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Introduction: Resistance to gemcitabine is common and critically limits its
therapeutic efficacy in pancreatic ductal adenocarcinoma (PDAC).

Methods:We constructed 17 patient-derived xenograft (PDX) models from PDAC
patient samples and identified the most notable responder to gemcitabine by
screening the PDX sets in vivo. To analyze tumor evolution and
microenvironmental changes pre- and post-chemotherapy, single-cell RNA
sequencing (scRNA-seq) was performed.

Results: ScRNA-seq revealed that gemcitabine promoted the expansion of
subclones associated with drug resistance and recruited macrophages related
to tumor progression and metastasis. We further investigated the particular drug-
resistant subclone and established a gemcitabine sensitivity gene panel (GSGP)
(SLC46A1, PCSK1N, KRT7, CAV2, and LDHA), dividing PDAC patients into two
groups to predict the overall survival (OS) in The Cancer Genome Atlas (TCGA)
training dataset. The signature was successfully validated in three independent
datasets. We also found that 5-GSGP predicted the sensitivity to gemcitabine in
PDAC patients in the TCGA training dataset who were treated with gemcitabine.

Discussion and conclusion: Our study provides new insight into the natural
selection of tumor cell subclones and remodeling of tumor microenvironment
(TME) cells induced by gemcitabine. We revealed a specific drug resistance
subclone, and based on the characteristics of this subclone, we constructed a
GSGP that can robustly predict gemcitabine sensitivity and prognosis in pancreatic
cancer, which provides a theoretical basis for individualized clinical treatment.
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Introduction

Background

Pancreatic ductal adenocarcinoma (PDAC) is a deadly
malignancy with an overall 5-year survival rate of only 11%
(Siegel et al., 2022). Gemcitabine has been considered the
standard treatment and has been widely used as a first-line drug
for advanced PDAC in the past decade. Although only
approximately 10%–23% of patients with advanced PDAC are
sensitive to standard chemotherapy that improves survival
(Conroy et al., 2011), clinically, some patients who respond well
to gemcitabine initially develop resistance during treatment or
relapse after chemotherapy. Recent studies have revealed that the
occurrence of drug resistance in tumors may be related to pre-
existing drug-resistant cell subsets. Bhang et al. demonstrated that
rare subpopulations resistant to small-molecule inhibitors and
conventional chemotherapy may pre-exist in tumors prior to
drug therapy in non-small-cell lung cancer (Bhang et al., 2015).
Lee et al. reported that resistance to cytotoxic chemotherapy in
bladder cancer was associated with pre-existing subpopulations (Lee
et al., 2020). Seth et al. demonstrated that the pre-existing
tumorigenic compartment functional heterogeneity was the origin
of chemoresistance in pancreatic tumors (Seth et al., 2019).
However, the tumor heterogeneity of PDAC has not been
comprehensively studied.

Single-cell RNA sequencing (scRNA-seq) has greatly expanded
the ability to explore tumor heterogeneity, and it has a high
resolution for identifying rare tumor subgroups. In recent years,
scRNA-seq has been used in the study of chemotherapy resistance in
lung cancer, breast cancer, bladder cancer, and melanoma (Ding
et al., 2020; Gregorc et al., 2021; Li et al., 2022;Wei et al., 2022). Some
researchers have used this technology to study PDAC drug
resistance, but studies on gemcitabine resistance in PDAC are
still limited.

To investigate the remodeling of cell subpopulations in PDAC
tumor tissues after gemcitabine chemotherapy, we constructed a
patient-derived xenograft (PDX)model from PDAC patient samples
that simulated the tumor response to chemotherapy and obtained
tumor tissue samples pre- and post-chemotherapy. By screening the
PDX sets in vivo, we identified responders and further investigated
the most sensitive responder to gemcitabine. Using scRNA-seq, we
revealed a specific drug-resistant subclone that existed before
treatment and constructed a gemcitabine sensitivity gene panel
(GSGP) based on the characteristics of this subclone to predict
gemcitabine sensitivity and prognosis in PDAC.

