essential for DNA
replication and genomic stability, and is considered to have an
oncogenic role (Mahtab et al., 2021). Some marker genes had a large
percentage of gain of CNVs, particularly BRI3, CEBPB, HSPB1, and
PLEC. CEBPB was identified as a prognostic biomarker in CRC and
was found to participate CRC metastasis (Rahman et al., 2019; Shao
et al., 2021). HSPB1 was highly expressed in tumor tissues
correlating with poor prognosis in CRC (Nagaraja et al., 2012).
However, a few studies reported the roles of these CSCmarker genes
in cancer stemness. We considered these CSC marker genes as
important candidates for exploiting the mechanisms of CSCs
in CRC.

To figure out the effects of 29 CSC marker genes in CRC
prognosis and tumor microenvironment, we used consensus
clustering to subtype tumor samples into two clusters (CSC1 and
CSC2) based on the expression profiles of 29 genes. CSC1 had
evidently longer disease-specific survival than CSC2 in both TCGA
and GSE17538 datasets, indicating these CSC marker genes were
involved in CRC progression. The speculation was further
demonstrated by the distribution of clinical characteristics in two
clusters. Tumor samples with late stages like T4, N2, M1, and stage
Ⅳ had substantially higher proportion in CSC2 than that in CSC1.
Therefore, the 29 CSC marker genes played important roles in CRC
progression and metastasis.

Previous studies have outlined the intense linkage between
CSCs and tumor microenvironment (Zhang et al., 2018; Khosravi
et al., 2020), which enables targeting CSCs as a possible strategy to
eradicate CRC (Jahanafrooz et al., 2020). The inflammatory
cytokines, for instance, interferons (IFN), transforming growth
factor (TGF)-β, tumor necrosis factor (TNF)-α secreted from
immune cells especially TAMs of M2 phenotype exert profound
effects on maintaining the stemness of CSCs and promoting
immunosuppression through pathways such as NF-κB, STAT3,
and Notch (Zhang et al., 2018; Bayik and Lathia, 2021).

Reciprocally, CSCs can recruit TAMs through expressing
immunomodulatory factors thereby intertwining with CSC
stemness programming and transcriptional activity. In
comparison on immune microenvironment between CSC1 and
CSC2, we observed discrepant immune infiltration and stromal
infiltration. CSC1 showed higher infiltration of immune cells such
as monocytic lineage, dendritic cells, activated CD4 T cells, and
natural killer cells than CSC2. Although two clusters had similar
proportions of CD8 T cells and cytotoxic lymphocytes,
CSC2 presented more severely impaired T cell function, which
resulted in its poor prognosis. Notably, CSC2 also showed a higher
proportion of MDSCs and M2 TAMs than CSC1. CSC-TAM and
CSC-MDSC crosstalk promoting stemness and
immunosuppression have been underlined by previous studies.
TAMs can facilitate CSC phenotypes by mediators such as IL-6,
TGF-β, andWNT ligands (Jinushi et al., 2011; Fan et al., 2014;Wan
et al., 2014). Mechanistic analysis suggested that Nos2 and nitric
oxide (NO) produced by MDSCs fostered CSC phenotypes via
activating Notch and STAT3 pathways in cancer cells (Peng et al.,
2016; Ouzounova et al., 2017). In addition, pathway analysis
revealed that tumor-associated pathways such as TGF-β and
Wnt-β catenin signaling, cell cycle-related pathways such as
MYC, and immune-related pathways such as inflammatory
response and IL2-STAT5 signaling were distinctly enriched in
CSC1 and CSC2, which was responsible for their different anti-
cancer response and prognosis. It’s worth noting that difference in
TIDE score between two clusters was not been observed. Although
two clusters showed similar response to immunotherapy,
CSC2 had higher score of T cell dysfunction and higher
enrichment of MDSC, but lower score of CAF than CSC1. The
function of T cells and infiltration levels of immunosuppressive
cells (MDSC and CAF) can affect the response to immunotherapy
(Tamura, 2018).

Given the discrepant clinical characteristics and molecular
features between CSC1 and CSC2, we established a prognostic
model based on DEGs between two clusters. Finally, we confirmed
seven prognostic genes in the model, including DRD4, DPP7,
UCN, INHBA, SFTA2, SYNPO2, and NXPH4. DRD4 belongs
to dopamine receptor (DR) family that is associated with the
progressive phenotypes of cancer (Wang et al., 2019). A
machine learning study identified DRD4 as a survival-related
candidate gene for CRC patients (Lee et al., 2022). DPP7 is a
member of dipeptidyl peptidase (DPP) family, a high expression of
which was related to a favorable prognosis in breast cancer (Choy
et al., 2021). Ahluwalia et al. developed a four-gene signature where
DPP7 was included for predicting survival of CRC patients
(Ahluwalia et al., 2019). INHBA is a member of TGF-β
superfamily and can accelerate migration and invasion of
gastric cancer cells via TGF-β signaling pathway (Chen et al.,
2019). INHBA was identified as an independent risk factor for both
OS and DFS in colon cancer (Li et al., 2020). SFTA2 was also
identified as a prognostic gene for colon cancer (Li et al., 2018;
Gong et al., 2020). Other three genes were few reported in the
relation with CRC.

The seven-gene prognostic model effectively classified CRC
patients into two risk groups. Specifically, high-risk group
showed evidently inferior OS and DSS than low-risk group. In
addition to different prognosis, two risk groups also manifested
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different activation of biological pathways and different response to
immunotherapy and chemotherapy. Oncogenic pathways such as
Wnt-β catenin, hypoxia, EMT, angiogenesis, Hedgehog signaling,
and Notch signaling were more activated in high-risk group than in
low-risk group. Simultaneously, risk score showed a positive
correlation with the above pathways. High-risk group was less
responsive to ICB therapy, resulting from T cell exclusion and
dysfunction. Moreover, two risk groups performed different
sensitivity to different chemotherapeutic drugs.

Conclusion

In conclusion, this study harnessed scRNA-seq data to identify
CSC marker genes in CRC and demonstrated the important roles of
CSC marker genes in CRC progression by delineating CSC-based
subtyping (CSC1 and CSC2). The 29 CSC marker genes were
considered as candidate genes for further exploring the
mechanism of CSC in CRC. Importantly, we developed a seven-
gene prognostic model for not only predicting OS and DSS of CRC
patients, but also guiding immunotherapy and chemotherapy in
clinics for CRC treatment.
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