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Background: Cuproptosis-related lncRNAs regulate the biological functions of
various cancers. However, the role of cuproptosis-related lncRNAs in breast
cancer remains unclear. In this study, we investigated the biological functions
and clinical applications of cuproptosis-related lncRNAs in breast cancer.

Methods: The Cancer Genome Atlas (TCGA) database and the GSE20685 dataset
were used for screening cuproptosis-related lncRNAs. Colony formation and
CCK-8 kit assays were performed for detecting the proliferative function of
cuproptosis-related lncRNAs, whereas wound healing, migration, and invasion
assays were performed for detecting the metastatic regulation of cuproptosis-
related lncRNAs in breast cancer. Finally, a prognostic cuproptosis-related lncRNA
model was constructed using LASSOCox regression analysis for detecting survival
and sensitivity to conventional treatment (endocrine therapy, chemotherapy, and
radiotherapy) and novel therapy (PARP and CDK4/6 inhibitors).

Results: In this study, we screened six cuproptosis-related lncRNAs associated
with the survival of patients with breast cancer. Biofunctional experiments
indicated that cuproptosis-related lncRNAs play essential roles in regulating the
proliferation and metastasis of breast cancer cells. Finally, we applied a model of
six cuproptosis-related lncRNAs to classify the patients into high- and low-risk
groups. High-risk group patients exhibited worse survival rates (p < 0.001) and
lower sensitivity to chemotherapy, endocrine therapy, and radiation therapy.
Compared with high-risk patients, low-risk patients exhibited a lower
expression of CDK4/6 inhibitor-resistant biomarkers (CCNE1, E2F1, and E2F2)
and PARP inhibitor-resistant biomarkers (BRCA1/BRCA2), indicating that patients
in the low-risk group were more suitable for PARP inhibitor and CDK4/6 inhibitor
application.

Conclusion: Cuproptosis-related lncRNAs are essential for regulating the
biological functions of breast cancer, and they have the potential to predict
prognosis and sensitivity of breast cancer to various therapies.
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1 Introduction

A recent global cancer statistic reported that female breast cancer
(BC) has now surpassed lung cancer as the leading cause of global
cancer incidence in 2020 and become the fifth leading cause of cancer
mortality worldwide (Yersal and Barutca, 2014). As a heterogeneous
cancer, the prognosis of BC is affected by the pathological stage,
immunohistochemical subtypes, and multiagent treatments (Weigel
and Dowsett, 2010). However, patients with BC presenting the same
TNM stage and immunohistochemical subtype exhibit various
prognoses after standard treatments owing to different sensitivities
to therapy (Yersal and Barutca, 2014). Numerous studies have
indicated that cancer susceptibility genes (CSGs) play important
roles in regulating biological functions and therapeutic resistance of
cancers (Weigel and Dowsett, 2010; Shi et al., 2022a).

Copper is an essential trace element that ensures the normal growth
of the body and physiological functions. However, excess copper is toxic
and leads to cell death by binding to the lipoylated components of the
tricarboxylic acid (TCA) cycle. The copper compound then induces
lipoylated protein aggregation, subsequent iron–sulfur cluster protein
loss, proteotoxic stress, and ultimately cell death, in a process called
cuproptosis (Tsvetkov et al., 2022). Copper metabolism was reported to
regulate tumor progression, including tumor microenvironment
formation, angiogenesis, metastasis, and proliferative immortality
(Blockhuys and Wittung-Stafshede, 2017; Blockhuys et al., 2020). In
addition, copper metabolism plays an important role in regulating anti-
cancer activities. For example, copper supplements enhance the
expression of PD-L1, which induced cancer immune escape. Copper
chelating agents increased tumor-infiltrating CD8 T cells and natural
killer cells and slowed tumor growth (Voli et al., 2020). Higher serum
copper levels have been found in patients with BC than in healthy
individuals or patients with benign breast diseases (Feng et al., 2020). In
addition, copper has a high affinity for estrogen receptors, and it induces
estrogen-regulated pathways (Kulkoyluoglu-Cotul et al., 2019). In the
last decade, two main therapeutic strategies based on copper-induced
cell death were carried out. One is to use the corresponding copper
chelating agent to reduce the bioavailability of copper so as to inhibit
progression of tumor cells. The other is to provide excessive copper to
induce cuproptosis of cancer cells. In this strategy, tumor-targeted
nanoparticles based on copper delivery may be a very promising
research direction, which not only retains the therapeutic effect of
copper-induced cell death but also avoids the high systemic toxicity
(Pramanik et al., 2017).

Long noncoding RNAs (lncRNAs) are an essential class of RNA
molecules with lengths greater than 200 base pairs. LncRNAs play
crucial roles in the biological functions of BC cells, including
tumorigenesis, metabolism, proliferation, migration, invasion, and
drug sensitivity, indicating their potential as diagnostic, prognostic,
and therapeutic biomarkers (Schmitt and Chang, 2016; Wanowska
et al., 2022; Ye et al., 2022). Cuproptosis-related lncRNAAC099850.3 is
a prognostic marker for hepatocellular carcinoma (HCC) and has been
confirmed to promote HCC progression via the PRR11/PI3K/AKT axis
(Wang et al., 2021; Pak et al., 2022; Zhong et al., 2022). Upregulation of
cuproptosis-related lncRNA NIFK-AS1 increases resistance to
chemotherapy drugs through m6A methylation and promotes

progression of HCC (Chen et al., 2021a; Pak et al., 2022).
Furthermore, NIFK-AS1 suppresses M2-like polarization of
macrophages in endometrial cancer. Thus, cuproptosis-related
lncRNAs may play an essential role in carcinoma progression and
regulate immune response or drug sensitivity of carcinoma.

