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Ferroptosis is an iron-dependently nonapoptotic cell death characterized by
excessive accumulation of lipid peroxides and cellular iron metabolism
disturbances. Impaired iron homeostasis and dysregulation of metabolic
pathways are contributors to ferroptosis. As a major metabolic hub, the liver
synthesizes and transports plasma proteins and endogenous fatty acids. Also, it
acts as the primary location of iron storage for hepcidin generation and secretion.
To date, although the intricate correlation between ferroptosis and liver disorders
needs to be better defined, there is no doubt that ferroptosis participates in the
pathogenesis of liver diseases. Accordingly, pharmacological induction and
inhibition of ferroptosis show significant potential for the treatment of hepatic
disorders involved in lipid peroxidation. In this review, we outline the prominent
features, molecular mechanisms, and modulatory networks of ferroptosis and its
physiopathologic functions in the progression of liver diseases. Further, this review
summarizes the underlying mechanisms by which ferroptosis inducers and
inhibitors ameliorate liver diseases. It is noteworthy that natural active
ingredients show efficacy in preclinical liver disease models by regulating
ferroptosis. Finally, we analyze crucial concepts and urgent issues concerning
ferroptosis as a novel therapeutic target in the diagnosis and therapy of liver
diseases.
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1 Introduction

Ferroptosis is a newly identified regulated cell death (RCD) dependent on iron, first
described in 2012 by Dr. Brent R Stockwell et al. (Dixon et al., 2012). This unique modality of
cell death, which is distinguishable from other nonapoptotic forms of RCD according to its
morphological and biochemical features, is characterized by intracellular excessive lipid
peroxide accumulation and iron metabolism disturbances (Galluzzi et al., 2018). Aberrant
iron accumulation, glutathione (GSH) deprivation, and glutathione peroxidase 4 (GPX4)
inactivation are all critical for the onset and progression of ferroptosis (Ayala et al., 2014;
Dixon and Stockwell, 2014; Yang et al., 2014; Shah et al., 2017). The regulation of ferroptosis
is tightly tied to the metabolism of amino acids, lipids, and iron. Blockade of cysteine (cys)
and glutamate (glu) intake involved in the synthesis of GPX4 can trigger ferroptosis by
disrupting the GSH/GPX4 axis. Peroxidation of specific membrane lipids is the ultimate
driver of ferroptosis (Stockwell, 2022). Arachidonic acid- (AA-) containing
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phosphatidylethanolamine (PE) and adrenic acid- (AdA-)
containing PE were previously identified as the primary
substrates for lipid peroxidation (Kagan et al., 2020), but
mounting evidence raises doubts about this mechanism since a
range of polyunsaturated fatty acids (PUFAs) may be implicated in
ferroptosis (Zheng and Conrad, 2020). Furthermore, iron promotes
ferroptosis by affecting both enzymatic and non-enzymatic
processes. Iron initiates the Fenton reaction and acts as a critical
cofactor in enzyme-mediated lipid peroxidation.

It has been demonstrated that various pathological processes,
including malignancy (Wang et al., 2022), neurodegenerative
diseases (Deas et al., 2015), pulmonary diseases (Tao et al., 2020),
and liver diseases (Kim et al., 2020), are correlated with dysregulated
ferroptosis. The liver, which exerts a critical effect on mammalian
iron metabolism, storage, and regulation, is the primary site of iron-
overload injury (Guo et al., 2021). In clinical investigations,
approximately 14 mg of iron per gram of liver tissue was
considered a tipping point linked with a heightened risk of
cirrhosis (Adams, 2001; Angelucci et al., 2002; Powell et al., 2005;
Piperno et al., 2020). Further, inhibition of ferroptosis alleviates the
progression of liver diseases, such as nonalcoholic fatty liver disease
(NAFLD), drug-induced liver injury (DILI), virus hepatitis, liver
fibrosis, and hepatocellular carcinoma (HCC). Thus, ferroptosis may
be a novel promising target for the management of liver disorders.

Herein, we outline the prominent features and molecular
mechanisms of ferroptosis. Next, we focus on the relationship
between ferroptosis and multiple liver diseases. Further, we
highlight the therapeutic potential of ferroptosis inducers and
inhibitors, including small molecular agents and natural active
ingredients, for delaying the progression of liver diseases in
preclinical models. Finally, we discuss and prospect the
challenges and opportunities in ferroptosis applications for
treating liver diseases.

2 The characteristics of ferroptosis

Cancer cells were usually rounded up and detached upon
treatment with ferroptosis inducers (e.g., erastin) in vitro (Dolma
et al., 2003). Effects of erastin on human prepuce fibroblast BJeLR
cells were primarily focused on the alternations in mitochondrial
morphology and cristae structures, including mitochondrial
atrophies, increased membrane density, the reduction or even
extinction of mitochondrial cristae, and the outer mitochondrial
membrane (OMM) rupture. In addition, compared to other cell
deaths, ferroptotic cells do not exhibit cell shrinkage, nucleus
abnormality, chromatin aggregation, and disintegration of the
cytoskeleton (Dolma et al., 2003; Dixon et al., 2012; Xie et al.,
2016; Doll and Conrad, 2017).

Biochemically, due to intracellular GSH deprivation and
GPX4 deactivation, lipid peroxides derived from Fe2+-
catalyzed Fenton reaction fail to be eliminated through the
GPX4-mediated reduction reaction, producing abundant
reactive oxygen species (ROS), which facilitates ferroptosis
(Stockwell et al., 2017; Hirschhorn and Stockwell, 2019).
Numerous genes have been confirmed to genetically control
ferroptosis, overexpression of which has been identified as
ferroptosis indicators (Tang et al., 2021). For instance, the

elevation of prostaglandin-endoperoxide synthase 2 (PTGS2)
expression is one of the most common features of ferroptosis
(Yang et al., 2014). Lysophosphatidylcholine acyltransferase-3
(LPCAT3) and acyl-CoA synthetase long chain family member
4 (ACSL4) are the crucial enzymes regulating PUFAs biosynthesis
and remodeling by catalyzing AA to phospholipid (PL)
hydroperoxide (PL-OOH, such as AA-OOH), which are
considered specific biomarkers and drivers of ferroptosis (Xu
et al., 2020; Chen et al., 2021). Once PL-OOH cannot be
degenerated by GPX4 promptly, redundant lipid peroxides
result in ferroptosis. Additionally, the essential sensor of
energy equilibrium, AMP-activated protein kinase (AMPK), is
a double-edged sword in ferroptosis (Tang et al., 2021). It has been
demonstrated that activation of AMPK by energy stress inhibits
ferroptosis. In immortalized mouse embryonic fibroblasts,
glucose starvation or compounds (e.g., 2-deoxy-d-glucose) was
used to induce or mimic energy stress. AMPK phosphorylation
activated by energy stress phosphorylated and inactivated acetyl-
CoA carboxylase inhibits the biosynthesis of PUFAs and
ferroptosis (Lee et al., 2020). Reversely, AMPK-mediated
phosphorylation of Beclin-1 facilitates ferroptosis by directly
inhibiting the activity of cys/glu antiporter system Xc-.
Mechanistically, Beclin-1 binds to solute carrier family
7 member 11 (SLC7A11), a crucial part of system Xc-,
inhibiting its action and subsequent ferroptosis through
phosphorylating at ser90/93/96 (Song et al., 2018). Despite the
tremendous effort made to elucidate the characteristics of
ferroptosis, further research is still required to illuminate its
specific and detailed regulatory mechanism.

