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Pharmacokinetics-related attrition rate in drug
development

Improving drug translation is becoming a top priority as research and development costs
keep increasing. It typically takes 10–20 years and a couple of billion dollars to bring a new
treatment from initial discovery to final approval (Wouters et al., 2020; Schlander et al., 2021).
In this process, as much as 90% of the novel drugs fail the first two phases of clinical approval,
frequently called “the valley of death” (Takebe et al., 2018; Dowden andMunro, 2019). By 1991,
adverse pharmacokinetic (PK) and bioavailability results, including toxicity and treatment
failure, were the most significant cause of attrition, and accounted for ~40% of all attrition in
drug development. In turn, a retrospective analysis of the 148 failures between Phase II and
submission in 2011 and 2012, revealed that less than 1% was due to PK reasons. These data
illustrate the significant improvement in the translatability of PK properties at early stages of
drug development. In fact, interspecies allometric scaling of PK parameters is commonplace in
drug development. For example, for all species, values of systemic clearance (Cl), distribution
clearance (ClD), central volume of distribution (Vc), and volume of distribution at steady-state
(Vss) were highly correlated (r2 = 0.89–0.99) with body weight. Furthermore, physiologically-
based pharmacokinetic (PBPK) modeling improved the translatability of PK parameters
derived in preclinical models by accounting for physiological differences between species.

Theoretically, it would be easier to translate from in vitro to in vivo systems (e.g., intra-
species but between systems) than between species (but intra-system). For example, at early
stages of drug development, metabolic clearance is initially estimated using rat liver
microsomes. In vitro-in vivo extrapolated liver metabolic clearance in rats is then
compared with estimates from in vivo studies in rats. In case the translatability is
successful, scientists would estimate human liver metabolic clearance from human liver
microsomes. In fact, this approach has been advocated by the National Center for Advancing
Translational Sciences during the “Microphysiological Systems: Bridging Human and Animal
Research—A Workshop” (Austin, 2021).

Unfortunately, the lack of physiological relevance of conventional in vitro cell
culture systems models used in preclinical studies has historically warranted the
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need for animal models. Nevertheless, developing in vitro
reductionist models emulating organ-level structure and
functionalities is an evolving field that has significantly
matured over the past 4 decades (Virumbrales-Muñoz and
Ayuso, 2022). This field might help bridge the gaps in drug
clinical translation and provide a better understanding of
between-subject variability. For instance, organoids and
microphysiological systems (MPS) are two emerging models to
recapitulate key organ elements. These models, together with cell
reprogramming induced pluripotent stem cells (iPSCs), are
promising approaches to improve the prediction of PK
parameters at early stages of drug development. This approach
is also in line with the policies to reduce, refine, and replace
animal use in research and is expected to play a major role in the
future of drug development.

Microphysiological systems: tool with
the potential to improve clinical
translation on new drugs

Organoids, usually generated from primary tissue cells or stem
cells, are miniaturized 3-dimensional structures of multiple cell

layers that recapitulate the organ’s anatomical microstructure.
Because organoids can be created from patient-specific
multipotent SCs or iPSCs, they are a valuable platform for drug
screening and clinical precision treatment (Matsui and Shinozawa,
2021; Cho et al., 2022). For instance, patient-specific intestinal
organoids have allowed for correlating cystic fibrosis (CF)
pathogenic variants with variations in the clinical severity of the
disease (Van Mourik et al., 2019). In fact, organoids are a robust
platform that could help screen for therapeutic strategies to treat rare
pathogenic variants as well as to prospect between-subject
variability.