A few cuproptosis-related models have been constructed and
exhibited potential in predicting the survival and immune
microenvironment of patients with BC (Jiang et al., 2022; Zhang
et al., 2022); however, these models did not consider clinical
characteristics and sectionalization. Moreover, previous models only
performed validation in the same cohort used for model construction.
Currently, several emerging drugs, such as CDK4/6 inhibitors (Wu
et al., 2020) and poly (ADP-ribose) polymerase (PARP) inhibitors (Rose
et al., 2020), have gradually become the first-line treatment for BC;
however, few models have been developed for predicting the efficacy of
these drugs. Therefore, it is important to develop a multifunctional
model for predicting survival and therapeutic efficacy.

In this study, we identified six cuproptosis-related lncRNAs that
play important roles in the regulation of BC cell proliferation and
metastasis. We constructed a prognostic model based on these
lncRNAs and used it to classify the patients into high- and low-
risk groups. Patients in the high-risk group exhibited worse survival
rates and poorer sensitivity to chemotherapy, endocrine therapy,
and radiation therapy than those in the low-risk group. The gene
expression of BRCA1/BRCA2 was low in the low-risk group, while
those of TRIPI3/PARP1 andMUS81 were high and low, respectively,
in the high-risk group, indicating that patients in the low-risk group
were more suitable for PARP inhibitor application and that patients
in the high-risk group had a higher risk of drug resistance.

2 Materials and methods

2.1 Dataset preparation

Clinical information and corresponding RNA-sequencing data of
1,109 breast cancer patients were obtained from the TCGA database at
the website of https://portal.gdc.cancer.gov/. After patients were
excluded for no stage information, 1,054 patients from TCGA were
used as the training cohort. A total of 317 patients selected randomly
from TCGA with the R package “caret” were used as the internal
validation cohort. The GSE20685 dataset (series matrix files) including
327 breast cancer patients from the platformGPL570 [HG-U133_Plus_
2] Affymetrix Human Genome U133 Plus 2.0 Array (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE20685) was used as the external
validation cohort.

2.2 Identification of cuproptosis-related
lncRNAs in breast cancer

A total of 1,109 tumor samples and 113 normal samples of RNA-
sequencing data were screened with a false discovery rate (FDR) <
0.05 and |log2FC| ≥ 1. We used the ensemble human genome
browser GRH38.p13 (http://asia.ensembl.org/index.html) to
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TABLE 1 Clinical characteristics of patients in training and validation cohorts.

Variable Training cohort (N = 1054) (%) Internal validation
cohort (N = 317) (%)

p External validation
cohort (n = 327)

p

Age 0.31 <0.001

≤40 years 75 (7.12%) 28 (8.83%) 71 (21.72%)

>40 years 979 (92.88%) 289 (91.17%) 256 (78.29%)

Gender 0.77 0.05

Female 1,042 (98.86%) 314 (99.05%) 327 (100%)

Male 12 (1.14%) 3 (0.95%) 0 (0%)

Stage 0.96 <0.001

1 181 (17.17%) 55 (17.35%) 69 (21.10%)

2 609 (57.78%) 185 (58.36%) 147 (44.95%)

3–4 264 (25.05%) 77 (24.29%) 111 (33.95%)

T 0.99 0.07

T1 273 (25.90%) 82 (25.87%) 101 (30.89%)

T2 615 (58.35%) 184 (58.04%) 188 (57.49%)

T3 132 (12.52%) 40 (12.62%) 26 (7.95%)

T4 34 (3.23%) 11 (3.47%) 12 (3.67%)

M 0.854 <0.001

M0 885 (83.97%) 270 (85.17%) 319 (97.55%)

M1 23 (2.18%) 7 (2.21%) 8 (2.45%)

NA 146 (13.85%) 40 (12.62%) 0 (0%)

N 0.94 <0.001

N0 500 (47.44%) 153 (48.26%) 137 (41.90%)

N1 355 (33.68%) 109 (34.38%) 87 (26.60%)

N2 119 (11.29%) 35 (11.04%) 63 (19.27%)

N3 71 (6.74%) 17 (5.36%) 40 (12.23%)

NA 9 (0.85%) 3 (0.94%) 0 (0%)

ER 0.40

Positive 775 (73.53%) 241 (76.03%)

Negative 232 (22.01%) 67 (21.14%)

NA 47 (4.46%) 9 (2.83%)

PR 0.45

Positive 673 (63.85%) 209 (65.93%)

Negative 331 (31.40%) 98 (30.91%)

NA 50 (4.74%) 10 (3.15%)

HER2 0.30

Negative 738 (70.02%) 227 (71.61%)

Positive 187 (17.74%) 61 (19.24%)

NA 129 (12.24%) 29 (9.15%)

Therapy

(Continued on following page)
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classify lncRNAs and protein-coding genes. Genetic information of
42 genes were gathered from previous literatures (Chen et al., 2022;
Tsvetkov et al., 2022). The R package “limma” was used to calculate
cuproptosis-related lncRNAs. With correlation coefficient |R2| > 0.
3 and p < 0.001, 538 cuproptosis-related lncRNAs were obtained.
Then, a total of 90 shared cuproptosis-related lncRNAs were
extracted from TCGA and GSE20685 for the following analysis.
All RNA-sequencing data were normalized by log2 conversion.