3 The mechanism of ferroptosis

Ferroptosis is a nonapoptotic and iron-dependent form of cell
death closely related to abnormal cellular energy metabolism
induced by the toxic accumulation of lipid peroxides on cellular
membranes. Recently, research in the field of ferroptosis has seen
exponential growth. Mounting evidence has demonstrated that
ferroptosis could be initiated and implemented by assorted
intracellular metabolic processes, including amino acid, lipid
peroxidation, and iron metabolism (Figure 1).

3.1 Amino acid metabolism

Certain amino acids and derivatives stimulate ferroptosis via
modulating oxidative stress. For instance, the GSH/GPX4 axis
serves as a barrier to obstruct ferroptosis, while cys is the
inhibitory amino acid in the synthesis of GSH and blockade of cys
import via SLC7A11 triggering ferroptosis by decreasing GSH levels
(Sun et al., 2018). Glu is also a decisive regulator of ferroptosis. It
contributes to GSH composition and impacts the system Xc-function.
The elevation of extracellular glu levels suppresses system Xc-, leading
to the initiation of ferroptosis (Conrad and Sato, 2012).

3.1.1 System Xc-
System Xc-is consisted of SLC7A11 (catalytic subunit) and

solute carrier family 3 member 2 (SLC3A2, regulatory subunit)
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(Dixon et al., 2012). The system Xc-complex on the cell surface
sustains redox homeostasis by absorbing external cys and swapping
it for intracellular glu in a 1:1 M ratio (Sato et al., 1999). Following
importation across the plasma membrane by system Xc-, cys is
promptly converted to cysteine, which is considered the limiting
precursor of GSH synthesis. GSH is a common endogenous
antioxidant with reduced (GSH) and oxidized (GSSG) states, and
the GSH/GSSG ratio indicates the degree of cellular oxidative stress
(Fujii et al., 2019). Ferroptosis is enhanced by specific events that
lower intracellular cysteine levels and subsequently reduce GSH
contents. Further, an intricate dual transcriptional regulation
governs SLC7A11. The expression of SLC7A11 is positively
regulated by nuclear factor erythroid 2-related factor 2 (Nrf2)
and activating transcription factor 4. Also, SLC7A11 is negatively
modulated by activating transcription factor 3 and p53 at the
transcriptional level (Koppula et al., 2021a). Moreover, the
mammalian target of rapamycin (mTOR) complex family
proteins regulates ferroptosis by manipulating SLC7A11 (Xu
et al., 2021). mTORC1 enhances SLC7A11 protein stability by
reducing lysosomal degradation; however, high cell density
inhibits mTORC1 and promotes SLC7A11 lysosomal degradation
(Koppula et al., 2021a). Additionally, mTORC2 decreases the
functionality of the SLC7A11 transporter via phosphorylating
SLC7A11 at serine 26 (Gu et al., 2017).

3.1.2 GPX4
GPX4, a selenoenzyme, is the sole member of the PL-OOH

scavenger family that convert toxic lipid hydroperoxides to
nontoxic phospholipid alcohol (Ursini et al., 1985). GPX4 reduces
one PL-OOH molecule to one alcohol molecule by using two GSH
molecules as donors and produces GSSG, which can be converted to
GSHwith NADPH/H+ and glutathione reductase (Lin et al., 2020). A
variety of approaches and compounds could induce ferroptosis by
affecting GPX4 activity. Class I ferroptosis inducers (FINs), including
sorafenib, sulfasalazine, erastin, and its analog imidazole ketone
erastin, inhibit system Xc-, disturb the synthesis of GSH, and
subsequently deplete GSH to suppress the GPX4 enzyme activity.
Other FINs directly suppress GPX4 activity, such as ML162, DPI7,
and Ras-selective lethal small molecule (RSL-)-3 (Li et al., 2020; Cui
et al., 2022). Moreover, buthionine sulfoximine sensitizes cells to
ferroptosis by blocking GPX4 translation, and its effect is achieved by
repressing glutamate-cysteine ligase and triggering GSH depletion
(Sun et al., 2018; Cui et al., 2022). Furthermore, GPX4 mediates
multiple physiological processes due to its capacity to avoid cell death
and maintain homeostasis in various conditions (Wortmann et al.,
2013). In addition, holistic GPX4 deletion in mice resulted in
embryonic death, while conditional knockout of GPX4 in mice
exhibited abnormalities in multiple organs, including the brain,
kidney, endothelium, and liver (Maiorino et al., 2018).

FIGURE 1
The primary regulatory mechanism of ferroptosis. Abbreviations: ATF4: activating transcription factor 4; BSO: buthionine sulfoximine; DMT1:
divalent metal transporter 1; FPN: ferroportin; GCL: glutamate-cysteine ligase; GR: glutathione reductase; H2O2: hydrogen peroxide; NOXs: NADPH
oxidases; PCBP1: poly rC binding protein 1; PEBP1: phosphatidylethanolamine binding protein 1; PKC: protein kinase C; RSL3: Ras-selective lethal small
molecule 3; TRPML1/2: transient receptor potential mucolipin 1/2; STEAP3: six-transmembrane epithelial antigen of prostate 3.
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3.2 Lipid metabolism

Aberrant lipid metabolism may enhance lipid peroxidation and
induce ferroptosis by altering the lipid compositions of
biomembranes (Harayama and Riezman, 2018). In molecular
dynamics models, it has been discovered that lipid peroxidation
induces lipidomic alterations and damages biomembrane
characteristics (formation of structured lipid holes, micellization,
enhanced permeability, and increased membrane curvature),
resulting in cellular dysfunction and death (Hulbert, 2010;
Agmon et al., 2018). Both PUFA-containing membrane PLs and
free PUFAs can be peroxidized. A redox lipidomic assay was used to
determine which lipid species were favored in regulating ferroptotic
cell death. Kagan et al. (2017) found four PL species, including
oxygenated AA and AdA-containing PE species, are crucial for
ferroptotic death signaling (C18:0/C20:4 and C18:0/C22:4). The
synthesis of these two fatty acids depends on the elongation
mediated by fatty acid desaturase 1 and very long chain fatty
acid protein 5, both of which are increased in mesenchymal cells.
Nevertheless, free PUFAs are not required for peroxidation. The
bottom to switch ferroptosis is the production of coenzyme-A-
derivatives of these PUFAs and their insertion into PLs (Xu et al.,
2021).

ACSL4 and LPCAT3 are critical mediators of PUFA-PL synthesis,
while arachidonate lipoxygenase (ALOX) is responsible for lipid
peroxide synthesis (Dixon et al., 2015; Doll et al., 2017; Li et al.,
2022). ACSL4 initially catalyzes the ligation of AA, with CoA to
generate AA-CoA, which are subsequently re-esterified and
incorporated into PE by LPCAT3 to form AA-PE. Eventually, AA-
PE is oxidated to AA-OOH-PE by ALOX. ACSL proteins are mainly
found in the endoplasmic reticulum (ER) and OMM. ACSLs are in
charge of transforming free long-chain fatty acids into fatty acyl-CoA
esters (Capelletti et al., 2020). Only ACSL4 in the ACSLs family
correlates with ferroptosis and is thought to be a marker of ferroptosis
sensitivity (Kagan et al., 2017). As nonheme iron-containing
dioxygenases, ALOX enzymes oxidize PUFAs in a cell-type-
dependent manner. Lipid peroxides are produced once ALOX
catalyzes the addition of oxygen to an AA molecule. Using
pharmacological suppression of ALOX subtypes under GSH
depletion circumstances, Yang et al. (2016) suggested that
lipoxygenases (LOXs) altered erastin-induced cell death, bolstering
the notion that LOXs have an impact on ferroptosis. There are six
ALOX genes in humans: ALOX5, ALOX12, ALOX12B, ALOX15,
ALOX15B, and ALOXE3, which have different expression patterns in
different tissues (Yang et al., 2016). Available studies have shown that
various ALOX isoforms have distinctive catalytic capabilities, and
experiments with isoform-specific Alox-KO mice demonstrated
fundamentally varying biological functions for the different Alox
isoforms. For example, the expression of ALOX15 is mediated by
spermidine/spermine N1-acetyltransferase 1, a tumor protein p53
(TP53) target gene, and is involved in TP53-mediated ferroptosis (Ou
et al., 2016). In contrast, ALOX12 is required for ferroptosis caused by
TP53-mediated downregulation of SLC7A11 (Chu et al., 2019).
However, studies on the function of ALOX isoforms in ferroptosis
have so far been inconclusive. Although overexpression of isoforms
such as ALOX5, ALOX12, and ALOX15 can sensitize cells to
ferroptosis (Yang et al., 2022), none of the isoforms has yet been
proven to play a decisive role in ferroptosis.

