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Immunotherapy is a promising strategy for triple-negative breast cancer (TNBC)
patients, however, the overall survival (OS) of 5-years is still not satisfactory.
Hence, developing more valuable prognostic signature is urgently needed for
clinical practice. This study established and verified an effective risk model based
on machine learning methods through a series of publicly available datasets.
Furthermore, the correlation between risk signature and chemotherapy drug
sensitivity were also performed. The findings showed that comprehensive
immune typing is highly effective and accurate in assessing prognosis of TNBC
patients. Analysis showed that IL18R1, BTN3A1, CD160, CD226, IL12B, GNLY and
PDCD1LG2 are key genes that may affect immune typing of TNBC patients. The
risk signature plays a robust ability in prognosis prediction compared with other
clinicopathological features in TNBC patients. In addition, the effect of our
constructed risk model on immunotherapy response was superior to TIDE
results. Finally, high-risk groups were more sensitive to MR-1220,
GSK2110183 and temsirolimus, indicating that risk characteristics could predict
drug sensitivity in TNBC patients to a certain extent. This study proposes an
immunophenotype-based risk assessment model that provides a more accurate
prognostic assessment tool for patients with TNBC and also predicts newpotential
compounds by performing machine learning algorithms.
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Introduction

Breast cancer is one of the most common cancers among women worldwide, which has
different pathological and molecular subtypes including luminal A, luminal B, human
epidermal growth factor receptor overexpression (HER-2+) and triple-negative breast cancer
(TNBC) (Chodosh, 2011). TNBC is a subtype of breast cancer that estrogen receptors (ERs),
progesterone receptors (PRs) and HER-2 are absent and accounts for approximately 15%–

20% of all breast cancers (Brenton et al., 2005). Notably, TNBC present the worst prognosis
and highest mortality compared with other subtypes and has a wide range of genetic,
immunophenotypic, morphological and clinical characteristics (Carey et al., 2007; Dent
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et al., 2007). Only 30%–50% TNBC patients present pathologic
complete response (pCR) after given the standard neoadjuvant
chemotherapy regime (including taxane and anthracyclines),
which is significantly lower than HER-2+ breast cancer (von
Minckwitz et al., 2012; Cortazar et al., 2014). Although various
treatment strategies have been developed, however, more than 70%
TNBC patients present metastasis and recurrence within 3 years
after surgical resection, meaning the prognosis is still poor (Sharma,
2016; Huynh et al., 2020).

Immunotherapy for cancer is often based on the cancer immune
cycle theory, which includes the enhancement of stimulatory
immune factors and immune checkpoint inhibitors (ICIs) (Gao,
2019; Pio et al., 2019; Sanmamed and Chen, 2019; Hegde and Chen,
2020). The successful application of ICIs has been observed in
various types of cancers, including melanoma, hepatocellular
carcinoma and lung cancer, and this has caused great excitement
(Chee et al., 2017; Luke et al., 2017; Llovet et al., 2018).
Unfortunately, the clinical benefit of immunotherapy for most
TNBC patients is still limited until nowadays. Previous studies
have explored classification strategies for cancer immunotyping
(Chen et al., 2020; Zhao et al., 2021). The classification strategy
based on immune score and infiltration score has been used in lung
cancer and urothelial cell carcinoma (Fu et al., 2018; Tan et al.,
2020). However, until nowadays, few research has been done to
categorize TNBC using these scores, and to further investigate their
correlation with TNBC prognosis and drug sensitivity.

Therefore, establishing reliable predictive biomarkers to identify
subgroups that may benefit for TNBC is urgently needed. Besides,
adopting comprehensive evaluation of tumor immunophenotype-
based treatment strategies for each patient through cancer immune-
cycle and immune cell infiltration status are essential to promote the
development of effective immunotherapies. In the current study,
publicly accessible data of TNBC were retrieved from The Cancer
Genome Atlas (TCGA) database, Gene Expression Omnibus (GEO)
database and Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC) database to establish the robust signature
through a series of bioinformatics methods. By combining multi-
gene expression datasets, we developed and validated the risk model
based on cancer immunophenotypes, and explored its performance
in predicting prognosis. In addition, we comprehensively
investigated the association between this signature with immune-
related characteristics, immunotherapy response and drug
sensitivity in TNBC patients. Our results suggested that this
cancer immunophenotype-based signature could be used as a
promising biomarker in predicting clinical outcome and
immunotherapy response in TNBC patients.

