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Polyalthia longifolia var. angustifolia Thw. (Annonaceae), is a famous traditional
medicinal plant in Asia. Ample data specifies that the medicinal plant P. longifolia
has anticancer activity; however, the detailed mechanisms of action still need to
be well studied. Recent studies have revealed the cytotoxicity potential of P.
longifolia leaf against HeLa cells. Therefore, the current study was conducted to
examine the regulation of miRNAs in HeLa cancer cells treated with the
standardized P. longifolia methanolic leaf extract (PLME). The regulation of
miRNAs in HeLa cancer cells treated with the standardized PLME extract was
studied through Illumina, Hi-Seq. 2000 platform of Next-Generation Sequencing
(NGS) and various in silico bioinformatics tools. The PLME treatment regulated a
subset of miRNAs in HeLa cells. Interestingly, the PLME treatment against HeLa
cancer cells identified 10 upregulated and 43 downregulated (p < 0.05) miRNAs
associated with apoptosis induction. Gene ontology (GO) term analysis indicated
that PLME induces cell death in HeLa cells by inducing the pro-apoptotic genes.
Moreover, the downregulated oncomiRs modulated by PLME treatment in HeLa
cells were identified, targeting apoptosis-related genes through gene ontology
and pathway analysis. The LC–ESI–MS/MS analysis identified the presence of
Vidarabine and Anandamide compounds that were previously reported to exhibit
anticancer activity. The findings of this study obviously linked the cell cytotoxicity
effect of PLME treatment against the HeLa cells with regulating various miRNAs
expression related to apoptosis induction in the HeLa cells. PLME treatment
induced apoptotic HeLa cell death mechanism by regulating multiple miRNAs.
The identified miRNAs regulated by PLME may provide further insight into the
mechanisms that play a critical role in cervical cancer, as well as novel ideas
regarding gene therapeutic strategies.
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1 Introduction

Cervical cancer remains a main cancer-related health
problem despite much preventive enhancement including
screening and immunization since the early 1970s. With an
approximation of 570,000 cases every year, cervical cancer is
the fourth most prevalent cause of death globally, with a
significant number of occurrences among low-income
populations and rural zones (Singh et al., 2011; Arbyn et al.,
2020). Moreover, in 42 low-income nations, cervical cancer was
the most common cancer in women (Arbyn et al., 2011). In 2008,
around 530,000 women were diagnosed with invasive cervical
cancer globally and 275,000 women passed away from cervical
cancer (Cancer, 2007; McGraw and Ferrante, 2014). Several
effective cervical cancer drugs have been expanding onto the
market; cisplatin, cyclophosphamide, ifosfamide, doxorubicin,
bleomycin, and neomycin, yet up until now, prominent
drawbacks still cause incongruous results (Ye et al., 2014).
When patients at early stages endure surgery, infertility befalls
the younger ones while others simply undergo relapse due to the
pertinacious, revertive, and metastatic abilities of cancer
(Yaoxian et al., 2013).

MicroRNAs (miRNAs) are emerging classes of non-coding RNA
that can significantly serve as therapeutic, diagnostic, and prognostic
tools for cancer treatment (Lee et al., 2016; Ye et al., 2016) with
customary key roles in the progression of cancer, notably in cervical
cancer. These single-stranded miRNAs function by targeting mRNA
through partial binding to their seed regions, thus hindering protein
translation and obstructing gene expressions. Likewise, miRNAs had
been also identified in the regulation of cell cycle, proliferation,
migration and apoptosis of normal mammalian cells. Several
miRNAs equivalently have also been reported to be dysregulated
in cervical cancer tissues in relation to normal tissues (He et al.,
2016).

Natural phytochemical compounds from numerous parts of
medicinal plants such as leaf, flower, stem, and root are
considered bioactive non-nutrient components. In many dietary
kinds of research, the eating of green vegetables and fresh fruits was
revealed to have an excellent defensive outcome against cancer and
various diseases (Sun et al., 2002). The risk of cancer is identified to
be two-fold greater in individuals with less consumption of
vegetables and fruits than in those with increased consumption
(Farvid et al., 2019; Wu et al., 2019). In this current research, we
carefully studied the effects P. longifolia var. angustifolia Thw.
(Annonaceae) standardized leaf extract on miRNA expression in
HeLa cancer cells to induce apoptotic cell death. P. longifolia is an
essential natural medicinal flora and is found throughout Sri Lanka,
tropical parts of India, and Malaysia. Phytochemicals, namely,
alkaloids, steroids, diterpenes, and various lactones, have been
purified from P. longifolia bark. The extract and isolated
compounds from P. longifolia stem bark were researched for
multiple biological activities, such as cytotoxicity, antibacterial,
and antifungal (Gautam et al., 2010; Jothy et al., 2016). Various
biological activities of this medicinal plant were recently reported in
literature owing to antioxidant, hepatoprotective (Jothy et al., 2012),

genoprotective, acute oral toxicity (Jothy et al., 2013), and in vivo
radioprotective activities (Jothy et al., 2016). Various bioactive
compounds, including phenolic compounds, were isolated from
this plant, namely, quercetin, quercetin-3-O-β-glucopyranoside,
kaempferol-3-O-α-rhamnopyranosyl- (1→6)-β-galactopyranoside,
kaempferol-3-O-α-rhamnopyranosyl- (1→6)-β-glucopyranoside,
rutin, and allantoin (Sashidhara et al., 2011). Moreover,
P. longifolia is also commonly applied in folk medicine as a tonic
and febrifuge (Krishnamurthi, 1969). Our new comprehensive
research disclosed that the standardized methanolic leaf extract
of P. longifolia (PLME) has triggered the apoptotic HeLa cells
death, mitochondrial membrane potential depolarization, and
HeLa cell cycle arrest by controlling the redox status in HeLa
cells (Vijayarathna et al., 2017a). Dietary anti-cancer agents such
as resveratrol, camptothecin, and curcumin (Zhang et al., 2010; Zeng
et al., 2012; Venkatadri et al., 2016) were demonstrated to modulate
miRNAs in inducing cell death via apoptosis in many cancer cells. In
that event, HeLa cells treated with PLME extract also similarly
induced apoptosis as reported earlier (Vijayarathna et al., 2017a).
Although the newest studies have shown that PLME can inhibit the
growth of HeLa cells via apoptosis, the underlying cytotoxicity
mechanisms and whether PLME treatment specifically regulates
the miRNA in HeLa cells have never been studied in detail.
Therefore, this study was conducted to reveal the regulation of
miRNAs and their annotated functional roles in apoptosis and anti-
proliferation effects in PLME-treated HeLa cells.