Generating human organoids from iPSCs mimics the stages of
the organ developmental process. Hence, for organs with long
maturation timeframe such as brain, protocols to generate of
iPSCS derived organoids might take over 60 days, while for fast
regenerating organs like the intestines it can take about 7–10 days.
Figure 1 shows an example of iPSC derived intestinal organoid
cultured for 6 days. These organoids recapitulate the cellular
hierarchy in the intestines with crypts-like domains, villus
regions, and central lumen. Recently different systems, including
breast cancer (Liu et al., 2022), pancreatic (Seppala et al., 2022), and
gastrointestinal organoids (Rodrigues et al., 2022) have been
successfully used for drug screening, response prediction, and

FIGURE 1
Integration of patient-specific organoids, such as intestinal organoids, into microphysiological systems (MPS) provides a powerful platform for early
testing of new therapeutic compounds. Also, these in vitro platforms allow identification of pharmacokinetics parameters for the development of highly
predictive pharmacokinetic models that improve the clinical translational of new drugs. The image depicts an example of iPSC derived intestinal
organoids generated in Cristoforetti’s lab at University of Florida. Crypt-like domains (red arrow), lumen (blue star), and villus domain (green arrow).
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toxicity studies. Furthermore, comparing the results using organoids
with clinical outcomes demonstrated the advantage that organoids
offer to speed up the generation of data to guide treatment and dose
selection (Seppala et al., 2022). Altogether, these organoids provide a
promising model for drug efficacy and toxicity screening. MPS are
in vitro platforms containing human or animal cells/tissues within a
biomimetic microenvironment to yield physiologically relevant
mechanical, biochemical, and electrical responses (Rothbauer et al.,
2021). As discussed by Feuilloley’s research group from the University
of Rouen Normandie (Zommiti et al., 2022), MPS have significantly
advanced from the original academic-only environment. The business
model of many rising companies revolves around the
commercialization of MPS (Ribas et al., 2018). These MPS range
from in vitro reductionist models of a specific functional unit of an
organ (e.g., 3Dmodel of lung epithelium (Huang et al., 2013) to more
complex single and multiple interconnected organs-on-chips
(8 connected -organs-on-chips (Novak et al., 2020). MPS have
demonstrated significant value for the drug development industry.
For instance, systems like human 3D models of healthy (Hoffmann
et al., 2018) and cystic fibrosis respiratory track (Nickolaus et al., 2020)
have been used to identify optimal drug and dose to treat patients.
While the use of MPS is questioned because it is highly complex
structure, it often offers very high sensitivity and specificity. For
instance, recent paper reported human-liver-chip with 100%
specificity and 87% sensitivity when predicting drug-induced liver
injury (Ewart et al., 2022). Despite different views about MPS and
organoids as competing systems, integrating both as complementary
technology is gaining popularity. Hence, the combination ofMPS and
organoids is in its infancy and carries an exciting future to accelerate
pharmaceutical drug development by improving the clinical
translation of basic research (Figure 1).

Recent advances and future
perspectives in the field of drug
metabolism and transport

In this Research Topic we looked for articles exploring
metabonomics to aid in drug development, as well as innovative
tool design for analysis of drug transport and metabolism in vitro and
in vivo. In this context, Ruan et al. used an acne vulgaris rat model to
investigate the mechanism by which licorice flavonoids regulate skin
metabolism, serum metabolism and skin microbes. Their results
showed that licorice flavonoids could treat acne by regulating the
metabolic balance of amino acids, lipids and fatty acids in serum and
skin, which kept the microecology close to the normal skin state of

rats. Peng et al. applied in vitro cell based and animal studies to
investigate the impact of vitamin D deficiency on the exposure
and response to pravastatin. The authors observed that vitamin
D deficiency decreases the response of pravastatin in rats by
reducing the liver pravastatin exposure and expression of
hepatic OATPs, consistent with the extended hepatic
clearance model theory. These results suggest that the impact
of an OATP-based drug-drug interaction may differ depending
on whether the individuals show vitamin D deficiency or not.
Finally, Tao et al. used aspirin eugenol esther to illustrate the
importance of concomitantly assessing drug metabolism and
transport of prodrugs using in vitro cell-based methods. By
improving the physiological relevance of the in vitromodel, e.g.,
mimicking drug fate in the intestinal lumen, the authors were
able to improve the predictability of the in vitro model.
Altogether, the results of the articles presented in this
Research Topic demonstrate that incorporating metabolomic
analysis in physiological based models improves the prediction
of drug response and drug-drug interactions.
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