Materials and methods

Data collection and procession

This research was conducted on publicly available database
through a series of bioinformatics methods. Transcript profiles
and corresponding clinical information of six cohorts containing
a total of 694 TNBC patients were acquired to construct and validate
the risk signature after removing the samples with unknown survival
time and outcome. Details were as follows: microarray dataset

GSE103091 (107 samples) was downloaded from Gene
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo)
and was selected as the training cohort on account of the
optimal sample size. Another three microarray datasets named
GSE16446 (107 samples), GSE20685 (225 samples) and
GSE20711 (78 samples) were also obtained from GEO database
and used as the validation cohorts, in addition, TNBC RNA
sequencing datasets which downloaded separately from The
Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov) and
Molecular Taxonomy of Breast Cancer International Consortium

TABLE 1 Distribution of clinical characteristics among two immune subtypes in
three datasets.

Subtype 1 Subtype 2 p-value

(n = 361) (n = 209)

Dataset 0.000

GSE16446 55(0.15) 52(0.25)

GSE103091 187(0.51) 51(0.24)

GSE20685 119(0.33) 106(0.51)

Age 0.895

(26,46) 70(0.41) 62(0.41)

(46,55) 41(0.24) 32(0.21)

(55,64) 30(0.18) 30(0.20)

(64,90) 30(0.18) 24(0.16)

Grade 0.452

Grade1 2(0.04) (0)

Grade2 10(0.18) 9(0.17)

Grade3 38(0.69) 43(0.83)

Primary tumor (T) 0.114

T1 34(0.20) 42(0.26)

T2 118(0.69) 92(0.58)

T3 8(0.05) 15(0.09)

T4 10(0.06) 11(0.07)

Regional lymph nodes (N) 0.997

N0 72(0.42) 66(0.41)

N1 62(0.36) 59(0.37)

N2 23(0.13) 22(0.14)

N3 14(0.08) 14(0.09)

Metastasis 0.999

Non-metastasis 117(0.67) 123(0.67)

metastasis 58(0.33) 61(0.33)

Status 0.562

Alive 82(0.76) 167(0.78)

Dead 26(0.24) 45(0.21)
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(METABRIC, https://www.cbioportal.org/) were used as another
two validation cohorts, respectively. Summary information of above
cohorts was listed in Table 1. Besides, three real-world
immunotherapy cohorts (GSE91061, GSE135222, IMvigor210)
were chosen to verify the ability of the risk signature on
prediction of immunotherapy response. All the raw data were
normalized and log2 transformed.

Identification of TNBC molecular subtypes

The Tumor Immunophenotype (TIP) database (http://biocc.
hrbmu.edu.cn/TIP) is a webtool that can assess the immune
microenvironment on the base of the cancer-immunity cycle (Xu
et al., 2018). The marker genes were retrieved from the TIP database
and employed to classify TNBC patients into diverse clusters in the
training cohort through “ConsensusClusterPlus” R package
(Wilkerson and Hayes, 2010). Pam algorithm and “spearman”
were used as the metric distance. Each bootstrap process
including 80% of the training cohort of patients and was
repeated by 500 times. The number of clusters was set to be 2 to
10, and the optimal classification was determined by calculating the
consistency matrix and consistency cumulative distribution
function (CDF).

Quantification of the infiltration immune
cells and immune-related pathways

The stromal score, immune score and estimate score of training
cohort were calculated by ESTIMATE algorithm and were used to
compare the immune infiltration between different subtypes and
different risk models (Danilova et al., 2019). Then, the c2.
cp.kegg.v7.5.1 gene set was downloaded from Molecular
Signatures Database (MSigDB, https://www.gsea-msigdb.org/) and
employed to quantify the pathways through “ssGSEA”method. The
infiltration level of 10 immune cells were also quantified through
“MCPcounter” algorithm. Next, we also calculated the relative
infiltration level of 22 kinds of immune cells by CIBERSORT
method. Then, the characteristic genes of 28 immune cells which
obtained from previous study (Charoentong et al., 2017) were used
to calculate the degree of infiltrating immune cells between different
risk groups in TNBC.