2 Materials and methods

2.1 Plant material and extraction

The fresh, mature leaves of P. longifolia were collected from
Universiti Sains Malaysia and validated at the Herbarium of the
School of Biological Sciences, Universiti Sains Malaysia, Pulau
Pinang, Malaysia, where a sample of voucher specimen was
deposited (Voucher specimen number: USM/HERBARIUM/
11306). Before oven-drying at 30°C for 7 days, the leaf was cut
into small sections and washed with purified water. Subsequently,
the oven-dried leaf sample was grounded into fine powder by using
an electronic grinder. A hundred grams of P. longifolia leaf powder
was soaked in 400 mL of methanol at RT (23°C ± 2) for 7 days. After
7 days, the obtained filtrate was further concentrated in a vacuum
rotary evaporator (Buchi, Switzerland) at 40°C. The concentrated
filtrate was finally brought to complete dryness at 40°C in an oven in
glass Petri dishes. The complete dry leaf extract paste was stored at
RT in the dark. The measurement of rutin was accomplished by
using the LC-MS/MS system for standardization purposes since this
compound was regularly used as a chemical marker for
standardization purposes in our laboratory. The rutin measure in
PLME extract was established on the peak area calculated from the
calibration curve equation of commercially available rutin
compound (standard) (y = 275885x, r2 = 0.9977) as previously
reported by Jothy et al. (Jothy et al., 2016). The amount of rutin in
the PLME was found to be 8.83 µg (0.883%) in 1,000 µg.
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2.2 Cell culture

Human cervical cancer cell HeLa from American Tissue Culture
Collection (ATCC, United States) with cell passage number 15 was
grown in Dulbecco Modified Eagle Medium (DMEM)
supplemented with 10% Fetal Bovine Serum (FBS), glutamine
(2 mM), penicillin (100 units/mL) and streptomycin (100 µg/mL).
Viable cells were quantified using trypan blue dye and a
hemocytometer. The number of cells was adjusted to 1.0 × 105

cells/mL using DMEM supplemented medium and cultured at 37°C
in a humidified 5% CO2 incubator.

2.3 Preparation of PLME treatment

The PLME IC50 concentration of 22.00 µg/mL used in this study
to treat the HeLa cells has resulted from previous MTT and
CyQUANT cytotoxicity assays (Vijayarathna et al., 2017b). The
preparation of the PLME sample for treatment was accomplished by
dissolving the extract in sterile-filtered Dimethyl sulfoxide (DMSO)
(0.02% (v/v) in the culture medium) before addition to the culture
media. The law concentration of solvent DMSO at 0.02% (v/v) was
used in this study to avoid direct toxicity by DMSO against HeLa
cells when used as a vehicle in this study. The HeLa cell was then
treated with PLME extract at a 22.00 µg/mL of IC50 concentration.
Similar cells cultured without the PLME treatment but treated in the
same volume of 0.02% DMSO were prepared and regarded as an
untreated group (negative control). Each experiment was carried out
in triplicates.

2.4 Total RNA isolation and evaluation from
HeLa cells

Total RNA was extracted from HeLa cells using Cytoplasmic
and Nuclear RNA Purification Kit (Norgen Biotek, Thorold,
Canada) according to manufacturer’s instructions and were
analyzed for their concentration and quality based upon 260 nm/
280 nm and 260 nm/230 nm absorbance ratios. A volume of 1 µL
was used in the NanoDrop ND-1000 Spectrophotometer (Thermo
Fisher Scientific) for each sample. RNA integrity was evaluated for
28S and 18S rRNA bands from 5 µL of total RNA on 1.0% agarose
gel electrophoresis. The gel was stained with ethidium bromide and
visualized with UV light. The images were captured using Vilber
Lourmat (France). Then, Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA), was used to determine the
integrity and the quality of RNA by indicating a strong ratio
between ribosomal 28S and 18S RNA peaks fluorescence.
Generally, A260:A280 and A260:A230 ratios are used to
determine protein contamination in RNA samples. Pure RNA
would indicate A260:A280 ratios between 1.8 and 2.1. A lower
ratio will indicate protein contamination. Parallel to this, the A260:
A230 ratio refers to the presence of organic contaminants where an
ideal RNA purification should be closer to 2.0. A ratio above 1.97 is
considered to be highly pure with minimized contaminations.
Samples of total RNA with the integrity number RIN above
9 were further used for RNA sequencing. All samples were stored
at −80°C in a deep freezer.

2.5 Construction and evaluation of small
RNA (smRNA) library for deep sequencing

The preparation of the library was performed using Illumina®

TruSeq® Small RNA Library Prep Kit (Illumina, Part #
15004197 Rev. G) for small non-coding RNAs. The libraries
were constructed from the total RNA (5 μg) according to the
manufacturer’s protocol. Briefly, Sequential ligation using blunt-
ended adapters (3’ adapter and 5’ adapter) was ligated to total
RNA using T4 RNA Ligase 2, Deletion Mutant (Epicentre), and
T4 RNA Ligase (Epicentre) respectively. The enrichment of
adapter-ligated RNAs was performed using RT-PCR. The
cDNA was generated using SuperScript II Reverse
Transcriptase (Life Technologies) and two primers that anneal
to adapter-ends were based upon the generation of a single-end
sequencing technique. The cDNA was then amplified with
RP1 and RPIX (primers) using cycling conditions that
consisted of an enzyme activation at 94°C for 30 s and then
11 cycles with denaturing at 98°C for 10 s, annealing at 60°C for
30 s and extension at 72°C for 15 s. Subsequently, the small RNA
obtained from these libraries was then run on 6% Novex TBE gel
electrophoretically for 60 min at 145 V, for gel electrophoresis
purification. By using a sharp razor, the desired band sizes
(135 bp to 160 bp) were cut out corresponding to the adapter-
ligated constructs. The constructs within the gel were then
purified from the gel and 3 µL from the total volume of each
small RNA library was loaded into a DNA 1000 chip to be
validated by using Agilent Technologies 2100 Bioanalyzer. The
Illumina qPCR Quantification Protocol Guide was used to
quantify the concentrations of libraries.

2.6 High-throughput sequencing

TruSeq PE Cluster Kit v3 (Illumina Inc., SA, United States) was
used for cluster generation while TruSeq SBS Kit v3 (Illumina Inc.,
SA, United States) for sequenced using HiSeq 2000 sequencing
system according to HiSeq 2000 System User Guide Part #
15011190 Rev.V HCS 2.2.38. Submission of FASTQ file per
miRNA sequence was produced with HCS (HiSeq Control
Software v2.2) for system control and base calling through
integrated primary analysis software called RTA (Real Time
Analysis. v1.18). Quality selected libraries were run in HiSeq
2000 using 100 bp PE (paired-end) reads. The BCL (base calls)
binary is converted into FASTQ utilizing Illumina package bcl2fastq
(v1.8.4) built with CASaVA software of Illumina. The files were
subjected to the standard nomenclature of Illuimina as followed:

HELA_CONTROL_CCB_1.fastq.gz and HELA_TREATMNT_
CCB_1.fastq.gz. The quality and integrity of Fastq files were verified
using JAVA-based FASTqc (Babraham Institute of Bioinformatics,
Cambridge).

2.7 MiRNA data processing and analysis

An important step to eliminate the low-quality bases and
incorporate the adapter sequence was carried out with
TrimGalore (http://www.bioinformatics.babraham.ac.uk/projects/
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trim_galore/) before the miRNA sequence alignment. Specific
settings to trim Illumina small RNA adapter sequences of
(TGGAATTCTCGG) with a stringency value of three were
instructed and the resulting output files upon trimming
completion were used to run fastQC. Further reads with a quality
Phred score above 20 were retained. The quality reads were then
aligned to sequences from built-in databases as below using
Bowtie 1:

1. RepeatMasker—UCSC table browser (http://www.repeatmasker.
org/)

2. rRNA (http://www.ensembl.org/biomart/martview/
3b90656d3d4efe6e1f86b9fbd0 df1780)

3. tRNA—UCSC table browser (http://gtrnadb.ucsc.edu/)
4. miRBase version 21—(http://mirbase.org/)
5. RefSeq—UCSC table browser (https://www.ncbi.nlm.nih.gov/

refseq/)
6. Genomic sequence (http://www.ncbi.nlm.nih.gov/projects/

genome/assembly/grc/human/).