2.3 Cuproptosis-related lncRNA signature
and model construction

Univariate Cox regression analysis and LASSO Cox regression
analysis were used to calculate predictive cuproptosis-related

lncRNAs and establish the cuproptosis-related lncRNA
signature. The risk score of every cuproptosis-related
lncRNA signature was calculated according to the following
formula: Risk score = (Expi × βi), where “β” is the regression
coefficient of every corresponding lncRNA and “exp” is the
expression level of lncRNA.

Combining the lncRNA signature score with the clinical
characteristics of age, gender, and stage, we used multivariate
Cox regression analysis to construct a comprehensive model with
the TCGA dataset and developed a nomogram to predict 1-, 3-, and
5-year survival probability. The R package “nomogramEx” was used
to calculate the corresponding score of every factor in the
comprehensive model. Then, the patients were classified into the
high-risk group and low-risk group according to the median
comprehensive model risk score.

TABLE 1 (Continued) Clinical characteristics of patients in training and validation cohorts.

Variable Training cohort (N = 1054) (%) Internal validation
cohort (N = 317) (%)

p External validation
cohort (n = 327)

p

Endocrinotherapy 513 (48.67%) 150 (47.32%) 0.67

Chemotherapy 573 (54.36%) 180 (56.78%) 0.45

Radiation therapy 518 (49.15%) 157 (49.53%) 0.91

FIGURE 1
Screening cuproptosis-related lncRNAs in TCGA and GSE20685 databases. (A) Screening of six lncRNAs (NIFK-AS1, TP53TG1, TOLLIP-AS1 YTHDF3-
AS1, LINC00839, and OTUD6B-AS1) which were associated with prognosis of BC patients. (B) Forest map of univariate Cox regression analysis.
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FIGURE 2
Biological functions of cuproptosis-related lncRNAs in BC cells. (A) Plate colony formation assay showed that colony formation of MCF-7 cells
decreased after silencing YTHDF3-AS1, LINC00839, and OTUD6B-AS and increased after silencing NIFK-AS1 and TOLLIP-AS1. (B) The transwell
migration experiment showed that knocking down YTHDF3-AS1, LINC00839, and OTUD6B-AS1 led to decrease of invasive MCF-7 cells, but increased
after silencing NIFK-AS1, TP53TG1, and TOLLIP-AS1,—100 μm. (C) The transwell invasion experiment showed that knocking down YTHDF3-AS1,
LINC00839, and OTUD6B-AS1 led to decrease of invasive MCF-7 cells, but increased after silencing NIFK-AS1, TP53TG1, and TOLLIP-AS1, scale
bar—100 μm *p < 0.05, **p < 0.01, and ***p < 0.001, n.s. no significance, according to Student’s t-test.
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2.4 Cell lines and siRNA transfection

The BC cell line MCF7 was cultured in RPMI-1640 (Gibco,
United States) containing 10% fetal bovine serum (FBS) (Gibco,

United States) and 1% penicillin/streptomycin (Gibco, United States).
All cell lines were incubated at 37 °C and with 5% CO2. The small
interfering RNA (siRNA) was designed for knocking down lncRNAs
using Lipofectamine® 3000 according to reagent instructions.

FIGURE 3
Cuproptosis-related lncRNA signature construction. (A and B) Least absolute shrinkage and selection operator (LASSO) regression performed with
theminimum criteria. (C)Gene set enrichment analysis (GSEA) based on the cuproptosis-related comprehensive model. (D)Nomograms of 1-, 3-, and 5-
year OS of BC patients by the cuproptosis-related comprehensive model. (E) Distribution of the risk score plot and the distribution of survival time in the
training cohort, internal validation cohort, and external validation cohort.
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FIGURE 4
Efficacy of the cuproptosis-related comprehensive model. (A–C) AUC for different cuproptosis-related lncRNAs in training, internal, and external
validation cohorts. (D–F) AUC of every predictive factor of the cuproptosis-related comprehensive model in training, internal, and external validation
cohorts. (G–I) AUC of 1-, 3-, and 5-year survival probability of the cuproptosis-related comprehensive model in training, internal, and external validation
cohorts. (J–L) Kaplan–Meier curves for the overall survival in training, internal, and external validation cohorts. (M–O) Calibration curves of the
cuproptosis-related comprehensive model in training, internal, and external validation cohorts.
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TABLE 2 Clinical characteristics of patients between high- and low-risk groups and in the training cohort.