Differential expression analysis and
functional enrichment

Differential expression analysis between diverse molecular subtypes
and risk models were conducted by “limma” package and visualized
through volcano plot. The selection criterion was |log2FC| > 2 and
FDR < 0.05 for molecular subtypes, and |log2FC| > 1.5 and FDR <
0.05 for diverse risk models, respectively. The “WebGestaltR” package
was used to further investigate the functions involved in differential
expressed genes (DEGs), and the Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analysis
were performed. The Gene set enrichment analysis (GSEA) was then
conducted to further analysis the difference of biological functions

between different groups based on the Hallmark gene set through
“clusterProfiler” package.

Construct risk model based on machine
learning

To develop a consensus model with high accuracy and stable
performance, we integrated 10 machine learning algorithms and
101 algorithm combinations. The integrative algorithms included
random survival forest (RSF), elastic network (Enet), Lasso, Ridge,
stepwise Cox, CoxBoost, partial least squares regression for Cox
(plsRcox), supervised principal components (SuperPC), generalised
boosted regression modelling (GBM), and survival support vector
machine (survival-SVM). The signature generation procedure was
as follows: (a) Firstly, univariate Cox regression was employed to
identify the prognostic genes in training cohort; (b) Then,
101 algorithm combinations were performed on the prognostic
genes to fit prediction models based on the leave-one-out cross-
validation (LOOCV) framework in the training cohort; (c) All
models were detected in five validation datasets (GSE20685,
METABRIC, TCGA-TNBC, GSE16446, and GSE20711); (d) For
each model, the Harrell’s concordance index (C-index) was
calculated across all validation datasets, and the model with the
highest average C-index was considered optimal. The risk score was

calculated as following formula: Risk score � ∑
n

1

Exp *coefficient.

Mutational landscape analysis

The “maftool” package was used to explore the somatic
mutations in TCGA-TNBC patients and the top 10 mutated
genes were presented in waterfall plot. Besides, the copy number
variation (CNV) data of TCGA-TNBC was also downloaded and
used to display the proportion of deletion and amplification of genes
according to the risk model.

Comparison of risk models with clinical
parameters and TIDE performance

In order to explore the superiority of the risk signature, the time-
dependent area under curves (tAUC) of the signature and other
clinicopathological features were analyzed and compared in
METABRIC cohort and TCGA-TNBC cohort, respectively. Then,
the TIDE score of three immunotherapy cohorts (GSE91061,
GSE135222 and IMvigor210) were calculated through the online
tool (http://tide.dfci.harvard.edu/) for immune treatment effect
evaluation. The tAUC of risk signature and TIDE score were
analyzed in the three cohorts and the comparison between these
two indicators were also performed to distinguish the sensitivity and
specificity to immunotherapy response.

Drug sensitivity analysis

To further investigate potential therapeutic target drugs in the
high-/low-risk group, we used the drug-sensitive cell lines in the
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CCLE database (https://portals.broadinstitute.org/ccle) as a
training set. The drug sensitivity of each patient in the
GSE103091 cohort was predicted by CTRP and PRISM methods.
Then screening for potential regulation of drugs through the setting
as |cor| > 0.3.

Statistical analysis

R software (https://www.r-project.org, version 4.1.3) and
GraphPad Prism 8.0 (GraphPad Software Inc., San Diego, CA,
United States) were used for all statistical analysis and
visualization. Univariate Cox regression analysis was performed
to evaluate the significant prognostic genes. Quantitative data
were compared between different groups through Wilcoxon rank
sum test. Relationships between risk scores and expression levels of
different genes were examined by Spearman’s correlation analysis.
Unless otherwise specified, p < 0.05 was considered as statistically
significant.

Results

Diagram of the research

The workflow of our research was presented in Figure 1. The
research contents mainly included three parts: 1) Identifying
different prognostic immune types and their related DEGs and
pathways; 2) Building risk models based on machine learning
methods according to these DEGs and exploring the regulatory
pathways of different risk models, as well as the relationship with
immune cells and chemokines; 3) Analysis of potential targeting
drugs for different risk groups.