Figure 1 illustrates the flow chart describing the methodology
involved in the small RNA sequencing analysis. The Bowtie
efficiency of mapping was based upon specific settings (-n1 -
l8 –best-strata). The reads mapping to miRBase v21 is performed

using mapped and unmapped reads from fastq along with SAM
files from Bowtie mapper. The reads which are successfully mapped
to miRBase v.21 are used in the quantification of expression analysis
via miRDeep2 as described in Figure 2. MiRDeep2.pl is a wrapper
function for the miRDeep2 program package. The script runs all
necessary scripts of the miRDeep2 package to perform a deep
sequencing data analysis for microRNA detection. The
quantification was done via mapper.pl and then quantifier.pl
from the miRDeep2 software package with the settings of (-h
-m); explained in detailed–h (parse fastq to fasta format which is
needed for miRDeep2.pl) and–m (Collapse reads which is needed for
miRDeep2.pl). Themapper.pl function produced collapsed fasta files
and mapped the position of the reads to the GRCh38 genome as an
“arf” file format, both of which were required in subsequent analysis
in miRDeep2. After the collapsed fasta file and arf files were
produced, the expression data for miRNA can be generated by
the quantifier.pl software script frommiRDeep2 with similar settings
as Bowtie.

2.8 Analysis of miRNA expression profile

Before assessing differential expression, the count data for
untreated and PLME-treated conditions were first normalized

FIGURE 1
Workflow of the methodology adopted to identify the miRNAs in HeLa cells treated with Polyalthia longifolia methanolic extract (PLME) at IC50

concentration (22.00 µg/mL). (Protocol adapted from Genomax Technology Sdn. Bhd, Singapore).
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across their libraries. The samples were first normalized by
calculating transcripts per millions of total RNA reads
(TPM) and were utilized for comparing the
relative abundance of miRNAs between each data set.
The TPM was quantified with the formula below (He et al.,
2015);

TPM � Number of Actual Reads
Total Number of Clean Reads

( )[ ] × 106

The miRNAs in PLME-treated HeLa cells were further
correlated with the untreated to identify the differently expressed
miRNAs.

In order to determine statistically significant differently
expressed miRNAs, the R (version 2.14.1) Bioconductor package
EdgeR (V2.4.6.) (Robinson et al., 2010) was applied. The EdgeR was
utilized as it implements a negative binomial distribution model to
separate biological from technical variation (Robinson et al., 2010)
accounting for more count efficiency. Differently expressed miRNAs

FIGURE 2
Flow chart of miRDeep2 module. (A) The Mapper module describes the mapping of Illumina output to the reference genome, (B) The Quantifier
module quantifies read counts for miRNAs in sequencing data, and (C) The miRDeep2 module identifies miRNAs from the high-throughput sequencing
data. For each module, the resulting output is shown (blue arrow). The file formats are fa, fasta; arf, arf mapping format, and csv, csv. Spreadsheet.
(Protocol adapted from Genomax Technology Sdn. Bhd, Singapore).
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were interpreted as having a Benjamini and Hochberg (Benjamini
and Hochberg, 1995) corrected p-value of <0.05.

MicroRNAs which are differentially expressed between the
groups of untreated and PLME-treated HeLa cells were identified
by calculating with an absolute log2 fold change as follows:

Log2
Normalised Expression of PLMETeatedHeLaCells
Normalised Expression of UntreatedHeLaCells

[ ]
The criteria for significantly upregulated miRNAs were decided

as fold change (log2) > 1 whereas fold change (log2) < −1 is chosen
for downregulated miRNAs (Wang et al., 2014). Then the selected
miRNAs were clustered according to their expression abundance in
their 2 conditions.

2.9 Meta-analysis of miRNA expression data

2.9.1 MiRNA-gene interaction analysis
The results obtained through the differential miRNA analysis

(untreated and PLME treated HeLa cells), miRNAs, and their gene
interaction were predicted miRGate (http://mirgate.bioinfo.cnio.es/
miRGate/).

In miRGate, miRNA target predictions were computed using in-
house prediction methods; miRanda, Pita, Rnahybrid, TargetScan, and
Microtar, and then screened for their experimentally validated genes in
order to understand the miRNA-UTR targets utilizing four different
built–in databases of MirGate, namely,; TarBase 6.0, MirTarbase 4.5,
miRecords and oncomiRDB. Default parameter settings were selected
for each method. The target genes that represent the intersection of at
least three algorithms with at least one experimentally validated
database were selected as candidate target genes for further analysis.

2.9.2 Gene ontology (GO) and pathway analysis
Gene ontology and pathway enrichment analysis were

performed on significantly regulated miRNAs in PLME-treated
HeLa cells compared to untreated HeLa cells to understand their
biological role. For example, given a set of miRNAs that are
upregulated, an enrichment analysis will find which GO terms
are over-represented (or under-represented) using annotations
for that miRNA. The Database for Annotation, Visualization, and
Integrated Discovery (DAVID) Bioinformatics Resources 6.8 Beta
(http://david.abcc.ncifcrf.gov/) was used to perform the Gene
ontology and pathway analysis. On the DAVID open database
homepage, the gene list manager panel was used to submit the
gene list corresponding to the selected downregulated miRNAs
obtained from miRGate analysis. The Identifiers were fixed as
“OFFICIAL_GENE_ SYMBOL”, and the species used for
annotation was selected as Homo sapiens before clicking the
submit button. In order to control the behavior of fuzzy
clustering in DAVID, the stringency was set at high. The
enrichment annotation terms were determined by their
enrichment score, p-value (or EASE score), fold change,
Benjamini and Hochberg multiple test correction, and false
discovery rate (FDR). A smaller p-value is considered enriched,
and a p-value <0.05 were deemed significant, while FDR <0.01 is
implied statistically significant. Furthermore, Enriched annotations
and pathways were selected/ranked based on a combined score

which was calculated by the EnrichR platform (http://amp.pharm.
mssm.edu/Enrichr/) following Z-score permutation background
correction on the Fischer Exact Test p-value.

2.10 Determination of bioactive compounds
in PLME using LC-ESI-MS/MS

The Agilent 1,200 series Ultra-High-Performance Liquid
Chromatography (UHPLC) system was used in conjunction with an
Agilent 6520Accurate-Mass quadrupole time of flightmass spectrometer
(QTOF-MS) to identify the bioactive molecule (Agilent Technologies,
United States). A vacuum solvent degassing device, a capillary pump, and
an automated sample injector comprised theUHPLC system.With anm/
z range of 100–3,200, the MS had an electrospray ionization (ESI)
interface and could operate in both positive and negative modes.
Fragmentor voltage 125 V; nebulizer pressure 45 psi; capillary voltage
3500 V; gas temperature 300°C, gas flow 10 L/min, and skimmer 65 V
were the ESI conditions. Agilent Zorbax Eclipse XDB-C18, Narrow-Bore
2.1 × 150 mm, 3.5 microns (Agilent Technologies, United States) was
used to perform the chromatography. Themobile phase was 0.1% formic
acid in water (A) and 0.1% formic acid in acetonitrile (B), and the auto-
sampler compartment was kept at 4°C. Themulti-step linear gradient was
applied as follows: 0 min, 5% B; 5 min, 5% B; 20min, 100% B; 25 min,
100% B. Before the following analysis, the initial condition was kept for
5 min with 1 μL injection volume and 0.5 mL/min as the chosen
flow rate.