In addition, lipid peroxidation also occurs through
nonenzymatically spontaneous autoxidations (Lee et al., 2021). In
nonenzymatic autoxidations, free ferrous iron interacts with
hydrogen peroxide to form ferric iron and hydroxyl radicals,
which commences the process of lipid peroxidation by detaching
hydrogen from the bis-allylic position of PUFAs (Reis and Spickett,
2012). Subsequently, lipid peroxidation propagates via addition,
hydrogen pumping, and fragmentation, and this process is
repeated to form a chain reaction (Davies and Guo, 2014).
Moreover, lipid ROS triggers ferroptosis in some cell lines by
activating the mitogen-activated protein kinase pathway (Yu
et al., 2015; Nakamura et al., 2019). Furthermore, the metabolism
of PUFAs is related to the formation of toxic byproducts, especially
4-hydroxynonenal (4-HNE), leading to the initiation of ferroptosis
(Zhong and Yin, 2015).

3.3 Iron metabolism

Iron metabolism is inextricably linked to ferroptosis. The liver is
the primary organ that controls iron metabolism because it produces
and secretes hepcidin, the main iron equilibrium regulator (Ganz,
2003). Iron promotes ferroptosis by initiating the Fenton reaction,
which nonenzymatically contributes to PUFA-PL peroxidation
(Gaschler and Stockwell, 2017; Conrad and Pratt, 2019). Also,
iron acts as a critical cofactor in enzyme-mediated lipid
peroxidation (Yang et al., 2016; Koppula et al., 2021b). Enzymes
that produce ROS, including ALOX, xanthine dehydrogenase,
NADPH oxidase, and the mitochondrial electron transport chain
complex, bind to iron, heme, or iron-sulfur clusters. Sufficient
membrane PL-PUFAs and free intracellular iron are required for
ferroptosis (Dixon and Stockwell, 2019). Therefore, iron chelators
(e.g., deferoxamine, ciclopirox) could inhibit ferroptotic death by
obstructing the production of oxidized lipid species.

The transferrin receptor (TfR) is an essential regulator of
ferroptosis. Under physiological conditions, TfR on the plasma
membrane regulates cellular iron absorption by transporting
bound iron into cells through endocytosis (Anderson and Vulpe,
2009). TfR knockdown blocks ferroptosis production by erastin or
cys depletion (Zheng and Conrad, 2020). Alternatively, once
stimulated, TfR facilitated ferroptosis by replenishing the cellular
iron pool (Yang and Stockwell, 2008). Additionally, iron regulatory
protein 1 (IRP1) and IRP2 control iron metabolism genes, including
TfR, to ensure the stability of the intercellular labile iron pool (LIP),
which contains a tiny amount of free Fe2+ (Gao et al., 2015). Nuclear
receptor coactivator 4 (NCOA4) is recognized as an essential
receptor for the selective autophagy of ferritin.
NCOA4 knockdown restricts the availability of labile iron and
imparts ferroptosis resistance (Gao et al., 2016; Hou et al., 2016).
NCOA4 produces ferritin and releases iron through lysosomal
degeneration. Mancias et al. (2014) discovered that
NCOA4 depletion hindered ferritin lysosomal localization and
curtailed susceptibility to ferroptosis. The six-transmembrane
epithelial antigen of prostate 3 is a metal reductase that
transforms Fe3+ to Fe2+, which is then stored in a cytoplasmic
LIP mediated by divalent metal transporter 1. Excessive iron in
systematic circulation is reserved in ferritin, which is thought to be
an iron store consisting of ferritin heavy chain 1 (FTH1) and ferritin
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light chain (Xie et al., 2016). Iron export is regulated by the specific
ferrous iron exporter ferroportin 1 in the plasma membrane in
conjunction with a multi-copper ferroxidase, such as ceruloplasmin.
(Anderson and Vulpe, 2009). Iron can also be expelled as ferritin via
ferritin-containing multivesicular structures and exosomes (Brown
et al., 2019). Accumulation of free iron ions, which catalyze the
Fenton reaction and result in lipid ROS and ferroptosis, occurs if the
equilibrium among iron uptake, utilization, and recycle is disrupted.
Some other iron-related proteins have also been proven to be
associated with the modulation of ferroptosis, such as heme
oxygenase-1 (HO-1) and poly rC binding protein 1, the latter of
which is an iron chaperone in the cytoplasm that transports iron to
ferritin (Bogdan et al., 2016). The chaperone action is necessary for
iron-mediated cytotoxicity and ferroptosis prevention (Protchenko
et al., 2021). Moreover, HO-1 promotes heme breakdown, which
increases intracellular free iron levels and expedites the ferroptotic
process (Chiang et al., 2018). Sun et al. (2015) reported that heat
shock protein B-1 (HSPB-1) in various tumor cells was significantly
inducible after erastin therapy, indicating its nonnegligible role in
ferroptosis. Besides, protein kinase C phosphorylation activates
HSPB-1 in HeLa cells, and HSPB-1 decreases iron levels once
activated by blocking the expression of telomeric repeat binding
factor 1. Furthermore, phosphorylated HSPB-1 decreases lipid
peroxidation and iron absorption, suppressing ferroptosis
progression. In contrast, HSBP-1 suppression exacerbates erastin-
induced ferroptosis (Sun et al., 2015).

4 Ferroptosis in liver diseases

The liver is the metabolic hub for processing nutrients, including
glucose, lipids, and amino acids. Dietary amino acids can be
synthesized into various plasma proteins in the liver. The liver
also governs fatty acid metabolism, with hepatocytes manufacturing
and performing β-oxidation of fatty acids. Hepatic dysregulation of
these nutrients results in oxidative stress and influences hepatic
enzyme activities. Additionally, as the primary location of iron
storage, the liver maintains iron homeostasis by generating and
secreting the principal regulator of iron hepcidin (Ganz, 2003). Since
oxidative stress and iron overload are significant factors in most liver
diseases, ferroptosis has been involved in various hepatic
pathological conditions. Of note, mounting evidence has
indicated that ferroptosis of hepatocytes appears to hasten disease
progression in some non-cancer liver diseases, including acute liver
failure (ALF), viral hepatitis, and hemochromatosis (HH), et al.
Conversely, augmented ferroptosis may sensitize aggressive forms of
liver cancers (e.g., HCC, et al.) in conventional chemotherapy
regimens. (Wu et al., 2021).