Two diverse molecular subtypes were
gathered based on TIP-related genes

A total of 166 marker genes were collected in the seven
stages of the cancer-immunity cycle, including checkpoints,
cytotoxic factors, chemokines, and major histocompatibility
complex (MHC) molecules (Figure 2A). The CDF delta area
curve indicated that k = 2 could gather relatively stable
clustering results which named Cluster 1 (C1) and Cluster 2
(C2) (Figures 2B–D). Further analysis of the prognostic
characteristics of these two molecular subtypes revealed
significant overall survival (OS) difference between them in
the training cohort (Figure 2E). In general, C1 subtype had a
poor prognosis compared with C2 subtype (p < 0.05). Similar
results were observed in GSE20685 cohort (Figure 2F, p < 0.05).
Then, PCA analysis was conducted based on Neutrophils
marker genes, and PCA dimension reduction distributions of
the two subtypes were shown in Figure 2G. The results
demonstrated an obvious batch effect between the two cluster
samples.

C2 exhibit relative higher level of immune
cell infiltration and immune-related
pathway activity

Above results indicated that the patients in C2 showed a
better prognosis than the patients in C1. Next, the study
explored the differences in immunity between these two
clusters. Obviously, C2 displayed a higher immune score,
stomal score, and ESTIMATE score compared with the C1
(Figure 3A). In addition, the two clusters showed significant
differences in most immune-related pathways, including JAK-

FIGURE 1
The flowchart of this study.
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STAT signaling pathway, NF-kappa B signaling pathway, Toll-
like receptor pathway, B cell receptor signaling pathway, T cell
receptor signaling pathway and inflammatory response
(Figure 3B). Besides, the quantitative infiltration levels of
most immune cells were much higher in C2 than C1,
suggesting the patients in C2 may act more immune activity,
detailed information were presented in Figures 3C, D. The
difference of KEGG pathways were visualized by heatmap
and a coincident result was obtained, that is the C2 exhibit
higher activity in tumor immunity related pathways, such as
apoptosis and JAK-STAT pathway, et al. (Figure 4A). GSEA

analysis further suggested the C1 showed positively correlation
with cancer-related pathways, including G2M checkpoint and
E2F targets, et al., while the C2 presented positively relationship
with immune-related pathways, including INF-alpha response
and INF-gamma response, et al. (Figure 4B). Finally, the results
of “ssGSEA” score showed that five tumor-related pathways
were significantly different between two clusters, including
WNT, TP53, PI3K, NRF1, and HIPPO, which have been
linked to the development and progression of cancer and
have great potential in predicting the prognosis of TNBC
patients (Figure 4C).

FIGURE 2
Expression of TIP-related genes in the GSE103091 dataset (A); Sample clustering heat map when consensus k = 2 (B); CDF curve of
GSE103091 cohort sample (C); CDF Delta area curve of GSE103091 cohort sample. Delta area curve of consensus clustering, indicating the relative
change in area under the cumulative distribution function (CDF) curve for each category number k compared with k-1. The horizontal axis represents the
category number k and the vertical axis represents the relative change in area under CDF curve (D); Prognostic relationship between two subtypes of
GSE103091 (E) and GSE20685 (F); The two data sets were clustered using PCA (G).
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DEGs between the two diverse clusters
showed remarkable functional enrichment
in immune-related pathways

In order to further investigate and verify the differences of
biological functions between the two clusters, the differential
analysis was performed to complete this task. The heatmap was
showed in Figure 5A. A total of 590 DEGs were collected, among
which contains 11 upregulated genes and 579 downregulated genes
(Figure 5B). KEGG enrichment indicated the DEGs were mainly
participate cytokine-cytokine receptor pathway, chemokine
signaling pathway, cell adhesion molecules, hematopoietic cell
lineage and viral protein interaction with cytokine and cytokine
receptor (Figure 5C). GO biological process results showed these
DEGs were enriched in T cell activation, leukocyte mediated
immunity, leukocyte cell-cell adhesion, regulation of T cell
activation and lymphocyte mediated immunity (Figure 5D). The
top five cellular component (CC) and molecular functions (MF)
were showed in Figures 5E, F, respectively.