3 Results

3.1. RNA integrity

In this study, the spectrophotometer-based RNA concentration
garnered from the untreated sample of HeLa was 213.93 ± 6.2 µg/mL
with (A260: A280) ratio of 2.15 ± 0.10 and (A260: A230) ratio of 2.11 ±
0.04 (Figure 3A). Similarly, PLME treated HeLa cells, generated
RNA concentration of 229.67 ± 2.7 µg/mL with readings of 2.17 ±
0.05 and 2.12 ± 0.06 respectively for (A260: A280) and (A260: A230)
ratio. Figure 3B displays bands appearing on the gel, the typical
pattern of those from 18S and 28S ribosomal (rRNA) species were
found in extracted cytoplasmic RNA and there were also other faint
bands observed underneath 18S bands where smaller RNA species
were speculated. The integrity of RNA is considered high quality
when the ratio of 28S:18S bands is approximately 2:1 or higher.
Figure 3C indicates purified cytoplasmic RNA from untreated and
PLME-treated HeLa cells which were evaluated using the Agilent
software that accounts for the entire electrophoretic traces of RNA.
The electrogram depicts the peaks from 28S and 18S where the
presence of smaller peaks at the beginning of the electrogram
denoted smaller RNA species. Sharp and taller peaks for 28S and
18S rRNA showed high integrity of RNA. The untreated sample
achieved a RIN number of 10, with an RNA area of 145.3 and an
rRNA (28S:18S) ratio of 2.4. The concentration obtained is 172 ng/
µL. The PLME-treated HeLa cells also responded with a RIN
number of 9.8, RNA area of 149.2, and rRNA (28S:18S) ratio of
2.6. The concentration measured is 176 ng/µL. The
electropherograms provided by both samples are of high-quality
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RNA samples since there were visibly sharp, and possessed well-
defined 28S and 18S peaks, with (28S:18S) ratio above 2. Apart from
that, lower noise between these peaks and minimal low molecular
weight contamination was also detected. Generally, these criteria are
accepted for good-quality RNA.

3.2 Library quality assessment

Upon small RNA library amplification, the purified cDNAs were
subjected to quality assessment. The purified size of PCR enriched
fragments is checked with Agilent 2100 Bioanalyzer using

Bioanalyzer DNA 1000 chip and the output was integrated into
the form of electrophoregram. The electropherogram traces
displayed in Figure 4A justified the presence of miRNA by
corresponding to the peak at 141 at the concentration of
18.25 nM (untreated) and 137 bp at 48.81 nM (PLME treated)
respectively. The markers are identified at the peaks of 15 bp and
1,500 bp. A gel-like image was also embedded next to the
electropherogram for visualizing fragment sizing and distribution
in Figure 4A. Referring to Figure 4B a standard graph was plotted
between Ct values and log DNA dilution. The graph was quantified
based on logarithmic trend and the resulting equation is defined as
y = −1.515 ln(x) + 14.393, with an R2 value of 0.9998.

FIGURE 3
Determination of RNA integrity number of untreated and PLME-treated HeLa cells. (A) Spectrophotometer results for RNA concentration and purity
control based on A260/A280 and A230/A280 ratios for untreated and PLME-treated HeLa cells. * Average value of triplicates. (B) Agarose gel containing
RNA isolated from HeLa cells. Lane M; 1kb DNA marker, Lane 1; RNA purified from untreated cells and Lane 2; RNA purified from PLME treated cells.
(C) RNA electrophoretic traces for untreated and PLME-treated cells. The images are representative of three independent experiments.
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The Ct values for the respective libraries were determined by
qPCR. Here in Figure 4C, the average Ct values were calculated as
15.35 ± 0. 15 (untreated) and 13.82 ± 0.09 (PLME). The table in
Figure 4D contains the quantified concentration of the libraries
along with their size base pairs. The untreated HeLa cells achieved a
concentration of 1.571 ± 0.11 ng/uL with sizes of base pairs ranging
from 141 to 144 whereas PLME-treated HeLa cells obtained a
concentration of 4.294 ± 0.09 ng/uL with base pairs ranging from
137 to 139.

3.3 Pre-processing quality of raw reads

It is a crucial step to check for raw sequencing efficiency
before the data is used for further interpretation and analysis.

A few parameters that are assigned for this procedure include
base quality, GC content, and Phred score (Figure 5). The total
number of bases, total reads, GC (%), Q20 (%), and Q30 (%)
were calculated for the two sets of samples. The untreated
HeLa cells produced an average of 2,265,871,816 total read
bases (bp) and 44,428,859 total reads. The GC content was
measured to be 55.03% ± 0.97% with respective scores for
Q20 and Q30 of 98.02% ± 0.36% and 96.25% ± 0.64%. The
PLME-treated HeLa cells generated an average reading of
1,877,230,897 (bp) total bases with total reads of
36,808,449. The GC contents were measured to be 56.81% ±
1.32% with a Q20 score of 98.00% ± 0.48% and a Q30 of
94.16% ± 0.72%. The GC content (%) is exhibited in Figure 5 as
box-and-whisker plots where the average GC content of these
samples falls between the ranges of 55%–57% which is a

FIGURE 4
Small RNA library quality assessment. (A) Typical results from Agilent 2100 Bioanalyzer electropherogram trace of untreated and PLME treated
exhibiting evidence of microRNA purified from their respective cDNA libraries. Images are representative of three independent experiments. (B) Standard
graph Ct versus log DNA dilution. (C) Observed Ct values of untreated and PLME-treated HeLa cell libraries obtained from qPCR analysis. The graph
represents average ±SD values of triplicate experiments. (D) Summary table of small RNA libraries quantity and base pair size. * Average value of
triplicates.
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FIGURE 5
Quality control of the raw reads. (A) The total read of base pair and reads generated from untreated and PLME-treated HeLa cells. The graph
represents the average ± SD of triplicate values. (B) Box-and-whiskers plot displaying GC and AT content from untreated and PLME-treated HeLa cells.
(C) Box-and-whiskers plot exhibiting the Phred Q20 and Q30 quality produced by untreated and PLME-treated HeLa cells. The plots include median,
upper quartile, lower quartile, maximum, and minimum triplicate values.

FIGURE 6
Small RNA sequencing read statistics of the (A) untreated and (B) PLME-treated HeLa cells. Pie charts represent the genomic distribution of the reads
that were mapped to repeats, rRNA, tRNA, mRNA, and miRNA. Those unmapped are categorized as others.
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remarkable sign that the reads are of good quality. A GC
content of the human genome (100 kb) will have content as
lower as 35%–60% (Lander et al., 2001). The Phred score had

been a good indicator of raw read quality upon where the
Phred scale demonstrated the probability p that the base call is
incorrect. Figure 5C displays a distribution of Q20 and

FIGURE 7
(Continued).
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Q30 among both samples. The average scores above 90% prove
the accuracy of the sequence data.

3.4 Transcriptome mapping analysis

Transcriptome reads of small RNAs are aligned to
RepeatMasker to inspect redundancy and then sequentially

mapped to rRNA, tRNA, miRNA, mRNA, and others. The
untreated samples constitute repeats of 36.51%, 1.38% (rRNA),
0.34% (tRNA), 18.52% (miRNA), 38.43% (mRNA), and 5.49%
(others) (Figure 6A). The PLME treated HeLa cells acquired
percentages of 17.50%, 1.70%, 0.41%, 42.61%, 31.65%, and 6.11%
respectively for repeats, rRNA, tRNA, miRNA, mRNA, and others
(Figure 6B). It can be perceived that PLME treated cells possess
higher percentage of miRNAs compared to untreated group.