4.1 Acute liver failure

ALF is an intractable clinical syndrome with multiple causes
featured by a fast reduction in hepatic function, increased
aminotransferases, altered mentation, and disturbed coagulation
in the absence of chronic liver diseases. Several factors facilitate
ALF progression, including viral infections, improper medications,
immoderate alcohol consumption, and Ischemia-reperfusion injury

(IRI) (Bernal et al., 2010). More than 1,100 marketed drugs are
known to cause DILI worldwide, with the nonsteroidal anti-
inflammatory drug acetaminophen (APAP) being the most
extensively investigated. Previous investigations have
demonstrated the toxic effects of APAP metabolite N-acetyl-p-
benzoquinone imine, which rapidly depletes GSH to repress
mitochondrial respiration and generate ROS (James et al., 2003;
Hanawa et al., 2008). Yamada et al. (2020a) have confirmed that
APAP-induced ALF correlates with ferroptosis driven by ω-6
PUFAs. The ferroptosis inhibitors, such as deferoxamine (DFO),
ferrostatin-1 (Fer-1), UAMC-3203, and vitamin E, exert a protective
effect against this type of hepatocyte injury (Schnellmann et al.,
1999; Lőrincz et al., 2015; Niu et al., 2022). In addition,
lipopolysaccharide (LPS) and D-galactosamine (D-GaIN-
)-induced liver injury is a widely used preclinical model of ALF.
Huang et al. (2022a) found that transforming growth factor β
receptor 1 (TGFβR1) was significantly elevated in LPS/D-GaIN-
induced ALF and liver-specific knockout of TGFβR1-moderated
LPS/D-GaIN triggered ferroptosis and apoptosis by regulating the
phosphorylation of Nrf2 and glycogen synthase kinase 3β (GSK3β),
and by augmenting the expression of ferroptosis-associated proteins,
such as GPX4, dihydroorotate dehydrogenase, and ferroptosis
suppressor protein 1 (Huang et al., 2022a). Hepatic IRI is a
significant clinical problem during liver surgical procedures. A
previous study has indicated that GPX4 inactivation contributes
to hepatic IRI via liver injury, lipid peroxidation, and iron overload
by upregulating PTGS2 (Zilka et al., 2017; Yamada et al., 2020b).
Moreover, liproxstatin-1 (Lip-1) and peroxisome proliferator-
activated receptor γ activator troglitazone have exhibited
promising potential in preventing hepatic IRI by restraining
ferroptosis (Friedmann Angeli et al., 2014; Ji et al., 2022). The
latest findings further revealed that the HECT domain-containing
ubiquitin E3 ligase HUWE1 was also an underlying protective
modulator that could combat ferroptosis and abnormal iron
accumulation by diminishing the amassing of TfR1, reducing the
risk of ALF (Wu et al., 2022). However, whether TfR1 participates in
ferroptosis in pathological conditions is not clearly characterized
(Fillebeen et al., 2019). Therefore, researchers should conduct more
in-depth and multifaceted studies to confirm that targeting the
HUWE1-TfR1 axis is a new strategy for clinical intervention in ALF.

4.2 Viral hepatitis

Viral hepatitis is a class of infectious diseases characterized by
liver inflammation and necrotic lesions induced by persistent
infection of various hepatitis viruses (Guidotti and Chisari, 2006).
Although hepatitis A, B, C, D, and E differ etiologically and
phenomenologically, the clinical symptoms of hepatitis viruses
are comparable, with hepatitis B and C being particularly linked
to the development of liver fibrosis, HCC, and intrahepatic
cholangiocarcinoma (Chen et al., 2021). Previous studies have
indicated that the expression of miR-222 was elevated in
hepatitis B virus (HBV)-infected cells. Exosomal miR-222 from
HBV-infected hepatocytes triggered liver fibrosis via ferroptosis
caused by TfR (Zhang et al., 2022). Further, miR-142-3p
stimulates the ferroptosis in HBV-infected M1-type macrophages
via SLC3A2, leading to the altered synthesis of GSH,
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malondialdehyde (MDA), and Fe2+ that potentially hastens the
development of HCC (Hu et al., 2022).

Hepcidin is activated throughout the progression of hepatitis C.
The elevation of circulating ferritin and transferrin (Tf) saturation
reinforces iron storage in the hepatic cells during hepatitis C virus
(HCV) infection (Wang et al., 2022). The unrestrained HCV
replication results in ROS accumulation and aggravates oxidative
stress in infected hepatocytes. GSK3β is essential for manipulating
oxidative stress. Jiang et al. (2015) studied the GSK3β and
Nrf2 signaling pathways in JFH-1 HCV-infected Huh-7.5.1 cells
and biopsy liver tissue samples from hepatitis C patients. The results
suggested that HCV infection triggered the antioxidative response to
Nrf2, as indicated by the enhanced production of Nrf2-dependent
molecule HO-1 in HCV-infected hepatocytes. Further, transforming
growth factor β1 (TGF-β1) inhibits HCV-induced phosphorylation
of GSK3β, which is regulated by protein phosphatase 1. Meanwhile,
the response of Nrf2, the cognate substrate of GSK3β, was sharply
attenuated (Jiang et al., 2015). Nevertheless, the mechanism
accounting for this impaired Nrf2 response in diseased liver still
needs more exploration. Hence, whether TGF-β1 interception of the
Nrf2 antioxidant response in the diseased liver is the dominant
pathogenic factor in its contribution to chronic liver disease still
requires more rigorous study. Moreover, the GSK3β-Nrf2 signaling
pathway could obstruct ferroptosis via its antioxidant potential
(Huang et al., 2022a). In addition, fatty acid desaturase 2
(FADS2) is a rate-limiting element of ferroptosis since it
facilitates the atypical desaturation of oleate to highly unsaturated
fatty acids, especially mead acid. HCV replication is hampered by
the induction of ferroptosis in host cells via FADS2 activation
(Yamane et al., 2022).

4.3 Autoimmune hepatitis (AIH)

AIH is a progressive and chronic inflammatory liver disease
possibly induced by the reciprocity of an inducement and
environmental factors in a genetically vulnerable individual,
affecting mainly females (Heneghan et al., 2013). Once left
unattended, autoimmune hepatitis manifests a set of immune-
mediated hepatic injuries toward a higher likelihood of
developing end-stage liver diseases (Sucher et al., 2019). Zhu
et al. observed that cyclooxygenase-2 and ACSL4 expression were
elevated in the S100-mediated autoimmune hepatitis models,
accompanied by the downregulated expression of FTH1 and
GPX4. These findings suggest that ferroptosis could serve as a
trigger or a middle mediator in the development of AIH (Adams
and Barton, 2007). Obviously, further investigations are necessary to
illustrate the pathological role of ferroptosis in AIH.

4.4 Hemochromatosis

HH is a hereditary disease manifesting excessive iron deposits in
the tissues caused by autosomal recessive disorder (Pietrangelo,
2004). The development of HH is associated with mutations of
the homeostatic iron regulator, which regulates the interaction
between Tf and TfR (Wang et al., 2017). Due to excessive iron
accumulation in parenchymal cells, ROS are generated by the

Fenton reaction, resulting in oxidative damage to the body. The
liver is the first to be affected (Adams and Barton, 2007). Wang et al.
(2017) discovered the occurrence of ferroptosis in HH using diet-
induced and transgenic mice. Meanwhile, SLC7A11 can be
identified as a potential biomarker for ferroptosis in HH. It has
been found that the ROS-Nrf2-antioxidant response element axis
may be accountable for the elevation of SLC7A11, which is
considered a potential compensatory mechanism to repress
ferroptosis in HH. Although this study uncovered a possible
mechanism by which ferroptosis drives HH, no explanation was
given for the clinical observation that patients with type 2 HH
present with symptoms earlier, develop more severe tissue damage,
and have worse outcomes than patients with type 1 HH (Wang et al.,
2017). In the subsequent study, researchers should focus on the
different roles that ferroptosis plays in type 1 HH and type 2 HH.