Construct the risk model based on machine
learning

A total of 454 genes were collected from the intersection of
DEGs, TCGA, METABRIC, GSE20685, GSE20711 and
GSE16446 data sets (Figure 6A). Then, univariate Cox analysis
was performed to calculate the relationship between 454 DEGs
and TNBC prognosis in the training cohort, and 30 prognostic
genes were finally screened after filtering p < 0.05, among which
were all protective factors. Next, these 30 genes were used to develop
a consistent prognostic model through our integrated program
based on machine learning approach. In brief, 101 prediction
models were filtered through the LOOCV framework, meanwhile,
the C-index for eachmodel was also calculated in the training cohort
and validation cohorts to select the most outstanding candidate.
Interestingly, the optimal model was a combination of CoxBoost and
RSF, with the highest average C-index equal to 0.622 (Figure 6B).
Finally, seven key genes were screened to establish the prognostic
signature (Figure 6C). The risk score was calculated as above

FIGURE 3
Comparison of immune scores of two molecular subtypes (A); Comparison of scores of 6 inflammatory pathways (B); MCPcounter calculated the
abundance scores of 8 immune cells compared with 2 stromal cells (C); ssGSEA calculated the scores of 28 immune cells, and the results were presented
in heat maps of the two subtypes (D).
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mentioned and subsequently normalized by the “scale”method. The
Z-score equal to zero was selected as the cut-off value to separate the
cohorts into high-risk group and low-risk group. Survival analysis
indicated that the patients in low-risk group presented significant
longer OS compared with the high-risk patients both in the training
cohort and the validation cohorts (all p < 0.05, Figure 6D). So, this is
considered a robust model and worthy to further study.

Comprehensively analysis of the risk
signature and tumor immunity

A total of 1,145 DEGs were collected between high-risk group
and low-risk group in the training cohort (Figure 7A). Functional
enrichment analysis indicated these DEGs may play a vital role in
immune-related pathways and biological functions (Figure 7B).
GSEA results showed that immune-related pathways were

significantly enriched in the low-risk group, including innate
immune system, adaptive immune system, signaling by GPCR,
hemostasis, and cytokine signaling in immune system
(Figure 7C). On the other hand, only three pathways were
enriched in the high-risk group and most of them were related
to cell proliferation process (Figure 7D). Due to the strong
correlation between risk characteristics and immune-related
biological pathways, we further investigated the association
between risk scores and tumor-infiltrating immune cells. Firstly,
we use an estimation algorithm to quantify the overall somatic
immune cells based on the TCGA sequence. From Figure 8A, we
found that the risk score and the immune score presented a strong
negative correlation (p < 0.001), indicating that the low-risk group
which evaluated based on our model had a higher immune
infiltration. We further analyzed the differences in the
distribution of somatic immune cells between the two
subpopulations and found significant differences in T cells and

FIGURE 4
Heat map of enrichment scores of two subtype enrichment pathways in the GSE103091 dataset (A); Bubble map of C1 subtype enrichment to
pathway in GSE103091 data set (B); Box plots of ssGSEA scores for 10 tumor-associated pathways (C).

Frontiers in Pharmacology frontiersin.org07

Tang et al. 10.3389/fphar.2023.1195864

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1195864


three types of macrophages in the low-risk group (Figure 8B). Then,
using the characteristic genes of 28 immune cells obtained from
previous study (Charoentong et al., 2017), the infiltration scores of
28 immune cells were calculated by “ssGSEA” method, and 9 out of
12 T cells showed significant differences in the two risk groups
(Figure 8C). Furthermore, we analyzed the correlation between risk
score and these 12 types of T cells (Figure 8D), and the results
showed that there was a strong negative correlation between risk
score and T cell scores. It was also found that M1 macrophage score
was negatively correlated with risk score, while M0 and M2 showed
an opposite trend (Figure 8E). The scores of three macrophage-
related pathways were also significantly negatively correlated with
risk scores (Figure 8F). It can be seen that 14 out of 40 chemokines
were significantly different between the two risk groups, suggesting
that different risk groups may have different degrees of immune cells
infiltration, and these differences may directly affect the progress of
tumor and the effect of immunotherapy (Figure 9A). In addition, we
calculated and compared the expression of chemokine receptor
genes in the different risk groups and found that there were
significant differences in the expression of chemokine receptor
genes, including CCR1, CCR2, CCR5, CCR6, CCR7, CCR8,
CXCR2, CXCR5 and CXCR6 (Figure 9B). Finally, further
analysis indicated the risk score was significant negatively

correlated with these genes (Figure 9C). Thus, our study
identified and validated two robust immune subtypes based on
comprehensively bioinformatics methods.