FIGURE 7
(Continued) Differentially expressed miRNA in response to PLME treatment in HeLa cells. (A) Volcano plot displaying differentially expressed miRNA
identified by PLME-treated HeLa cells. (B)Graph bar indicating log2 fold change (FC) of the dysregulated miRNA in PLME treated HeLa cells, and (C)Heat
Map and dendrogram represent the hierarchical clustering of the differentially expressed miRNAs (HeLa) based on normalized reads.
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3.5 PLME causes differentially expressed
(DE) miRNAs in HeLa cells

A number of 2588 miRNAs were identified through the
cross-analysis of untreated and PLME-treated libraries. p-
values were generated through the edgeR program and the
significant DE of upregulated miRNAs was identified with
fold change log2 ≥ 1 whereas downregulated miRNAs were
recognized with fold change log2 ≤ −1 and a p-value <0.05 was
set as a standard to identify the significantly differentially
expressed (DE) miRNAs between the groups (Wang et al.,
2014). A volcano plot was generated to visualize these
miRNA expression levels in association with the p-value
(Figure 7A). Here, the x-axis represented the log2 FC (fold
change) among these two groups (on a log2 scale where the
indication of up and downregulation will appear
symmetrically). In contrast, the y-axis represented the
p-value on a negative (−log10) scale; hence smaller p-values
will appear higher on the axis. In brief, the first axis (x) indicates
the biological impact change, while the second axis (y) indicates
statistical evidence or reliability of the change. MiRNAs with
statistically significant differential expression were found above
the horizontal threshold line of 1.3 (−log10 of p-value = 0.05). A
458 DE miRNAs were identified from the volcano plot
where 47 miRNAs were upregulated, and 87 were
downregulated with a p-value <0.05. The black dots denote
miRNAs between the log2- FC of −1 and 1, while the blue
indicates the DE ones.

The further classifies the dysregulated miRNAs based on
normalized reads in either condition (untreated or PLME
treated) (Figure 7B). Based on the statistical significance (p <
0.05), log2 FC and normalized reads, the PLME treatment
significantly increased the expression of 10 miRNAs (miR-
7704, miR-4516, miR-4792, miR-21-5p, miR-192-5p, miR-
143-3p, miR-195-5p, miR-16-5p, miR-15a-5p, and miR-381-
3p). Out of 10, the highest change was observed for miR-7704
(log2 FC = 5.16, p < 0.001). However, PLME treatment
attenuated the expression of 43 miRNAs (miR-7974, miR-
23a-5p, miR-221-5p, miR-331-3p, miR-27a-5p, miR-92a-1-
5p, miR-365a-5p, miR-125a-5p, miR-5701, miR-125b-5p,
miR-145-5p, miR-34a-5p, miR-128-1-5p, miR-25-5p, miR-
1301-3p, miR-193b-3p, miR-193a-5p, miR-671-5p, miR-361-
3p, miR-92b-5p, miR-186-5p, miR-874-3p, miR-370-3p, miR-
500a-3p, miR-502-3p, miR-424-3p, miR-365b-3p, miR-365a-
3p, miR-30c-2-3p, miR-877-5p, let-7i-3p, miR-125a-3p, miR-
222-3p, miR-1908-5p, miR-296-5p, miR-99b-5p, miR-15b-5p,
miR-15b-5p, miR-105-5p, miR-193b-5p, miR-501-3p, miR-
361-5p, miR-484, and miR-221. Out of 43 PLME
downregulated miRNAs, the lowest change was observed for
miR-7974 (log2 FC = −4.50, p < 0.001).

The heat map revealed distinct expression patterns in some
miRNAs when comparing PLME-treated with untreated
control samples (Figure 7C). Referring to the scale bar, the
red indicates upregulated while the green indicates
downregulated. A dendrogram positioned next to the y-axis
represents the homological relationship between these
miRNAs and this combination is known as hierarchical
clustering.

3.6 Selection of target gene for GO analysis
using PLME-induced miRNAs in HeLa cells

The miRNAs that play the major role were selected based on
the criteria of generating a large number of genes with the
intersection of at least 3 computational methods consisting of
miRanda, Pita, Rnahybrid, TargetScan, and Microtar algorithms
with the unison of at least one validated database consisting of
TarBase 6.0, MirTarbase 4.5, miRecords, and oncomiRDB. The
miRNAs that play a major role were chosen based on the criteria
of generating a large number of genes with the intersection of at
least three computational methods and unison of at least one
validated database (Tables 1, 2). Hence, 5 miRNAs from
10 upregulated genes and 14 miRNAs from 43 downregulated
genes were selected.

3.7 Predicting target gene function in
PLME-treated HeLa cells

The 5 selected upregulated miRNAs were found as not
enough for meta-analysis by DAVID Bioinformatics;
therefore, they have been excluded from network analysis
with only 14 downregulated miRNAs to proceed with. A
total number of 1826 genes were acquired from the list of
14 miRNAs. Benjamini Hochberg test and FDR (false
discovery rate) cutoff (0.05) parameters for multiple
correction testing were used. For a large number of gene
lists, it is crucial to control the large-scale testing, with
preferred FDR. It is used to define the significant test with
the expected proportion of false positives ensuring a term to be
true positive. DAVID bioinformatics was used to analyze the
significant gene ontology terms for biological processes
(Table 3) and molecular function (Table 4). The enrichment
value (ES) was used to denote the most enriched genes within a
single term where a cut-off (1.3) was applied. The terms are then
compared in the EnrichR platform to verify those predicted by
DAVID corresponding to biological process (Figure 8) and
molecular function (Figure 9). Statistical p-values, q-values,
and z-values together with their combinational score (SC)
were provided as evidence to support the enriched terms.
The data is shown as a bar chart, where the extent of the bar
signifies the number of gene identifiers in each group. The
connections of the GO terms are also denoted with a
network-related analysis. The relationship from one GO to
another is provided with branches.

3.8 Pathway analysis in PLME-treated HeLa
cells

The pathway analysis was investigated with three Enrich
databases namely,; BIOCARTA and REACTOME. The top
10 ranking data are displayed with the classification pathways
in the form of a bar chart with a data label inserted below. All bar
charts were obtained from Enrich database. The extent of the bar
specifies the total number of gene identifiers computed with a
combinational score. Figure 10 reveals the top 10 ranking of
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BIOCARTA pathways functionally predicted for the
downregulated miRNAs. There were mainly three pathways
that can be related to apoptosis which are shadowed.
Figure 11 displays the top 10 ranking of REACTOME
pathways prediction that has three associations with apoptosis.
Though, KEGG analysis did not denote any conformity to
apoptosis, however, the other pathways did almost familiar
prediction to apoptosis.