Subgroup Patients High risk (%) Low risk (%) HR (95% CI) p

All 1,054 527 (50.00%) 527 (50.00%) 2.378 (1.691–3.344) <0.0001

Age

≤40 years 96 6 (6.25%) 90 (93.75%) 2.038 (0.313–13.26) 0.456

>40 years 958 521 (54.38%) 437 (45.62%) 2.638 (1.838–3.786) <0.0001

T

T1 273 133 (48.72%) 140 (51.22%) 2.200 (1.055–4.587) <0.0001

T2 615 314 (51.06%) 301 (48.94%) 2.282 (1.421–3.664) <0.0001

T3-4 166 80 (48.19%) 86 (51.81%) 2.890 (1.466–5.698) 0.0004

NA 0

N

N0 500 232 (46.20%) 268 (53.80%) 3.010 (1.645–5.508) <0.0001

N1 355 200 (56.34%) 155 (43.66%) 1.527 (0.892–2.612) 0.0124

N2-3 190 94 (50.00%) 96 (50.00%) 4.767 (2.298–9.887) 0.0003

NA 9

M

M0 885 452 (51.07%) 433 (48.93%) 2.399 (1.651–3.488) <0.0001

M1 23 10 (43.48%) 13 (46.52%) 1.034 (0.384–2.787) 0.947

NA 137

Stage

1 181 91 (50.28%) 90 (47.72%) 2.667 (0.979–7.264) 0.0086

2 609 308 (49.59%) 301 (50.41%) 2.398 (1.437–4.002) 0.0003

3–4 264 136 (51.52%) 128 (48.48%) 2.371 (1.395–4.027) 0.0002

NA 16

Molecular classification

HR+, HER2+ 147 61 (41.50%) 86 (58.50%) 4.989 (1.771–14.06) 0.0098

HR−, HER2+ 38 12 (31.58%) 26 (68.52%) 2.431 (0.454–13.02) 0.2994

HR+, HER2− 690 366 (53.04%) 324 (46.96%) 2.090 (1.339–3.262) <0.0001

Triple negative 157 78 (49.68%) 79 (50.32%) 2.969 (1.307–6.747) 0.0094

Type

Infiltrating lobular carcinoma 196 106 (54.08%) 90 (45.92%) 3.994 (1.636–9.747) 0.0026

Infiltrating ductal carcinoma 755 366 (48.48%) 389 (51.52%) 2.258 (1.505–3.389) <0.0001

Others 103 55 (53.40%) 48 (46.60%) 0.091 (0.860–5.674) 0.0825

Therapy

Endocrine therapy 513 260 (50.68%) 253 (49.32%) 1.888 (0.973–3.666) 0.042

Chemotherapy 575 336 (58.43%) 239 (41.57%) 2.938 (1.551–5.566) 0.0002

Radiation therapy 518 268 (51.74%) 250 (48.26%) 2.559 (1.328–4.933) 0.0021
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2.5 Cell proliferation assay

Cells were seeded in 96-well plates at a concentration of
3,000 cells per well in 200 μL of the medium. After cultivation
for the indicated time, the medium was removed and 20 μL diluted
CCK-8 solutions (Dojindo, Japan) were added. The plate was
continued to be incubated at 37 °C for 2 h, and the absorbance
was measured at 450 nm. All experiments were performed in three
independent cohorts.

2.6 Colony formation assays

Cells were seeded in six-well plates at a concentration of 500 cells
per well. The cell culture medium was changed every 3 days. After
2 weeks of culture, the medium was removed and the colonies were
fixed in 10% formalin solution for 2 h, with 0.1% crystal violet
solution staining subsequently for another 10 min at room
temperature. Digital images of the plates were taken for
permanent records, with colony counting done by ImageJ
software (version 1.8.0).

2.7 Cell migration and invasion assays

Briefly, 5 × 104 cells in 200 μL of RPMI-1640 (with 0% FBS) were
seeded in the upper chambers of transwell membranes (Corning,
New York, United States). The bottom wells of the chambers were
filled with 800 μL RPMI-1640 (with 10% FBS). After 24 h of
incubation, the transwell membranes were fixed with 95%
ethanol and then stained with 1% crystal violet. Images of five
different fields were captured from each membrane, and the number
of migrated cells was counted. For cell invasion assays, the upper
wells were pre-coated with Matrigel, and other procedures of
invasion assays were similar with those of migration assays.

2.8 Gene set enrichment analysis

Gene set enrichment analysis (GSEA; http://www.
broadinstitute.org/gsea) version 4.1.0 (Broad Institute,
United States) was used to analyze the genes that were differently
expressed between the high- and low-risk groups. False discovery
rate (FDR q-value) < 0.25 and |NSE| < 2 and normal p-value < 0.

FIGURE 5
Subgroup analysis of the cuproptosis-related comprehensive model in predicting OS in the training cohort. (A–I) Kaplan–Meier curves for overall
survival in all patients in different subgroups.
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05 were considered significantly enriched. The R packages “plyr,”
“ggplot2,” “grid,” and “gridExtra” were used to conduct the multi-
GSEA analysis.

2.9 Estimation of tumor-infiltrating immune
cells

The CIBERSORT algorithmwas used to calculate the proportion
of 22 different tumor-infiltrating immune cells in high- and low-risk
groups. The normalized expression data were available at the
CIBERSORT website (http://cibersort.stanford.edu/). Bar plot,
heatmap, corHeatmap, and vioplot were drawn by R package,
showing the association between different immune cells and
discrepancy between the two groups.

2.10 Statistical analysis

All statistical analysis and figures were performed by R software,
GraphPad Prism 5 Software, and SPSS 22.0. Kaplan–Meier plotter
was used to evaluate the discrepancy of overall survival (OS)
between the high-risk group and the low-risk group in different
subgroup patients. The chi-squared test was used to compare the
proportions of clinical characteristics between the training cohort
and two different validation cohorts. The cox proportional risk
model was used to estimate hazard ratios (HRs) and 95% confidence
intervals (CIs) of different age, TNM stage, tumor size (T), lymph
node metastasis (N), distant metastasis (M), HER2 status, HR status,
and carcinoma type between the two groups. Calibration curve was
used to test the consistency between the predicted survival and
actual survival of the comprehensive model. The time-dependent
ROC curve analysis of different groups was performed with R
packages “survivalROC” and “timeROC.” The Wilcoxon test was
used to compare the proportion of immune cells and the biomarker
expression levels of emerging therapy between the two groups.
p-value < 0.05 was considered statistically significant. All p values
were two-tailed.