4.5 NAFLD/nonalcoholic steatohepatitis
(NASH)

NAFLD and its advanced stage, NASH, have attracted much
attention due to their expanding influence on global health
(Friedman et al., 2018). NAFLD is a metabolic stress-induced
liver injury in which oxidative stress owing to lipid peroxide
accumulation is an essential starting component. Further, iron
deposition in hepatic metabolic disorders is also an exacerbating
factor for NASH by aggravating the risk of hepatic inflammation
and fibrosis (Yang et al., 2020; Gao et al., 2021; Ota, 2021). A high-
iron diet exacerbated the oxidative and inflammatory stress in
mice, hastening the NAFLD development into intractable
advanced liver diseases (Videla and Valenzuela, 2022).
Although the significance of ferroptosis in NAFLD and NASH
remains unknown, malondialdehyde and 4-HNE, secondary lipid
peroxidation products, have been widely considered indicators of
oxidative stress in NASH patients (Loguercio et al., 2001). In a
choline-deficient and ethionine-supplemented dietary model, the
ferroptosis inhibitors reduce ferroptotic cell death and
inflammatory cytokine production during the initiation stage of
NASH (Tsurusaki et al., 2019). However, the investigators have not
yet elucidated whether ferroptosis is involved in promoting liver
tissue damage and inflammatory cell infiltration during the
progressive phase of NASH. In a classic NAFLD model, Qi
et al. (2020) found that ferroptosis inducer Ras-selective lethal
small molecule 3 treatment exacerbated the disease symptom,
including hepatic steatosis and inflammation, which could be
restored by the intervention of ferroptosis inhibitors. Notably,
further studies discovered an inducible GPX4 transcript-variant
(iGPX4) in NAFLD conditions, and suppression of iGPX4 by
siRNA-iGPX4 significantly alleviated oxidative stress and
cellular damage by impairing ferroptosis. Indeed, iGPX4 may be
a promising target for NAFLD therapy as activated iGPX4 interacts
with the canonical cGPX4 by transforming cGPX4 from
enzymatically active monomers to enzymatically inactive
oligomers in response to lipid stress, which exacerbates
ferroptosis (Tong et al., 2022). Thus, these findings suggested
that ferroptosis regulation in the setting of NAFLD is a
promising possibility as a novel therapeutic target that merits
further evaluation.
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4.6 Liver fibrosis

Liver fibrosis is a pathological alternation present in the course
of most chronic liver diseases (Mederacke et al., 2015). The initiation
of hepatic fibrosis is triggered by the imbalance of extracellular
matrix synthesis/degradation caused by hepatic stellate cell (HSC)
activation. Initiation and perpetuation are the two stages of HSC
activation. The initiation phase primarily depends on paracrine
mechanisms. In the sustained activation phase, HSCs exhibit cell
behavior alternations, such as excessive proliferation, fibre
production, and matrix disintegration (Aydın and Akçalı, 2018;
Sun et al., 2020). These pathological changes disrupt the standard
structure and physiological function of the liver. Thus, suppression
of HSC activation has been considered a promising treatment
regimen for liver fibrosis.

Recently, the function of ferritinase in the development of liver
fibrosis has been revealed. Numerous genes and proteins have been
identified to modulate the process of ferroptosis in HSCs. In a study
concerning N6-methyladenosine (m6A) modification, Shen et al.
(2021) reported that m6Amodification appeared to enhance Beclin-
1-mediated autophagy and consequently trigger ferroptosis in
human HSCs, which is further confirmed by silencing YT521-B
homology domain family, a critical m6A reader protein for
sustaining Beclin-1 mRNA stability. Unfortunately, no research
has been done to ascertain which selective autophagy (such as
NCOA4-mediated ferritinophagy) m6A modifications affect
ferroptosis (Gao et al., 2016). In addition, human umbilical cord
mesenchymal stem cells promoted HSCs ferroptosis through the
delivery of exosomal Beclin-1 and mediation of system Xc-/GPX4
(Tan et al., 2022). Thus, ferroptosis induction in HSCs by targeting
the system Xc-/GPX4 axis might be an effective approach to
ameliorate liver fibrosis.

4.7 Liver cancer

The prevalence of HCC has increased in recent decades (Caines
et al., 2020). HCC is the fourth-leading cause of cancer death
globally and the second-leading cause of years of life lost
worldwide to cancer (Fitzmaurice et al., 2019; Yang et al., 2019).
Current studies have confirmed that activation of ferroptosis could
inhibit the disease progression of HCC in the early and advanced
stages. Zhang et al. (2019) found that GPX4 was strongly expressed
in fresh liver cancer tissues compared to that in paired normal liver
tissues. The microarray assay results suggested that ferroptosis
might be suppressed in hepatocarcinogenesis. To further confirm
this hypothesis, DEN/CCl4-induced liver cancer xenograft mice
were administered piperazine erastin in the presence and absence
of Lip-1. They found that piperazine erastin significantly decreased
the size and number of tumor foci in the liver of DEN/CCl4-induced
mice and the volume of Bel-7402 cell xenografts, accompanied by
reduced levels of GPX4 expression. However, Lip-1 administration
abolished the antitumor effects of erastin (Zhang et al., 2019).
Sorafenib is an FDA-approved drug for the treatment of patients
with advanced HCC, and it has been confirmed to be a potential
ferroptosis inducer. Mechanistically, sorafenib suppresses system
Xc-, which promotes ER stress, GSH depletion, and the iron-
dependent accumulation of lipid ROS (Dixon et al., 2014).

Moreover, the p62-kelch-like ECH-associated protein 1 (Keap1)-
Nrf2 pathway is associated with ferroptosis. The elevated expression
of the substrate adaptor p62 protein inhibits Nrf2 degradation and
promotes subsequent Nrf2 nuclear accumulation by inactivating
Keap1 (Sun et al., 2016b). Of note, sorafenib controls Nrf2 to delay
advanced HCC progression by regulating redox and iron
metabolism.

Moreover, p53 serves as a critical mediator to affect the activity
of system XC- by downregulating SLC7A11 transcription and
augmenting the expression of spermine/spermidine-n1-
acetyltransferase 1, raising the level of ALOX15 and boosting the
accumulation of cytoplasmic peroxides (Ou et al., 2016; Zhang et al.,
2019), and ultimately inducing ferroptosis in liver carcinoma cells. A
growing body of surveys found that the tumor suppressor
protocadherin β 14 (PCDHB14) is inactivated in the livers of
HCC patients, indicating PCDHB14 may function as a potential
biomarker for HCC. Notably, p53 activates PCDHB14 and inhibits
SLC7A11 expression by enhancing p65 protein ubiquitination-
mediated degradation, thereby abrogating p65 bind to the
SLC7A11 promoter (Zhao et al., 2022). Furthermore, Wang et al.
(2018) identified cystathionine β-synthase as a novel negative
ferroptosis regulator using a pharmacological probe. The
inhibition of cystathionine β-synthase by CH004 significantly
delayed HCC growth by inducing ferroptosis in vivo (Wang
et al., 2018). In addition, previous research revealed that loss of
leukemia inhibitory factor receptor (LIFR) promoted liver
tumorigenesis and conferred resistance to drug-induced
ferroptosis. A lack of LIFR promotes the nuclear factor κB
signaling via src homology-2 domain-containing protein tyrosine
phosphatase 1, activating the iron-sequestering cytokine lipocalin 2
(LCN2), reducing iron levels, and leading to robust resistance to
ferroptosis. In xenografts fromHCC patients with low LIFR but high
LCN2 expression, sorafenib is insensitive to suppress tumor
progression by inducing ferroptosis. Hence, it might be a
promising strategy to improve HCC treatment by targeting
ferroptosis via anti-LCN2 medication (Yao et al., 2021). It is
important to note that there is an ongoing debate on how
sorafenib causes ferroptosis in HCC cells. For instance, according
to research by Xiang et al. (2022), sorafenib induces ferroptosis in a
manner that depends on cell density and Hippo signaling. Thus, a
deeper exploration of the correlation between the various
mechanisms is warranted. These findings indicate that ferroptosis
may be a promising HCC therapeutic target.