3.9 Phytochemical profile of PLME by
LC-ESI-MS/MS spectrometry analysis

The LC-ESI-MS/MS spectrometry analysis was performed to
explore the phytochemical profile of PLME. The LC-ESI-MS/MS
spectrometry analysis of the MEPL showed the presence of
anticancer phytochemicals in MEPL. Among these identified
compounds in MEPL extract, Vidarabine, and Anandamide. The

TABLE 1 The selected upregulated miRNAs display the genes targeted by a combination of Computational Algorithm and Validated Database. The computational
approaches group consists of miRanda, Pita, Rnahybrid, TargetScan, and Microtar algorithms, while the validated database group consists of TarBase 6.0,
MirTarbase 4.5, miRecords, and oncomiRDB.

miRNA

Number of genes predicted with 5 computational
approaches

Number of genes identified with experimental 4 validated
methods

≥3 algorithms ≥1 database

miR-
143-3p

20 13

miR-
195-5p

64 25

miR-16-3p 68 479

miR-
15a-5p

122 48

miR-
381-3p

31 2

TABLE 2 The selected downregulated miRNAs display the number of genes targeted by a combination of Computational Algorithm and Validated Database. The
computational approaches group consists of miRanda, Pita, Rnahybrid, TargetScan, and Microtar algorithms, while the validated database group consists of
TarBase 6.0, MirTarbase 4.5, miRecords, and oncomiRDB.

miRNA

Number of genes predicted with 5 computational
approaches

Number of genes identified with experimental 4 validated
methods

≥3 algorithms ≥1 database

miR-331-3p 119 120

miR-
125a-5p

69 60

miR-
125b-5p

60 100

miR-34a-5p 78 157

miR-
193b-3p

33 189

miR-
193a-5p

63 2

miR-186-5p 42 197

miR-370-3p 77 3

let-7i-3p 3 0

miR-222-3p 15 69

miR-296-5p 209 9

miR-15b-5p 111 63

miR-361-5p 13 28

miR-484 59 280
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chemical structures of the anticancer compounds found in MEPL
are presented in Figure 12.

4 Discussion

The current study was conducted to analyze the differences in
miRNA and their apoptotic gene profiles between untreated and
PLME-treated HeLa cells. In our previous investigation, PLME
demonstrated cytotoxicity against HeLa cells with half-maximal
cytotoxicity activity (IC50) of 22.00 µg/mL (Vijayarathna et al.,
2017b). PLME has also been indicated to be involved in plasma
membrane disruption, cell cycle arrest, membrane potential loss in
mitochondrial, generation of reactive oxygen species, and DNA
fragmentation (Vijayarathna et al., 2017a). Hence, the current study

is conducted to identify the role of miRNAs associated with the
induction of apoptotic cell death in HeLa cells.

4.1 Assessment of total RNA purity and
integrity

The advancement of RNA sequencing begins with 1)
isolating total RNA with RIN >9, 2) the selection of gel
electrophoresis bands conformity to miRNA upon library
amplification, and 3) quality assessment of purified cDNA
molecules prior to sequencing. The downstream analysis
reckons the subject of RNA quality and integrity (Cseke
et al., 2011). Total RNA isolated from HeLa cells (untreated
and PLME treated) was instantly measured for its yield and

TABLE 3 The significant gene ontology terms for biological processes adapted from DAVID Bioinformatics related to apoptosis.

GO ID Term ES Count Benjamini FDR

GO:0097193 Intrinsic apoptotic signaling pathway 6.02 25 6.40E-07 5.10E-07

GO: 0012501 Programmed cell death 6.02 33 9.30E-03 7.30E-02

GO: 1900740 Positive regulation of protein insertion into mitochondrial membrane involved in apoptosis signalling
pathway

6.02 11 1.60E-02 1.60E-01

GO: 0000186 Activation of MAPKK activity 3.53 35 3.20E-01 1.40E-01

GO: 0000165 MAPK cascade 3.53 35 4.70E-01 2.90E-01

GO: 0051403 Stress-activated MAPK cascade 3.02 17 2.50E-02 2.90E-01

GO: 0001836 Release of cytochrome c from mitochondria 2.63 9 1.10E-01 2.40E
+ 00

GO: 2001244 Positive regulation of intrinsic apoptotic signaling pathway 2.63 10 1.80E-01 4.70E
+ 00

GO: 0090200 Positive regulation of release of cytochrome c from mitochondria 2.63 9 1.00E+00 7.10E
+ 00

GO: 0001836 Release of cytochrome c from mitochondria 2.03 9 1.10E-01 2.40E
+ 00

GO: 0070059 Intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stress 2.03 9 3.60E-01 1.60E
+ 01

GO: 1903896 Positive regulation of IRE1-mediated unfolded protein response 2.03 3 9.10E-01 9.40E
+ 01

GO: 0008637 Apoptotic mitochondrial changes 1.81 6 6.80E-01 5.90E+01

GO: 0046902 Regulation of mitochondrial membrane permeability 1.59 7 3.30E-02 4.50E-01

GO: 0001836 Release of cytochrome c from mitochondria 1.59 9 1.10E-01 2.40E
+ 00

GO: 0051881 Regulation of mitochondrial membrane potential 1.59 5 9.80E-01 1.00E
+ 02

TABLE 4 The significant gene ontology terms for molecular process adapted from DAVID Bioinformatics related to apoptosis.

GO ID Term ES Count Benjamini FDR

GO: 0004725 Protein tyrosine phosphatase activity 3.68 21 3.40E-02 4.20E-01

GO: 0008138 Protein tyrosine/serine/threonine phosphatase activity 3.68 10 1.60E-01 4.10E+00

GO:0051434 BH3 domain binding 1.81 4 1.90E-01 5.30E+00
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purity after purification. A ratio reading which is not within the
range of 2.0–2.2 is regarded as poor quality (Glasel, 1995). The
RNA concentration is contemplated to A260 reading with the
intended conversion factor based on the extinction constant of
RNA (A260 of 1.0 = 40 µg/mL). The readings obtained from the
samples fall in accordance with Sambrook et al. (Sambrook
et al., 1989), in which the publication stated that a pure RNA
exists when the ratio of (A260: A230) is measurably equal to (A260:

A280), on the condition that the value is greater than 1.8.
However, absorbance ratios of high RNA purity alone do not
pay to be indicative of sample quality. For that account, a
second assessment method by electrophoresis (Figure 3B)
was performed using gel run with RNA stained ethidium
bromide (EtBr) (Le Pecq and Paoletti, 1966; Vendrely et al.,
1968; Lehrach et al., 1977). Intact RNA run on the gel will
exhibit a single column band of 28S and 18S in sharp and clear
visual as well as 28S rRNA appearing twice as intense as 18S
rRNA band with 5kb and 2kb respectively. A 28S:18S ratio of 2:
1 is applicable as a reference point for intact RNA (Beneyto
et al., 2009).

A more precise method is referred to Agilent
2100 Bioanalyzer results (Figure 3C). Combining RNA area
peaks of 18S and 28S, then dividing the area of 18S RNA peak
into the area of 28S RNA peak will result in the rRNA ratio of
28S:18S. The RIN is addressed with a scale from 0 to 10, with

10 being the maximum RNA integrity whereas the RNA
concentration is determined by measuring the area under
the entire RNA electropherogram. The ladder bearing the
concentration/area ratio is utilized to convert the area
values into concentration values (Lightfoot, 2002). The
HeLa cell RNA samples procured from this study
(Figure 3C), are observed to be of relatively good purity
with high RIN.

4.2 cDNA library preparation for high-
throughput small RNA sequencing

Benefits from next-generation sequencing include achieving fast
characterization and quantification of transcriptomes in RNA-seq.
The steps in RNA-seq progress with direct sequencing of
complementary DNA (cDNA). The converted cDNA libraries are
then amplified and run on gel where desired band sizes of 135 bp to
160 bp were excised and purified for quality and concentration
assessment. The sizes of base pairs are specified by using
electrophoregrams from Agilent Bioanalyzer. Single peaks are
noticed as protrusion of the x-axis at 141 bp and 137 bp
(Figure 4A) denoting the occurrence of miRNAs. No other peaks
were observed except for the markers detected at 15 bp and 1,500 bp,
hence the libraries are affirmed suitable for sequencing analysis.