3 Results

3.1 Screening cuproptosis-related lncRNAs
in The Cancer Genome Atlas (TCGA)
database

In total, 1,054 patients with BC after non-stage exclusion in the
TCGA database were enrolled as the training cohort for screening
prognostic lncRNA candidates and identifying cuproptosis-related
lncRNA signatures. A total of 317 patients randomly selected from
the training cohort were included in the internal validation cohort.
In addition, 327 patients with BC from GSE20685 were enrolled as
an external validation cohort. The detailed clinical characteristics
of the three cohorts are presented in Table 1. No significant
differences in clinical characteristics were found between the
training and internal validation cohorts, whereas a significant
difference was found between the training and external
validation cohorts.

Supplementary Figure S1 presents a flowchart of the
cuproptosis-related comprehensive model construction. LncRNAs
with an absolute Pearson correlation coefficient of 0.3 (|R| > 0.3) and
p < 0.001 were considered cuproptosis-related lncRNAs. A total of
90 shared lncRNAs were extracted from the cuproptosis-related
lncRNAs from TCGA and GSE20685 for subsequent analyses
(Figure 1A). Univariate Cox regression analysis was used for
selecting six lncRNAs (NIFK-AS1, TP53TG1, TOLLIP-AS1,
YTHDF3-AS1, LINC00839, and OTUD6B-AS1) that were
associated with the prognosis of patients with BC (Figure 1A).
Figure 1B depicts a forest map of the univariate Cox regression
analysis.

3.2 Biological functions of cuproptosis-
related lncRNAs in BC cells

We identified the biological functions of six cuproptosis-related
lncRNAs in BC. Plate colony formation assay showed that colony
formation of MCF-7 cells decreased after silencing YTHDF3-AS1,
LINC00839, and OTUD6B-AS and increased after silencing NIFK-
AS1 and TOLLIP-AS1 (Figure 2A). CCK-8 kit assay indicated that
similar results as those of plate colony formation assay in MCF-7
cells were observed (Supplementary Figure S2A), indicating that the
lncRNAs YTHDF3-AS1, LINC00839, and OTUD6B-AS1 played an
important role in promoting BC cell proliferation. In addition,
transwell migration and invasion experiment showed that
knocking down YTHDF3-AS1, LINC00839, and OTUD6B-AS1
led to decrease of invasive MCF-7 cells, but increased after
silencing NIFK-AS1, TP53TG1, and TOLLIP-AS1 (Figures 2B,
C). A similar result was obtained by performing wound healing
assay experiments (Supplementary Figure S2B). These results
indicate that carcinogenesis-related lncRNAs exhibit significant
potential in regulating BC metastasis.

3.3 Cuproptosis-related lncRNA signature
construction

Next, we determined the prognostic role of cuproptosis-related
lncRNAs. In this study, three cohorts were enrolled (training cohort:
1,054 patients from the TCGA database, internal validation cohort:
317 patients from the TCGA database, external validation cohort:
327 patients from the GSE20685 dataset). Univariate and least
absolute shrinkage and selection operator (LASSO) Cox regression
analyses were performed for identifying lncRNA candidates and
establish cuproptosis-related lncRNA signatures (Figures 3A, B).
The cuproptosis-related lncRNA signature formula was as follows:
Risk score = e (0.130 × YTHDF3.AS1 expression) + (0.054 ×
LINC00839 expression) + (0.056 × OTUD6B.AS1 expression) +
(−0.487 × NIFK.AS1 expression) + (−0.006 × TP53TG1 expression) +
(−0.145 × TOLLIP.AS1 expression).

Multivariate Cox regression analysis was used for constructing a
comprehensive cuproptosis-related model and nomogram using
age, sex, stage, and lncRNA score (Figure 3D). The age groups
“<40, 40–60, 60–70, and >70” corresponded to “0, 7.98, 15.95, and
23.93” points, respectively. The scores for men and women were
0 and 4.41 points, respectively. The stages “1, 2, 3, and 4”
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corresponded to “0, 5.76, 17.24, and 34.09” points, respectively.
LncRNA points were calculated using the following formula:
lncRNA points = 15.385 × lncRNA score + 53.846. The total
points of these four factors corresponded to different survival
probabilities at 1, 3, and 5 years. The total points classified the
patients with BC into two groups, with a median score of
51.27 points in the training cohort. The patients in the validation
cohort shared the same model and calculation formula as those in
the training cohort, and they were classified into two groups
according to the same median score.

Gene set enrichment analysis (GSEA) was performed for
exploring biological or signal transduction pathway dysfunctions
by comparing the differences in lncRNA expression profiles between
the high- and low-risk groups. The results showed that amino sugar
and nucleotide sugar metabolism, fructose and mannose

metabolism, citrate cycle, TCA cycle, glycolysis and
gluconeogenesis, lysosomes, N-glycan biosynthesis, and steroid
biosynthesis were enriched in the high-risk group, while the
Notch signaling pathway, tight junction, focal adhesion, leukocyte
transendothelial migration, and basal cell carcinoma were enriched
in the low-risk group (Figure 3C).