To further explore the mutational landscape between diverse
risk groups, the somatic mutational data was downloaded from
TCGA database and used to complete the procession. As a result, top
10 mutated genes were shown in waterfall plot, including TP53,
TTN, MUC16, SYNE1, FAT3, SPTA1, CSMD3, DMD,
DYNC2H1 and PIK3CA (Supplementary Figure S1A). CNV
analysis presented the proportion of deletion and amplification of
these seven genes were remarkable changed, especially the CD160
(Supplementary Figure S1B). These findings suggested that these
genes with significant mutational differences may play an important
role in different immune scores.

Risk signature performed robust prognostic
value and immune response compared with
clinical features and TIDE performance

In order to verify the prognostic performance of risk signature, we
conducted tAUC analysis to compare the specificity and sensitivity with
other clinicopathological features. Results showed the risk score played a

FIGURE 5
Heat map of differential gene expression between two subtypes in the GSE103091 cohort sample (A); Differential gene volcanomap (B); Differential
gene enrichment analysis, KEGG, BP, CC, MF (C–F).
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significantly strong survival prediction ability in METABRIC cohort
(Figure 10A). Similar results were viewed in the TCGA cohort
(Figure 10B). In addition, we calculated the AUC values of the risk
model and TIDE score in IMvigor210 cohort, GSE135222 and
GSE91061, respectively. Besides, the prognostic value of risk
signature and TIDE score were also compared in these three
immunotherapy cohorts. All the results indicated the risk signature
displayed better ability in prognosis prediction and immunotherapy
response (Figures 10C–K).

Low-risk patients presented higher
chemotherapy sensitivity

To assess the usefulness of risk models in clinical treatment, we
analyzed chemotherapy drug sensitivity in low- and high-risk
patients. We used the CCLE database of drug-sensitive cell lines
as the training set and the GSE103091 data set as the validation set.
In the end, a total of 18 CTRP (Figure 11B) and 26 PRISM
(Figure 11D) compounds were obtained. The results showed that

FIGURE 6
Veen diagram of intersection between GSE103091 differential genes and testing set genes (A); Machine learning screening to construct the optimal
combination of risk models (B); Forest map of optimal model-related genes (C); KM curves of high and low risk groups in training set and verification
set (D).
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the high-risk group had higher IC50, indicating that the high-risk
group was not sensitive to chemotherapy. Results showed that high-
risk groups were more sensitive to MR-1220, GSK2110183 and
temsirolimus. Therefore, high-risk samples should be sensitive to
these compounds, which may be new options for future TNBC
treatment.

Discussion

TNBC is a subtype of breast cancer with a worst prognosis.
However, there is no detailed classification for accurate prognostic
assessment and effective treatment at present. Up to now, several
studies has developed effectively prognostic assessment based on
tumor score and tumor immune cycle characteristics in liver cancer
and rectal cancer (Cao et al., 2020; Filho et al., 2021; Hou et al.,
2022). Recently, a secondary analysis of a Phase 3 randomized
clinical trial showed significant differences in pCR rates among
different immunophenotypes during neoadjuvant therapy for
TNBC, with higher pCR rates in basal-like and
immunomodulatory subgroups. Biological processes associated

with basal-like phenotype and immunomodulatory phenotype
were analyzed to determine that tumor cell proliferation and
immune scores were independent factors associated with the
acquisition of pCR. Further validation of immunophenotypes
using existing biomarkers may help improve the level of
treatment in patients with TNBC (Denkert et al., 2015). CALGB
406036 trail also confirmed a positive association between immune
activation and pCR (Meador and Oxnard, 2019). High proliferation
and/or immune scores were associated with higher pCR rates when
compared with those with low proliferation and/or immune scores.
Importantly, immune score was associated with pCR, independent
of proliferative score. Therefore, clarifying the immune subtype and
providing a precise prediction tool have positive significance for
screening the dominant populations of immunotherapy.

Therefore, in the present study, the tumor-infiltrating
lymphocyte evaluation was added to develop and validate novel
characteristics based on cancer immune cycle for risk stratification,
prognosis assessment and drug sensitivity exploration of TNBC
patients. Multiple datasets and cluster analysis were used to find the
robust immune subtype among TNBC patients. The prognosis was
significantly better in the C2 subtype with a higher immune score