FIGURE 8
GO term enrichment analyses were performed using Enrichr on DE miRNA genes. (A) The top 10 enriched biological processes for DEGs. The
horizontal axis represents the number of genes, and the y-axis represents the biological process. (B) Network view displays the biological process
network of the top ten terms based on their gene content similarity. (C) The GO term is highlighted to indicate an enrichment score with a p-value less
than 0.05 concerning apoptosis. The combinational score (CS) was based on p-value, q-value, and z-score.
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The concentration of the libraries has to be cardinally
enumerated to achieve optimum cluster densities whenever using
Illumina sequencing platforms. The outcome is displayed in a
standard curve (plot of Ct values/crossing points of diverse
standard dilutions against log of amount of standard) where it is
created with standard series of six dilution concentrations
(Figure 4B). The concentrations of unknown targets are
quantified (Figure 4D) by referring to the Ct values (Figure 4C)
of the unknowns to the equation obtained from the standard curve
plot. In parallel, the concentrations of HeLa cells from two different
conditions are measured for validity before sequencing.

4.3 Analysis of small RNA-Seq

Two of the key parameters necessary for examining raw sequencing
precision are base quality and percentage of GC content (Guo et al.,
2014). A typical strategy employed for the percentage of GC content is
also noted as an indicator of good reads. A highGC (>60%) content will
point to the presence of rRNA in the sample or contamination by
bacteria or fungi (organisms with higher GC). A lower GC on the
contrary will indicate the presence of mRNA poly A-tails (Delhomme
et al., 2014). Filtered data is submitted for a QC assessment by FastQC
and the non-strand specific RNA-seq reads should maintain an on-
average-equal amount of GC to AT within any position of reads.

Figure 5B clearly exhibits the content ofGC andAT to bewithin a closer
range that justifies the quality of data for studying differential
expression. On the other hand, a graphical account of base quality is
to sketch the base Q score against the cycle plot. The Q score has been a
defining accuracy key for the utility of high-throughput Sanger
sequencing (Ewing and Green, 1998). The Q score quality values
facilitate a fundamental trait for filtering low-confidence sequences
from the sequence reads (Holt and Jones, 2008; Bokulich et al., 2013).

Figure 5C displays the score distribution statistic of Q20 and
Q30. Based on the raw sequence collected, it can confidently state
more than 90% of the base calls possess an accuracy of 99.0%–99.9%
overall. A threshold of Q20 is widely accepted as it corresponds to a
base call error of 1 in 100, which is approximately the inherent
technical error rate of the Illumina sequencing platform.

The next step on Illumina sequencers requires the linkage of the
quality base pair to its position of read called mapping. As soon as the
quality reads are evaluated and regarded as adequate or have been
filtered to agreeable requirements, the reads are mapped using Bowtie
1 for its alignment search. Bowtie aligns reads back to its reference
transcriptome. After stringent filtering, the remaining reads are used as
a query to map against genomic RNA data that encompasses rRNA,
tRNA, mRNA, and miRNA (Zhang et al., 2015). The sequential
mapping of RNA is illustrated in Figure 6. Only the reads mapping
to mirBase v.21 is mapped against GrCH38, the human genome while
those that failed to map are classified as others.

FIGURE 9
GO term enrichment analyses were performed using Enrichr on DE miRNA genes. (A) The top 10 enriched molecular processes for DEGs. The
horizontal axis represents the number of genes, and the y-axis represents the molecular process. (B) Network view displays the molecular process
network of the top ten terms based on their gene content similarity. (C) The GO term highlighted indicates an enrichment score with a p-value less than
0.05 concerning apoptosis. The combinational score (CS) was based on p-value, q-value, and z-score.

Frontiers in Pharmacology frontiersin.org16

Vijayarathna et al. 10.3389/fphar.2023.1198425

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1198425


4.4 Quantification of transcript using
miRDeep2

MiRNAs of known sequences are selected in reference to
miRBase v.21 and the unannotated reads were scrutinised using
miRDeep2 to separate the known miRNAs from the novel ones
(Zhang et al., 2015). miRDeep2 is integrated computation
software utilized in annotating miRNAs from raw RNA-seq
reads as well as quantifying their expressions. The output of
miRDeep2 is classified with three embedded modules, namely,
mapper, miRDeep2, and quantifier. The expression of the raw
read counts should be subjected to normalization since these
raw reads alone are not adequate for comparison of expression

levels among samples. The read counts are susceptible to
various interferences such as transcript length, total number
of reads, and sequencing biases (Conesa et al., 2016). On that
account, to receive an equal comparison expression from
untreated and treated HeLa cells, TPM (transcript per
million) was utilized.

4.5 Quantification of differentially expressed
miRNAs

The edgeR program represents a negative binomial model to
estimate biological and technical replicates where they were used

FIGURE 10
BIOCARTA pathway enrichment analyses were performed using EnrichR on DE miRNA genes. (A) The top 10 enriched BIOCARTA pathways. The
horizontal axis represents the number of genes, and the y-axis represents BIOCARTA pathway names. (B) Apoptotic-related pathway terms are
highlighted.
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in parallel to miRDeep2 analyses (Plieskatt et al., 2014).
Approximately 2588 numbers of miRNAs are listed in the
miRDeep2 analysis with the read counts in TPMs. MiRNAs
with the extreme fold change in their expression ([log2 (fold
change)] ≥ 1.0) and ([log2 (fold change)] ≤ −1.0) were graphed
into a volcano plot and graph bar (Figures 7A, B) for the
identification of DE miRNAs based upon their fold change
and p-values. A heat map was generated to display DE
miRNAs between samples while the embedded hierarchical
clustering diagram explains the relationship between those
miRNAs (Figure 7C). Conclusively, the selection of
dysregulated miRNAs was recognized to be 53 miRNAs based
on their extreme fold change where; 10 upregulated and
43 downregulated are investigated for their gene targets and
functional studies.

4.6 MiRNA target prediction

The expression of a miRNA is decisively defined by the genes
that it targets and also by the manifestation of the operated genes.
Annotating these DE miRNAs stipulates direct target genes
recognition and interaction (Papadopoulos et al., 2009). The
progression to determine the relationship between miRNAs and
their gene targets is still deliberately tedious and slow caused by
factors such as low expression of miRNAs, lower stability, and tissue
specificity. Hence, numerous computation prediction applications
have been seen to grow actively to help predict miRNA gene targets
utilizing statistical algorithms based upon the criteria of miRNA to
the 3’ UTRs of transcripts (Lee et al., 1993). The miRGate database
merges novel prediction miRNA-mRNA pair altogether with
prominently valid algorithmic programs considering miRanda,

FIGURE 11
REACTOME pathway enrichment analyses performed using EnrichR on DE miRNA genes. (A) The top 10 enriched REACTOME pathways. The
horizontal axis represents the number of genes, and the y-axis represents the REACTOME pathway names. (B) Apoptotic-related pathway terms are
highlighted.
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Pita (Kertesz et al., 2007), RNAhybrid (Krüger and Rehmsmeier,
2006) or MicroTar (Thadani and Tammi, 2006) among others.
Moreover, experimentally validated miRNA-mRNA pairs are also
accounted as features of high reliability with regard to gene tool
prediction. The miRNAs (from up and downregulated) were further
selected based upon the highest gene counts obtained from the
intersections of more than three prediction methods along with at
least one experimentally validated program (Tables 1, 2). When
more programs were found to predict these genes, the chances of
that miRNA targeting these genes seems reliable to investigate their
underlying functions.