3.4 Efficacy of the cuproptosis-related
comprehensive model

The risk score plots, survival status plots, and heatmap of the six
lncRNAs in high- or low-risk patients with BC in the three cohorts
are displayed in Figure 3E and Supplementary Figure S3, indicating
that as the risk increased, the number of deaths among patients with

FIGURE 6
Immune cell infiltration landscape in breast cancer. (A) Bar plot of the tumor-infiltrating cell proportions. (B) Heatmap of the tumor-infiltrating cell
proportions. (C)Correlationmatrix of immune cell proportions. (D) Violin plot of the different proportions of tumor-infiltrating cells between the high-risk
group and the low-risk group.
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BC increased in all three cohorts. More patients died in the high-risk
group than in the low-risk group.

The area under the ROC curve (AUC) for the cuproptosis-
related comprehensive model for predicting the 3-year overall
survival (OS) was greater than that for single cuproptosis-related
lncRNA or lncRNA signature in all three cohorts (Figures 4A–C).
Regarding the ability to predict the 3-year OS, the AUC of the
cuproptosis-related comprehensive model was superior to single
clinical characteristics such as age, TNM stage, and sex in all three
cohorts (Figures 4D–F). The OS values at 1, 3, and 5 years, predicted
by the cuproptosis-related comprehensive model, were 0.720, 0.831,
and 0.729, respectively, in the training cohort; 0.817, 0.759, and
0.728, respectively, in the internal validation cohort; and 0.598,
0.828, and 0.712, respectively, in the external validation cohort
(Figures 4G–I). These results suggest the high efficacy of the
cuproptosis-related comprehensive model in predicting the
survival of patients with BC. Kaplan–Meier analysis of the OS in
all three cohorts indicated that BC patients with higher risk scores
exhibited worse OS performance than BC patients with lower risk
scores (training cohort: median OS 9.51 years vs. 12.21 years, HR
2.378, 95% CI = 1.691–3.344, p < 0.0001). Internal validation cohort:
median OS: 10.05 years vs. 18.06 years, HR 3.144, 95% CI =
1.654–5.977, p < 0.0005. External validation cohort: HR 1.777,
95% CI = 1.152–2.743, p = 0.0094) (Figures 4J–L). A similar
result was found in another independent dataset GSE21653
(Supplementary Figure S5). The calibration curves of all three
cohorts indicated good agreement between the actual OS rate
and the OS rate predicted using our cuproptosis-related
comprehensive model (Figures 4M–O).

3.5 Subgroup analysis of the cuproptosis-
related comprehensive model in predicting
OS in the training cohort

Kaplan–Meier and subgroup analyses of the cuproptosis-related
comprehensive model were performed on the basis of the clinical
characteristics of patients with BC in the training cohort (Table 2).
Kaplan–Meier analysis showed that high-risk patients had poorer

OS in the T1–T4, M0, and N0-3 subgroups than low-risk patients
(Figures 5A–I). The HER2 gene is an important risk factor and
therapeutic target in patients with BC. Significantly more patients in
the low-risk group survived longer than those in the high-risk group
among patients, irrespective of HR+ HER2−, HR+ HER2+, HR−
HER2+, or TNBC subtype (Supplementary Figure S4).

3.6 The immune cell infiltration landscape in
breast cancer

The CIBERSORT algorithm was used in investigating the
immune cell infiltration landscape in all three cohorts. A bar plot
of the tumor-infiltrating cell proportions and heatmap of the tumor-
infiltrating cells were generated.

The proportions and correlation matrix of immune cell
proportions in the training cohort are presented in Figures
6A–C. A violin plot was drawn to show the different proportions
of the 22 types of tumor-infiltrating cells between the high- and low-
risk groups in the training cohort. Anti-tumor immune cells such as
CD8+ T cells and regulatory T cells (Tregs) were downregulated in
the high-risk group, whereas cancer-promoting cells such as
M2 macrophages were upregulated in the high-risk group
(Figure 6D), which indicated that patients with BC in the high-
risk group had anti-cancer immune deficiency. More importantly,
immune cell infiltration was proven to reflect the efficacy of
immunotherapy. CD8+ T lymphocytes are effector cells of
immune checkpoint blockage therapy (ICB), and the exhaustion
of CD8+ T cells leads to inefficiency of ICB in patients with breast
cancer (Rahim et al., 2023). Tregs suppress anti-cancer immunity,
thereby hindering protective immunosurveillance of tumors.
Targeting tumor-infiltrated Tregs, such as depletion of Tregs, and
targeting immune checkpoint on Tregs or skewing Tregs toward
anti-tumor immunity phenotype were important directions for
breast cancer immunotherapy (Li et al., 2020).

Among patients with HER2− BC, anti-tumor immune cells,
such as CD8+ T cells and resting dendritic cells, were obviously
downregulated in the high-risk group, while cancer-promoting cells,
such as CD4+ T memory resting cells, were upregulated in the

FIGURE 7
Cuproptosis-related comprehensive model in predicting the sensitivity of conventional treatment in the training cohort. (A–C) BC patients received
different therapy in the high-risk group suffered a poorer survival than those in the low-risk group (endocrine therapy: HR = 1.888, 95% CI 0.973–3.666,
p = 0.042; chemotherapy: HR = 2.938, 95% CI 1.551–5.566, p = 0.0002; radiation therapy: HR = 2.559, 95% CI 1.328–4.933, p = 0.0021).
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low-risk group (Supplementary Figure S6). Anti-tumor Tregs were
also downregulated in the high-risk group of patients with HER2+
BC (Supplementary Figure S6). Resting anti-tumor immune
dendritic cells were also downregulated in the high-risk group
among patients with HR+ BC, while cancer-promoting cells, such
as M2 macrophages and neutrophils, were upregulated in the low-
risk group (Supplementary Figure S6). B and T lymphocyte
attenuator (BTLA) is one of the most important co-signaling
molecules (Ning et al., 2021).