FIGURE 7
Volcano plot of differential genes in high and low risk groups (A); Loop diagram of enrichment analysis visual display (B); GSEA enrichment analysis of
high-low risk group (C, D).
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than the C1 subtype. Thus, predicting immune subtype by a small
number of genes expression profiles might contribute to the patient
decision of treatment immunotherapies. Recently, a 10-gene
lymphoid transcriptomic signature could be used to predict
immunotherapy response in human pan-cancer (Ballot et al.,
2020). Based on six genes, some researchers had constructed a
lung cancer risk score model to provide a reference for individual
immunotherapy strategy (Zhang et al., 2021). Some studies
constructed the prediction model of immunotherapy response for
urothelial carcinoma or lung cancer using deep learning of
noninvasive radionics biomarkers (Xu et al., 2019; Park et al.,
2020). However, a user-friendly classifier is still not available for
TNBC patients. Therefore, the robust signature constructed in the
current study will contribute to the clinical implementation of
immunotherapy in TNBC.

Immunotherapy was considered one of the effective means for
cancer treatment to improve the prognosis of patients (St Paul and
Ohashi, 2020; Munari et al., 2021; Li et al., 2022). According to our
research, the results demonstrated that C2 showing the higher
immune scores, and enriched in T cell, activated CD8 T cells
Tleukocyte mediated immunity, leukocyte cell-cell adhesion,
which is closely related to T cell activation and lymphocyte
mediated immunity regulation. So Patients from C2 would be
more likely to be respond to immunotherapy like hot tumors,
which had higher levels of T-cell infiltration and some immune
checkpoints such as PD-1 and PD-L1 (Galon and Bruni, 2019).

A total of seven key genes were found in our signature, including
IL18R1, BTN3A1, CD160, CD226, IL12B, GNLY and PDCD1LG2.
As we all know, IL18R1 was expressed on T cytotoxic cells and act as
a crucial molecule in the immune microenvironment (Zhang et al.,

FIGURE 8
Correlation between risk score and immunity score (A); The scores of immune cells in the high-low risk group in the 22 calculated by CIBERSORT
(B); Comparison of T cell scores in high and low risk groups (C); Heat map of correlation between risk score and T cells (D); Correlation graph between
three types of macrophages and risk score (E); Correlation between three macrophage-related pathway scores and risk scores (F).
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2020). Its expression level was significantly correlated with stromal,
immune, and estimate scores, as well as immune cell levels in lung
squamous cell carcinoma (LUSC). The study found that high-
IL18R1 and low-IL18R1 groups differed significantly in immune
cell composition, including CD8 T cells, NK CD56dim cells,
cytotoxic cells, and other immune cells. Moreover,
IL18R1 expression was linked with PDCD1, CTLA4, CD8A, and
other immune cell markers, highlighting the connection between
IL18R1 and the immune microenvironment of LUSC. BTN3A1 was
upregulated in TNBC cells and associated with clinical features and
immunomodulatory subtype (Poggi and Zocchi, 2014).
Interestingly, TNBC patients showed a positive correlation
between BTN3A1 and immune cell infiltration. As the primary
isoform of the butyrophilin 3A (BTN3A, CD277) family (Zocchi
et al., 2017), BTN3A1 directly binds phosphor-antigens, activating
the Vγ9Vδ2 T cells in the colorectal cancer microenvironment,
generating an anti-tumor response of zoledronate (D’Addio et al.,
2013). CD160 played a critical role in bolstering the immune system
and was a key member of the CD160/HVEM/LIGHT/BTLA
pathway (del Rio et al., 2010). CD160 acts as a costimulatory
agent and can be found on multiple immune cells, including
intestinal intraepithelial T lymphocytes, CD56dimCD16+ NK
lymphocytes, and a minor subset of CD4+ and CD8+ T cells
(Gilfillan et al., 2008). CD226 was a receptor molecule that