4.7 Gene ontology and pathway analysis

It can be deduced that the PLME treated HeLa cells have
14 downregulated miRNAs. Therefore, the inference deriving
from this state of miRNAs is that the downregulated miRNAs will
no longer target their specific genes, thereby increasing the
density of genes to perform their functions without inhibition.
The enrichment analysis is elucidated by a technique termed
called gene ontology (GO) (Ashburner et al., 2000). Utilizing a
single database to predict target enrichment would mislead the
concept of prediction, not to mention the very fact that each
database applies different statistical models. The DAVID
statistical methods emphasize modified Fisher’s exact test
(EASE score) to investigate the significance of gene-term
enrichment with the use of multiple testing correction
techniques (Bonferroni, Benjamini, and FDR) to globally
correct the enrichment family-wide p-values (Huang et al.,
2007). Inversely, EnrichR computes three types of enrichment
scores to assess; the Fisher’s exact test (a test that is implemented

in most gene enrichment programs), z-score (based on
nonconformity from the predictable rank by Fisher exact
statistical test), and pooled score (multiplies log p-value
computed with Fisher exact test by the z-score) (Chen et al.,
2013). DAVID analysis of the genes involved in biological
processes (Table 3) indicated chiefly overrepresented GO
terms related to intrinsic apoptosis signaling pathway,
activation of MAPK cascade, the release of cytochrome c from
mitochondria, regulation of ΔΨm and intrinsic apoptosis in
response to the endoplasmic reticulum (ER). Corroboratively,
the EnrichR GO term of biological process (Figure 8) validates
DAVID performance by annotating intrinsic apoptosis signaling
pathway in response to DNA damage, apoptosis pathway
signaling, and regulation of cellular response to stress. The
most enriched GO terms in molecular function (Table 4)
annotated by DAVID are protein tyrosine phosphatize
activity, protein tyrosine/serine/threonine phosphatase activity,
and BH-3 domain binding. Similar terms were observed for
Enrichr (Figure 9) following gene enrichment where an extra
addition in terms for protein kinase and heat shock protein
binding. The enriched genes decidedly suggest their function
in phosphatase activities. Consideration should be given as not all
phosphate addition and detachments correspond to enzyme
activation or inhibition in a functional regulation. Moreover,
phosphorylation is vital for intracellular proteins such as to carry
out pro-apoptotic and anti-apoptotic especially surrounding the
caspases and BCL-2 family proteins cascade (Cai et al., 1998;
Choi et al., 2002).

The term pathway analysis is widely utilized in a prominent
manner during the course of publications (Green and Karp, 2006)
inclusively with GO terms. The typical manner, by which cells
interact with the surrounding cues and signal among themselves,
is crucial to comprehend and interpret the function and
controlled regulation of pathways. The pathway analysis from
BIOCARTA and REACTOME (Figures 10, 11) revealed an
apoptosis signaling pathway with a relation to mitochondria,
p53, cellular stress response, MAPKinase signaling, and the
intrinsic apoptosis pathway which coincides with the GO term
identified earlier. An inference was made on the premises of the
GO and the pathway analysis that PLME enriched these genes in
HeLa cells by downregulating 14 miRNAs with a possible notion
to apoptosis pathways via caspase, cytochrome c, mitochondria
permeability, MAPK cascade activity, ER-stress, and
p53 activation.

4.8 Chemical profiles of PLME

The screening using UHPLC analysis equipped with the
chemical library was done to examine the chemical profiles of
the eluted bands of PLME chromatogram in an attempt to
identify the bioactive chemical compounds, that could be
responsible for the observed cytotoxicity against HeLa cells. As
seen in Figure 12, this led to the identification of the two
compounds. Interestingly, the presence of Vidarabine (Arif et al.,
2004; Sneader, 2005) and Anandamide (Adinolfi et al., 2013)
compounds in P. longifolia leaf extract, which was previously
reported to inducing cancer cells cytotoxicity, might have

FIGURE 12
Anticancer phytochemical compounds found in the methanol
extract of Polyalthia longifolia Leaf (MEPL) were detected using ultra-
high-performance liquid chromatography (UHPLC) equipped with the
chemical library.
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contributed to the observed cytotoxicity properties of the tested
extract in this study. Structurally, both Vidarabine and Anandamide
compounds have phenolic rings, which might be involved in the
pro-oxidant features mainly responsible for apoptosis-based cell
cytotoxicity (Nandi et al., 2007). It is commonly reported that the
cell cytotoxicity related to some phenolic compounds is facilitated by
their oxidative and pro-oxidant activities, which can quicken the
oxidative damage in vitro, either to DNA or proteins. However, in-
depth isolation and identification study is compulsory on these
bioactive compounds of P. longifolia leaf extract.

4.9 The postulated mechanism of PLME
inducing apoptosis in HeLa cells

Therefore, the effects of PLME treatment on HeLa cells specify
that the therapy enhanced the cytotoxicity activity of PLME towards
HeLa cells in terms of apoptotic cell death by regulating key
miRNAs. These Proposed models of PLME extract mechanism of
action for the HeLa cell cytotoxicity are consistent with the previous
in vitro findings of this extract against HeLa cells as reported by
Vijayarathna et al. (2017b) and Cilwyn-Shalitha and Sasidharan
(2023). Vijayarathna et al. (2017b) reported that the PLME
treatment against HeLa cells resulted in mitochondrial potential
depolarization, cell cycle arrest, loss of ΔΨm, generation of ROS, and
DNA fragmentation, which might be related to the pro-oxidant
activity of PLME to increase the oxidative stress leads to the
induction of DNA damage and the loss of DNA repair capacity.
Besides, they also reported that the PLME treatment also increased
the level of pro-apoptotic BAX, BAD, caspase-3, p53, and
p21 significantly while causing a decrease in the expression of
anti-apoptotic proteins, BCL-2 and BCL-w. In addition, Cilwyn-
Shalitha and Sasidharan (2023) recently reported that the effects of
PLME treatment onHeLa tumor cells that reduced the Ki-67, VEGF,
and CD31 proteins expressions might facilitate inhibition of the
growing HeLa tumor cells by apoptosis induction. In conclusion, the
PLME-induced p53 mediated apoptosis, cell cycle arrest, and
mitochondrial potential depolarization by modulating the redox
status and regulating key miRNAs in the HeLa cells.

5 Conclusion

In summary, the results of the present study indicate that the
treatment of HeLa cells with PLME enhanced the cytotoxicity
activity of PLME towards HeLa cells in terms of cell proliferation,
survivability, and apoptotics by the downregulation of key
miRNAs. Potential target prediction computational methods
linked apoptosis mechanisms to these downregulated miRNAs.
The development of green natural remedies may assist deeper
understanding of the apoptotic response toward cancer serving as
potential anticancer therapy through the identification of
miRNAs. Further study should be conducted to validate the
function of the highly regulated miRNA in HeLa by PLME.

Besides, the validated potential miRNA also can be tested in
an in vivo tumor preclinical animal model as a targeted miRNA
source for gene therapy.
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