5 Therapeutic opportunities

The induction or inhibition of ferroptosis offers considerable
potential for treating several illnesses, including liver diseases.
Since discovered in 2012, ferroptosis-involved studies and
applications have multiplied. Numerous FINs and ferroptosis
inhibitors have been uncovered, with several now in clinical
trials (Stockwell, 2022). In this section, we will summarize the
classical, well-recognized FINs and ferroptosis inhibitors,
emphasizing their potential roles in the treatment of liver
diseases. We will also point out the mechanism by which
natural active ingredients halt the development of liver diseases
by regulating ferroptosis (Table1).
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TABLE 1 Promising natural active ingredient for regulating ferroptosis.

Class Disease Experimental model Compound Structure Function References

In vitro In vivo

Ferroptosis
inducers

Fibrosis Male CCl4-induced
chronic liver fibrosis

ICR mice

Primary
HSCs; LX-2

Artesunate Upregulate autophagy-
related genes;

downregulate p62, FTH1,
and NCOA4

Kong et al.
(2019)

activate ferritinophagy

Fibrosis Male C57BL/KsJ-db/
db mice

Artemether Target p53-SLC7A11;
preventing the

ubiquitination-mediated
degradation of IRP2

Li et al. (2020b),
Fu et al. (2020)

Fibrosis Male CCl4-induced
liver fibrosis ICR

mice

Primary
HSCs; LX-2

Dihydroartemisinin Upregulate m6A
modification of

BECN1 mRNA; activate
ferritinophagy

Shen et al. (2022)

Fibrosis Male CCl4-induced
liver fibrosis C57BL/

6 mice

HSC-T6;
AML-12;
RAW264.7

WG Downregulate α-SMA
and COL1α1; deplete
SLC7A11, GPX4,

and GSH

Liu et al. (2022a)

Fibrosis Male CCl4-induced
liver fibrosis C57BL/
6 mice; Zebrafish

raised in 0.06% TAA
system water

HSC-T6 ISL Suppress GPX4;
upregulate TfR and

DMT1

Huang et al.
(2022b)

Fibrosis
(HBV)

HSC-T6 Chrysophanol Modulate ER stress Kuo et al. (2020)

Ferroptosis
Inhibitors

ALF Male APAP-induced
DILI C57BL/6 mice

Hepa RG (+)-CLA Activate Keap1–Nrf2;
upregulate GPX4

Wang et al.
(2020)

ALF Male APAP-induced
DILI C57BL/6 mice

AML12 DAG Downregulating p-ERK
and HO-1; increase

SLC7A11, GPX4, HO-1

Liu et al. (2022b)

ALF Male LPS/D-GalN-
induced ALF C57BL/

6 mice

tyr-Ala Activate
Keap1–Nrf2 via p62

Siregar et al.
(2021)

ALF Male LPS/D-GalN-
induced ALF C57BL/

6 mice

Primary
hepatocytes

Baicalin Activate Nrf2; decrease
hepatic lipid deposition

Zhao et al.
(2022)

NAFLD Male HFD-induced
NAFLD C57BL/

6 mice

HepG2 Ginkgolide B Increase HO-1, GSH, and
GPX4; prevent ROS

accumulation

Yang et al.
(2020)

(Continued on following page)
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5.1 Ferroptosis inducers

FINs can be categorized into four types based on diverse
mechanisms (Table 2) (Feng and Stockwell, 2018). Class I FINs
operate by repressing system Xc- and depleting intracellular GSH;
class II FINs directly inactivate GPX4; class III FINs primarily
devour GPX4 and endogenous antioxidant CoQ10; class IV FINs
induce ferroptosis by exacerbating iron overload or activating HO-1
(Hassannia et al., 2019). Malignant tumors have a higher
requirement for iron to support growth than normal cells,
making tumor cells more vulnerable to ferroptosis (Hassannia
et al., 2019). Thus, FINs raise great hopes for the potentiality of
ferroptosis as a viable approach to eliminate therapy-resistant
malignancies. Several FINs have been licensed by the FDA to be
utilized in clinics, and they have shown remarkable efficacy as a
revolutionary anticancer treatment for a range of carcinomas. For
example, cisplatin is a platinum-based chemotherapy agent used for
clinical chemotherapy, such as sarcoma, malignant epithelial
tumors, lymphoma, and germ cell tumors (Dasari and Bernard
Tchounwou, 2014). Sorafenib is the only first-line therapeutic in
clinical practice for advanced HCC treatment by inducing apoptosis
and impeding angiogenesis (Dixon et al., 2014; Nie et al., 2018).
Louandre et al. (2013) showed that sorafenib induced ferroptosis in
vivo (Lachaier et al., 2014; Nie et al., 2018). Also, several studies
using HCC cell lines suggested that the anticancer effect of sorafenib
is attributed to ferroptosis induction via SLC7A11 inhibition
(Louandre et al., 2013; Dixon et al., 2014; Lachaier et al., 2014).
Another study has indicated that the cell proliferation regulator
retinoblastoma (Rb) protein can disturb sorafenib-induced
ferroptosis in liver cancer (Louandre et al., 2015). Thus, the Rb
status in HCC patients could be a tremendous prognostic marker
during sorafenib therapy. Nowadays, drug resistance is a primary
concern that restricts the application of sorafenib, and the average
resistance impact lasts around a year. Cellular drug resistance may
result from the abnormity of negatively-regulated genes of
ferroptosis. Sun et al. (2016a) observed that upregulation of
Metallothionein 1G (MT-1G) by Nrf2 led to resistance of HCC
cells to sorafenib. In contrast, the knockdown of MT-1G enhanced
lipid peroxidation and GSH depletion, contributing to sorafenib-
triggered ferroptosis. Anticancer efficacy of sorafenib can be
enhanced via ferroptosis by inhibiting MT-1G function (Sun
et al., 2016a). In addition, Liu et al. (2021) constructed iron-
based metalorganic framework nanoparticles loaded with
sorafenib and a peptide with tumor-penetrating properties,

synergistically delaying HCC cell malignant transformation by
stimulating ferroptosis.