competing with TIGIT for the same ligands, and has been shown
to enhance the cytotoxic and anti-tumor responses of mouse NK
cells. Meanwhile, lower levels of CD226+ NK cells have been linked
to tumor immune escape (Peng et al., 2016). IL12B variants have
been associated with both Crohn’s disease and psoriasis (Cargill
et al., 2007). GNLY, encoded by the GNLY gene in chromosome
2p11.2 (Jongstra et al., 1987), has a recombinant 9-kDa form that is
cytotoxic to tumors and broadly antimicrobial, killing gram-positive
and gram-negative bacteria, yeast, fungi, and parasites (Stenger et al.,
1998). PD-L2 has been suggested to play a role in inducing immune
tolerance under physiological and pathological conditions
(Latchman et al., 2001; Rozali et al., 2012), while also promoting
CD8+ T cell-mediated anti-tumor immunity (Liu et al., 2003).
Higher PD-L1 expression has been observed in TNBCs than
non-TNBCs (Muenst et al., 2013; Mittendorf et al., 2014; Muenst
et al., 2014), possibly due to genomic amplification of 9p24.1, which
contains CD274 (PD-L1) and PDCD1LG2 (PD-L2) in some TNBCs
(Barrett et al., 2015). These genes may influence the prognosis of
TNBC patients by regulating infiltration of immune cells, such as
plasma cells, CD8 cells, M0 macrophages, M1 macrophages,
M2 macrophages, and neutrophils. The hub genes identified in
the current study play crucial roles in the immune system and
constitute a network for determining the prognosis of patients
with TNBC.

FIGURE 9
Boxplot of 40 chemokine genes in the high-low risk group (A); Boxplot of 18 chemokine receptor genes expressed in the high-low risk group (B);
Heat map of correlation between risk scores and chemokines (bottom left) and chemokine receptors (top right) (C).
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Comprehensive immune subtyping was developed by
immunization scores. The results showed significant prognostic
differences between the high and low immune groups. GSEA

analysis was performed to explore possible signaling pathways
associated with diverse risk groups. These signaling pathways
have not been experimentally verified, and further studies are

FIGURE 10
METABRIC and TCGA risk scores comparedwith AUCs during 1–5 years of clinical characteristics (A, B); ROC curve of risk score of GSE91061 dataset
(C); ROC curve of TIDE predicted immunotherapy response in data set GSE91061 (D); ROC curve of risk score and TIDE effect on immunotherapy in
dataset GSE91061 (E); ROC curve of risk score of GSE135222 dataset (F); ROC curve of TIDE predicted immunotherapy response in data set GSE135222
(G); ROC curve of risk score and TIDE response to immunotherapy in dataset GSE135222 (H); ROC curve of risk score of data set IMvigor210 (I); ROC
curve of TIDE predicted immunotherapy response in the data set IMvigor210 (J); ROC curve of risk score and TIDE effect on immunotherapy in data set
IMvigor210 (K).
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needed to explore the specific mechanisms influencing immune
scores in TNBC patients. We further verified the risk model
constructed by machine learning. The results showed that a
strong negative correlation was found between risk score and
immune score, indicating that the low-risk group had higher
immune infiltration. Compared with other clinicopathological
features, risk score showed strong survival prediction ability,
which was very effective and accurate in evaluating the prognosis
of TNBC patients. This study suggested the possibility of
immunotyping for clinical therapeutic efficacy monitoring, so
more TNBC immunotyping data are needed to further support
future clinical treatment. But there were several study limitations.
Although the evaluation and validation of this risk model across
multiple datasets, it remains essential to conduct a large-scale,
multicenter, prospective study to authenticate our discoveries. In
the time ahead, a series of investigations should be carried out to
authenticate the risk model in vitro and in vivo. As the field of TNBC
evolves, it will be important to understand if immune checkpoint
inhibitors will improve pCR rates among those patients less likely to
respond to standard NAC (e.g., with low proliferation and/or low
immune scores).

Considering the application prospect of this model, we further
studied the potential therapeutic target drugs in the high-/low-risk
group, and screened the potential regulatory drugs according to the
drug sensitivity of patients in the data set. New agents and new
combinations of immunotherapies may unlock the key to truly
personalized cancer medicine. Specifically, efforts focused on
understanding biology, biomarker selection, and strategies to
enhance immunotherapy response are vital to the success of
immunotherapy in TNBC and other cancers in general.

Conclusion

This study proposed an immunophenotype-based risk assessment
model that provide a more accurate prognostic prediction ability for
TNBC patients by machine learning algorithms. Meanwhile, new
potential compounds which may influence the chemotherapy
response were also performed. The disadvantage of this study is that
the drug-related conclusions obtained from our research have not been
clinically proven at present, and further analysis is still needed to
support the study results.

FIGURE 11
Histogram and boxplot of drug susceptibility predicted by CTRP algorithm and the absolute value of risk score correlation greater than 0.3 (A, B);
Histogram and boxplot of drugs with absolute value of correlation between drug sensitivity predicted by PRISM algorithm and risk score greater than 0.3
(C, D).
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