3.7 Cuproptosis-related comprehensive
model in predicting the sensitivity of
conventional treatment in the training
cohort

In the training cohort, 513, 575, and 518 of 1,054 patients with
BC received endocrine, chemotherapy, and radiation therapy,
respectively. Patients with BC who received different therapies in
the high-risk group exhibited poorer survival than those in the low-
risk group (endocrine therapy: HR = 1.888, 95% CI 0.973–3.666, p =
0.042; chemotherapy: HR = 2.938, 95% CI 1.551–5.566, p = 0.0002;
radiation therapy: HR = 2.559, 95% CI 1.328–4.933, p = 0.0021)
(Figures 7A–C).

3.8 Cuproptosis-related comprehensive
model in predicting the sensitivity of CDK4/
6 inhibitor and PARP inhibitor

Pharmacological inhibitors of cyclin-dependent kinases 4 and 6
(CDK4/6) and PARP, two emerging treatments, are effective in
patients with HR+ and HER2− BC, respectively. In this study, we
developed a comprehensive cuproptosis-related model to evaluate
the therapeutic effects of these treatments. In previous research, a
high expression of CCNE1, E2F1, and E2F2 and lower expression
of FAT1 and FGFR2 led to poorer sensitivity to CDK4/
6 inhibitors, while lower expression of BRCA1, BRCA2, and
TRIP13 contributed to higher sensitivity to the PARP inhibitor
(Rose et al., 2020; Bui et al., 2022). In our study, compared with
low-risk patients, high-risk patients exhibited a higher expression
of resistant biomarkers (CCNE1, E2F1, and E2F2) (Figure 8A)
and lower expression of sensitive biomarkers of CDK4/
6 inhibitors (FAT1 and FGFR2) (Figure 8B). In addition, a
higher expression of resistance biomarkers (BRCA1, BRCA2,
and TRIP13) was detected in high-risk patients than in low-
risk patients (Figure 8C). The expression of these genes indicated
that patients with BC in the low-risk group were more suitable for
PARP inhibitor treatment, and patients in the high-risk group
had a higher risk of drug resistance.

Pharmacodynamics experiments were performed to test
whether the cuproptosis-related lncRNAs were associated with
drug efficacy of CDK4/6 inhibitors or PARP inhibitor. As
presented in Supplementary Figure S8, silencing YTHD-AS1 in
MCF7 cells could reduce IC50 of CDK4/6 inhibitor, while
silencing TOLLIP-AS1 increased IC50. In addition, silencing
YTHD-AS1 or NIFK-AS1 in MDA-MB-231 cells could reduce
IC50 of PARP inhibitors. The aforementioned data suggested that

the cuproptosis-associated-lncRNA model potentially predicted the
sensitivity of CDK4/6 inhibitor or PARP inhibitors.

4 Discussion

Female BC is the leading cause of global cancer incidence and the
fifth leading cause of cancer-related mortality worldwide, as of 2020
(Sung et al., 2021). As an essential trace element, excess copper is toxic,
and it leads to cell death by the TCA cycle, which is associated with
tumor progression. Few cuproptosis-related lncRNA signatures have
been constructed for predicting the survival and immune
microenvironment of patients with BC (18, 19); however, they did
not validate their model in an external dataset or predict the therapeutic
efficacy of emerging therapies in patients with BC. In our study, we
combined cuproptosis-related lncRNAs and clinical characteristics to
predict the prognosis of BC. These markers exhibited a high predictive
accuracy, and they can serve as a potential indicator of resistance to
PARP inhibitors and CKD4/6 inhibitors.

Among the six cuproptosis-related lncRNAs, YTHDF3.AS1 has
not been previously reported, whereas the other five lncRNAs have
been reported to affect tumor prognosis. Overexpression of the
lncRNA NIFK-AS1 inhibited the proliferation, migration, and
invasion of endometrial cancer cells by suppressing the M2-like
polarization of macrophages (Zhou et al., 2018). LncRNA
TP53TG1 suppresses the growth and metastasis of tumor cells by
regulating the PRDX4/beta-catenin pathway (Chen et al., 2021b). The
lncRNA TOLLIP.AS1 was found to be a protective factor against BC
in a previous lncRNAmodel (Shi et al., 2022b). LINC00839 promotes
the proliferation,migration, invasion, and apoptosis of neuroblastoma
cells, indicating lower overall survival (Yang et al., 2021). The lncRNA
OTUD6B-AS1 was also found to promote therapeutic resistance in
TNBC, resulting in poor prognosis (Li et al., 2021). The lncRNAs
YTHDF3-AS1, LINC00839, and OTUD6B-AS1 played an important
role in promoting proliferation and metastasis of BC cells, according
to our biofunctional experiments. Therefore, the six cuproptosis-
related lncRNA signatures identified by us are partly convincing.