One of the crucial applications of FINs in treating liver diseases
is the induction of ferroptosis in HSCs by natural active ingredients
derived from traditional Chinese medicine. Artemisinin and its
derivatives have strong pharmacological efficacy against liver
fibrosis by elevating ferroptosis in activated HSCs. Mechanically,
artesunate upregulated the expression of autophagy-associated
proteins and inhibited the expression of FTH1 and NCOA4,
indicating that ferritinophagy-mediated ferroptosis in HSCs is
crucial in the antifibrotic therapy of artesunate (Kong et al.,
2019). Further, artemether could reduce SLC7A11 expression by
regulating p53, leading to ferroptosis of HSCs in fibrotic livers (Fu
et al., 2020). Besides, artemether has also been found to elevate
intracellular iron contents of HSCs by obstructing
IRP2 ubiquitination degradation, triggering ROS accumulation
and ferroptosis (Li et al., 2020). So how does artemether inhibit
the ubiquitination degradation of IRP2? Li et al. (2020) discovered
that STIP1 homology and U-box containing protein 1 is the E3 ligase
most likely to participate in IRP2 ubiquitin, but whether another
significant ubiquitinase of IRP2, F-box and Leucine Rich Repeat
Protein 5, is involved in this process has not been answered
positively by the researchers and needs further investigation. The
stimulation of ferroptosis in HSCs by dihydroartemisinin is
associated with m6A modification, which reduces fat mass by
suppressing the expression of obesity-associated genes via m6A
modification of BECN1 mRNA, consequently reducing liver
fibrosis via ferritin autophagy-mediated ferroptosis (Shen et al.,
2022). Moreover, other active ingredients of Chinese medicine,
including wogonoside (WG), isoliquiritigenin (ISL), decursin, and
chrysophanol, exert their antihepatic fibrosis efficacy by inducing
HSCs ferroptosis. WG is an active flavonoid extracted from
Scutellaria baicalensis and can effectively attenuate liver fibrosis
in mice and in vitro. Specifically, WG-treated HSC-T6 cells showed
mitochondrial ridge breakdown and condensation, and WG
alleviates liver fibrosis via enhancing ferroptosis in HSCs by
regulating SLC7A11, GPX4, and GSH (Liu et al., 2022). The
outcomes of this study indicated that WG had a beneficial effect
on liver fibrosis in mice, however to verify its therapeutic efficacy,
the researchers should set up a positive control group to strengthen
their conclusions. In addition, it is necessary to study data on the
toxicity of WG on the liver in order to confirm the potential of WG
for clinical application. Recently, Hang et al. reported that ISL
alleviated liver fibrosis by triggering HSCs ferroptosis through the

TABLE 1 (Continued) Promising natural active ingredient for regulating ferroptosis.

Class Disease Experimental model Compound Structure Function References

In vitro In vivo

NAFLD Male HFD-induced
NAFLD C57BL/

6 mice

HEK293T;
HL7702

Dehydroabietic Decrease MDA Gao et al. (2021)

Abbreviations: α-SMA: α-smooth muscle actin; COL1α1: collagen 1α1 (I).
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suppression of GPX4 and elevation of TfR and DMT1 expression,
thereby generating a significant amount of ROS (Huang et al.,
2022b). Another study showed that decursin administration
reduced CCl4-induced hepatic fibrosis by raising Fe2+ and lipid
ROS levels and decreasing GSH and GPX4 levels (Que et al., 2022).

Furthermore, Kuo et al. (2020) discovered that chrysophanol from
the rhizomes of Rheum palmatum L. could reduce ER stress and
promote ferroptosis, which in turn mediates the activation of HSC-
T6 and alleviates HBV X protein-induced liver fibrosis. Nowadays, a
growing body of studies suggests that natural active ingredients may

TABLE 2 Major ferroptosis inducers.

Class Class
Characteristics

Reagent Structure Function Applications References

Class I Deplete GSH by
inhibiting system Xc-

Erastin Inhibit SLC7A11; block
cystine input; bind to

VDAC2/3

Experimental
reagent

Dixon et al. (2012)

Piperazine erastin Inhibit SLC7A11; block
cystine input

Experimental
reagent

Yang et al. (2014)

Imidazole ketone
erastin

Inhibit SLC7A11; block
cystine input

Experimental
reagent

Zhang et al. (2019b)

Sorafenib Inhibit system Xc- Approved for
marketing

Louandre et al.
(2015)

Sulfasalazine Inhibit system Xc- Preclinical Kim et al. (2018)

BSO Inhibit GCL; decrease
GSH synthesis

Clinical trial
phase

Miess et al. (2018)

Cisplatin Combine with GSH to
inactivate GPX4

Approved for
marketing

Cheng et al. (2021)

Class II Direct inactivate GPX4 RSL3 Inhibit GPX4 covalently Experimental
reagent

Yang and Stockwell
(2008), Hangauer
et al. (2017), Cheng

et al. (2021)

ML162/210 Weïwer et al. (2012),
Yang et al. (2014)

DPI compounds
7,10,12,13,17,18,19

Inhibit GPX4 covalently Experimental
reagent

Yang et al. (2014)

(Continued on following page)
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have hepatoprotective effects by augmenting ferroptosis, and more
research on ferroptosis-related liver diseases is anticipated.

5.2 Ferroptosis inhibitors

Exogenous inhibition of ferroptosis is accomplished primarily
via two approaches: iron chelation and inhibition of lipid
peroxidation (Table 3) (Schnellmann et al., 1999). Some
ferroptosis inhibitors are FDA-licensed or have undergone
clinical trials in treating iron overload disorders. Iron chelators
can chelate iron and stop the spread of lipid peroxidation by
inhibiting the Fenton reaction. Numerous iron chelators have
been demonstrated effective in treating ALF, NAFLD, and other
non-cancer liver diseases. Schnellmann et al. (1999) discovered in
1999 that DFO might lessen APAP-induced liver damage by
intracellular chelating iron. However, this change in medication
hepatotoxicity is temporary. Therefore, the sustentation of DFO
critical concentration is crucial for its effectiveness (Xue et al., 2016).

DFO has also shown therapeutic potential in delaying the
development of NAFLD and hastening the repairment of hepatic
steatosis. DFO treatment alleviated hepatic iron accumulation,
upregulated the expression of lipid metabolism-related proteins,
and ameliorated hepatic steatosis in ob/ob NAFLD mice
(Mohammed et al., 2016). Additionally, DFO possesses
antifibrotic and antioxidant properties. It was discovered that
DFO administration dramatically maintained liver function and
reversed hepatic histopathological lesions and iron accumulation in
rats. DFO also substantially reduced CCl4-induced elevation of lipid
peroxidation and superoxide dismutase and GPX4 expressions.

Lipophilic antioxidants, such as Fer-1, vitamin E, and Lip-1, act
as radical scavengers to decrease lipid peroxides and are beneficial in
abolishing ferroptosis to impede the progression of liver disease
(Dixon et al., 2012). Fer-1 therapy was found to increase cell survival
in primary mouse hepatocytes with APAP incubation, and it also
showed a protective effect in other ALFs, including hepatic IRI
(Lőrincz et al., 2015; Li et al., 2022). Additionally, in concanavalin A-
(Con A)-induced AIH, pretreatment with Fer-1 reduced the severity

TABLE 2 (Continued) Major ferroptosis inducers.

Class Class
Characteristics

Reagent Structure Function Applications References

Class III Devour GPX4 and
CoQ10 via SQS-

mevalonate pathway

FIN56 Bind and activate SQS
to reduce CoQ10

Experimental
reagent

Shimada et al. (2016)

Statins Block the synthesis of
GPX4

Approved for
marketing

Hung et al. (2017)

Class IV Induct iron overload or
activate HO-1

FINO2 Direct oxidation of
ferrous iron and lipids

Experimental
reagent

Gaschler et al. (2018)

Other
types

iFSP1 Deplete CoQ10,
decrease GPX4 activity

Preclinical Doll et al. (2019)

MTX Suppress DHFR
activity; inhibit
BH4 production

Approved for
marketing

Soula et al. (2020)

Brequinar Decrease DHODH
activity; cause
accumulation of

mitochondrial peroxide
lipids

Preclinical Mao et al. (2021)

Dihydroartemisinin Degrade ferritin,
lipid ROS

Phase II clinical
trial

Zheng and Conrad
(2020)

Abbreviations: SQS: squalene synthase; DHFR: dihydrofolate reductase; VDAC: voltage-dependent anion channel.
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TABLE 3 Major inhibitors of ferroptosis.

Class Class
Characteristics

Reagent Structure Function Applications References

Class I Inhibit accumulation
of iron

DFO Iron consumption Approved for
marketing

Neufeld (2006), Yang and Stockwell
(2008), Dixon et al. (2012), Skouta

et al. (2014)

2,2′-
Bipyridine

Experimental
reagent

Ciclopirox Approved for
marketing

Class II Inhibit lipid
peroxidation

Fer-1 Radical scavenger Experimental
reagent

Bannai et al. (1977), Dixon et al.
(2012), Friedmann Angeli et al.
(2014), Hinman et al. (2018)

Lip-1 Experimental
reagent

Vitamin E Approved for
marketing

Rosiglitazone ACSL4 inhibitor; inhibit
ferroptosis in a lipoxygenase-

dependent manner

Approved for
marketing

Shah et al. (2018)

Troglitazone Delist

(Continued on following page)
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of Con A-induced liver lesions and the occurrence of ferroptosis
events, including the elevation of hepatic GSH, GPX4, and
system Xc-expressions and downregulation of ferrous iron levels
in liver tissues (Zeng et al., 2020). In addition, it was found that
Vitamin E protected against excessive lipid peroxidation in GPX4-
deficient mice featuring hepatic ferroptosis (Carlson et al., 2016).

Notably, multiple active ingredients extracted from natural
botanicals have been demonstrated to shield the liver from
ferroptosis-mediated damage. An active alkaloid (+)-clausenamide
[(+)-CLA] extracted fromClausena lansium (Lour.) Skeels suppressed
APAP-induced hepatocellular ferroptosis. In detail, (+)-CLA
treatment reduced hepatic pathological damage and inhibited
drug-induced ferroptosis by activating the Keap1-Nrf2 pathway.
Mechanistically, (+)-CLA prevents Nrf2 ubiquitination and boosts
Nrf2 stability by selectively interacting with the cys-151 residue of
Keap1 (Wang et al., 2020). Additionally, several natural active
components protect against APAP-induced DILD, such as 3,4-
dihydroxyphenylethyl alcohol glycoside (DAG), which offers an
alternative drug for treating ALF. Moreover, DAG extracted from
Sargentodoxa cuneate exerts its antioxidant effect by upregulating
GPX4 expression and downregulating phosphoextracellular regulated
protein kinases and HO-1 expression to counteract APAP-induced
ferroptosis in hepatocytes (Liu et al., 2022). Furthermore, it was found
that oyster-derived tyr-Ala peptide showed promising
hepatoprotective properties in the LPS/D-GaIN-induced ALF
model by repressing ferroptotic signaling (Siregar et al., 2021).
However, tyr-Ala peptide being a bioactive peptide, when
administered orally they are broken down into amino acids in the
gastrointestinal tract, and are less bioavailable. Therefore, to overcome
this drawback, a formulation form that can be injected
intramuscularly, subcutaneously or intravenously should be
developed at a later stage. Moreover, Zhao et al. (2022)
demonstrated that exosomes pretreated with baicalin prevent the
formation of ROS and lipid peroxide-induced ferroptosis by triggering
the Keap1-Nrf2 pathway via p62 and dramatically alleviating LPS/
D-GaIN-induced liver injury. Simultaneously, natural active
ingredients have been demonstrated to be useful in treating
chronic liver diseases such as NAFLD and viral hepatitis via
restraining ferroptosis. Ginkgolide B (GB) in Ginkgo biloba
extracts has been reported to ameliorate hepatic lipid deposition
and steatosis in obese mice via its antiferroptotic activity by
activating Nrf2 (Yang et al., 2020). The authors did not, however,
discuss how GB impacts high lipid levels associated with hepatic
ferroptosis, and more research is required to determine the precise
mechanism bywhich GB reduces hepatic inflammatory responses and
lipid peroxidation-induced ferroptosis by activating Nrf2. Similarly,
dehydroabietic acid ameliorated high-fat diet-induced NAFLD by
triggering Nrf2, elevating the levels of GSH, HO-1, and GPX4 for
attenuating the accumulation of ROS and lipid peroxide MDA,
subsequently suppressing hepatic ferroptosis (Gao et al., 2021).

6 Future directions and perspectives

There is growing consensus that the aberrant activation or
suppression of ferroptosis is crucial to the pathological
progression of numerous liver diseases, making it a promising
therapeutic target for the treatment of hepatic disorders.TA
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However, the specific role of ferroptosis has to be further studied.
This review summarizes that numerous potential agents, including
small-molecule compounds and natural active ingredients, may
serve as ferroptosis inducers or inhibitors for treating liver
diseases. Sorafenib, sulfasalazine, statins, and artemisinins have
shown efficacy as monotherapy or combination therapy in
treating multiple malignancies. Sorafenib is authorized to treat
advanced-stage renal cell carcinoma, unresectable HCC, and
differentiated thyroid carcinoma (Chen et al., 2021). Sulfasalazine
has shown promise in preclinical studies as a potent inhibitor of
CD133-positive and highly CD44v9-expressed HCC cells (Song
et al., 2017; Wada et al., 2018).

Statins may improve the prognosis of patients with various
malignancies, including HCC patients undergoing transarterial
chemoembolization (Graf et al., 2008). With new technologies
such as high-throughput functional screening and artificial
intelligence, a growing number of ferroptosis-targeted drugs will
be successfully launched.

The outcomes of ferroptosis investigations would aid in the early
diagnosis of numerous liver diseases. In clinical practice, although
liver function tests along with physical or imaging exams have been
widely utilized as non-invasive screening methods to identify and
assess different liver diseases, it is still vital to explore novel
approaches to early diagnosis of liver diseases due to the lack of
specificity and limitations of low sensitivity (Thapa andWalia, 2007;
Chen et al., 2011). Specific ferroptosis markers have become useful
diagnostic targets for various liver conditions. For instance, hepatic
IRI is expected to be detected by the overexpression of the
ferroptosis indicator PTGS2. Also, secondary lipid peroxidation
products malondialdehyde and 4-HNE are frequently used as
oxidative stress markers in NASH patients. Additionally, the
levels of ferroptosis-related proteins, including GPX4, Nrf2, and
Tf, can also be used to predict the onset of many liver diseases like
acute and chronic hepatitis by reflecting the degree of hepatic
oxidative stress and inflammation.

Further, since iron homeostasis has long been recognized to
control immune system function, and lipid peroxidation has
previously been linked to various immunological responses
(Weismann and Binder, 2012), there is also a possibility to
combine the modulation of ferroptosis with immunotherapy
(Xu et al., 2021). Wang et al. identified ferroptotic regulation as
a novel antitumor strategy. They claimed that augmented
ferroptosis enhanced the antitumor actions of CD8+ T
lymphocytes by stimulating ferroptosis and lipid peroxidation
in tumor cells using tumor immunotherapy with a programmed
death-ligand 1 (PD-L1) antibody. Further, the production of
interferon-γ by CD8+ T lymphocytes drastically repressed the
expression of SLC3A2 and SLC7A11 and the uptake of cys in
the tumor cells. Additionally, the blockage of cys in conjunction
with the PD-L1 antibody caused tumor cell ferroptosis and boosted

T-cell immunity (Wang et al., 2019). Recently, Liu et al. (2021)
synthesized a dual-targeting phosphatidylinositol-3-kinase and
histone deacetylase inhibitor BEBT-908 that robustly reduces
tumor cell proliferation and enhances the efficacy in
antiprogrammed cell death protein 1 immunotherapy in mice
by triggering immunogenic ferroptosis, demonstrating BEBT-
908 would be a potential targeted therapeutic medicine against
various cancer types (Fan et al., 2021). Thus, the combination of
immunotherapy with ferroptosis induction could be a novel
strategy in the management of liver cancers.

Altogether, a better comprehension of ferroptotic function may
facilitate the discovery of efficient therapeutic approaches for
therapying liver diseases, potentially bringing ferroptosis to the
forefront of translational medicine in the future.
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