The role of cuproptosis in cancer is complex; nevertheless, it has
been receiving increasing attention. Patients with BC have been
reported to have excess copper, a trace element, which induces cell
death and exhibits the potential to promote tumor progression
(Blockhuys and Wittung-Stafshede, 2017; Blockhuys et al., 2020).
Copper-related therapeutic agents, such as disulfiram, significantly
inhibited tumor growth without significant toxicity, but caused
apoptosis only in tumor cells by inhibiting the levels of reactive
oxygen species among inflammatory BC cells and contributing to
therapy sensitivity (Allensworth et al., 2015). Cuproptosis-related
lncRNAs in BC were screened and combined with clinical data to
develop a comprehensive cuproptosis-related model to predict BC
prognosis. Our model showed a high predictive value in the training
cohort and the other two validation cohorts, and a strong agreement
was detected between the actual and predicted OS rates of our
comprehensive model. In contrast, our model provided
corresponding points for each predictive factor, offering a precise
and simple calculation method for predicting the 1-, 3-, and 5-year
survival probabilities of OS.

In our study, the CIBERSORT algorithm was used for exploring
the relationship between apoptosis and immune cell infiltration in
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breast cells. Compared with the low-risk group, the high-risk group
showed a significantly reduced number of anti-tumor-infiltrating
immune cells, such as CD8+ T cells and Tregs but an increased
number of M2 macrophages, which are immune cells promoting
tumor proliferation and metastasis (Togashi et al., 2019; Xia et al.,
2020; Reina-Campos et al., 2021). Thus, cuproptosis is associated with
the proportion of tumor-infiltrating immune cells in BC. Moreover,
compared with the low-risk group, the high-risk group showed a
lower expression of the immune checkpoint molecule BTLA among
patients with HER2+, HER2−, and TNBC and a lower expression of
B7H3 among patients with HER2+ BC, indicating that patients with
BC in the high-risk groupmay tend to be immunologically “cold” and
may gain little benefit from immunotherapy.

CDK4/6 and PARP inhibitors are two emerging treatments for
BC. However, BC is heterogeneous, and not all patients are sensitive

to these inhibitors. CDK4/6 inhibitors have become the first highly
specific CDK inhibitors approved for cancer treatment. Endocrine
therapy in combination with CDK4/6 inhibitors has been proven to
prolong survival of patients with metastatic HR+ and HER2− BC
(Chong et al., 2020). CCNE1 amplification leads to acquisition of
resistance to CDK4/6 inhibition, owing to the bypass of cyclin D1-
CDK4/6 dependency (Herrera-Abreu et al., 2016), which is highly
expressed in the high-risk group among patients with HR+ or
HER2− BC. As a tumor suppressor, the loss of FAT1 promotes
resistance to CDK4/6 inhibitors via the Hippo pathway (Li et al.,
2018), which was expressed at low levels in the high-risk group
among patients with HER2− BC. Thus, patients with the HR+ or
HER2− phenotype in the high-risk group were more likely to be
resistant to CDK4/6 inhibitors, and we inferred that our
cuproptosis-related model facilitates the identification of patients

FIGURE 8
Evaluation of emerging treatments. (A,-B) Expression levels of different biomarkers of resistance and sensitivity of CDK4/6 inhibitors between high-
and low-risk groups among HR+ BC patients. (C) Expression levels of different biomarkers of resistance of PARP inhibitors between high- and low-risk
groups among HER2− BC patients.
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with BC who are more susceptible to CKD4/6 inhibitor resistance. A
previous study showed that genemutations of BRCA1 and BRCA2 are
related to a high risk of BC occurrence (Antoniou et al., 2003);
however, BRCA1- and BRCA2-deficient tumors are sensitive to
PARP1 inhibitors, and patients with these types of tumors gain
more benefit from this treatment (D’Andrea, 2018). Lower
expression of BRCA1 or BRCA2 was observed in the low-risk
group, indicating that low-risk patients with BC were more
suitable for PARP inhibitor treatment. TRIP13 overexpression is
common in BRCA1-deficient cancers, which leads to PARP-
inhibitor resistance through conformational changes in REV7 and
reduces drug sensitivity (Clairmont et al., 2020). Additionally,
TRIP13 overexpression was observed in the high-risk
group. MUS81 nuclease inhibition restores DNA-replication-fork
protection but not repair, leading to PARP inhibitor resistance in
patients with mutant BRCA2 (Schlacher, 2017). Low
MUS81 expression was observed in the high-risk group. Thus,
patients expressing the HR+ or HER2− phenotype in the high-risk
group were more likely to be resistant to PARP inhibitors, and we
inferred that our cuproptosis-related model can aid in identifying
patients who are more liable to PARP-inhibitor resistance.

Our study has some limitations. First, the expression of cuproptosis-
related lncRNAs in this study was based on TCGA and GEO public
databases, lacking verification of prospective, multicenter, and real-world
data by qRT-PCR or deep sequencing. Second, our study only revealed a
relationship between cuproptosis-related lncRNAs and OS in patients
with BC. The underlyingmolecular mechanisms are not fully understood
and require further investigation. Third, the potential of the cuproptosis-
related comprehensive model for evaluating tumor immunity was only
tested using the CIBERSORT algorithm, and further experiments are
needed in the future. Finally, we evaluated the efficacy of the cuproptosis-
related comprehensive model by analyzing the expression of related
biomarkers. However, further investigation is required.

In summary, we successfully constructed a comprehensive
cuproptosis-related model that demonstrated that cuproptosis-
related lncRNAs are associated with breast cancer prognosis. In
addition, our model showed that combining clinical characteristics
with cuproptosis-related lncRNAs markedly increased the predictive
value of prognosis in patients with BC.Moreover, ourmodel exhibited
the potential to indicate resistance to PARP and CKD4/6 inhibitors.
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