Materials and methods

Patient and tissue samples

This study was carried out in accordance with the principles of
the Declaration of Helsinki and approved by the Committee for the
Ethical Review of Research, Fujian Medical University Union
Hospital. Informed consent was obtained before sample
collection. Surgical specimens of human pancreatic cancer were
collected from the patients who received surgery at Fujian Medical

University Union Hospital, Fuzhou, China, from January 2018 to
January 2020. All patients had pathologic confirmation of PDAC.
Patients with neoadjuvant treatment, inflammatory diseases, or
active infection were excluded. The stage of each patient was
assessed based on the American Joint Committee on Cancer
version 8.

Immunohistochemistry

The protocol of IHC was as described previously (Hou et al.,
2021). The rabbit anti-CD68 antibody (ab283654, Abcam), anti-
LY6G antibody (ab238132, Abcam), and rabbit anti-CCR2 antibody
(ab273050, Abcam) were used for immunohistochemistry staining.
The density of the positive cells was calculated
with ×400 magnification in five representative fields in the tumor
tissues, and the average was calculated. Each section was evaluated
by two pathologists in a blinded manner.

Patient-derived xenograft generation

PDX modeling was performed as described previously (Keysar
et al., 2013; Olson et al., 2018). PDX models were generated from
fresh tumor specimens of PDAC patients, which were collected from
surgical specimens at Fujian Medical University Union Hospital.
The fresh tumor tissue was cut into 0.3 × 0.3 × 0.3-cm pieces and
then placed in RPMI supplemented with 10% fetal bovine serum at
4–8°C. The NOD-SCID mice were sterilized and anesthetized, and
then the tumor pieces were directly inserted into the subcutaneous
space of the flank. Mice were monitored and euthanized when the
tumor reached 1,000 mm3. Subcutaneous tumors were removed and
transplanted into a secondary colony of mice for PDX model
maintenance. PDX models were maintained in vivo by serial
transplantation of tumors, and all analyses performed to date
were from passages ≤4.

Mice

Mice used for the establishment of PDX models were 6–8-week-
old male NOD-SCID (NOD/ShiLtJGpt-Prkdcem26Cd52/Gpt) mice,
which were obtained from Nanjing Biomedical Research Institute
of Nanjing University (Nanjing, China). Maintenance of PDX
models and drug treatment studies were performed in the same
mice. Animal experiment protocols were approved by the Ethics
Committee for Animal Research of 900 Hospital of the Joint
Logistics Team.

In vivo drug screening

For the gemcitabine screen, 10–16 mice per model were
engrafted with tumor fragments, and mice were divided into two
groups randomly when subcutaneous tumor volume reached
150 mm3 (5–8 per group). Gemcitabine (Gemzar) was
resuspended in saline and administered at 100 mg/kg twice per
week by intraperitoneal injection, and control mice were treated
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with saline in the screen and validation studies. Tumor volume and
body weight were monitored twice per week during the entire
experimental period, and tumor volume was calculated by
length × width (2 × 0.5). Tumor suppression activity was
expressed as the relative tumor growth rate (T/C%) using the
following formula: T/C% = (TRTV/CRTV)*100%, RTV = Vt/V0

(TRTV means the value of RTV of mice in the treatment group;
CRTV means the value of RTV of mice in the control group; RTV
means relative tumor volume; V0 and Vt represent the tumor
volume at initial time and final time for saline or gemcitabine
treatment) (Yao et al., 2020). The 17 PDAC patients were
grouped by T/C% less than 40% or T/C% more than 40%
(Savage et al., 2017). One of the models demonstrated an
exceptional response (PC-12), and a validation study was
performed in randomized cohorts of six mice per arm. Mice
were treated with gemcitabine or normal saline once the tumor
volume reached 150 mm3 for 4 weeks. On day 28, after the first
treatment, the mice were euthanized, and the tumors were harvested
for weight and tumor volume measurements and
immunohistochemical analyses for further studies. Tumors were
also processed and digested for scRNA-seq.

Tissue digestion and preparation for
scRNA-seq

Fresh tumor tissues removed from the PDXmodel (PC-12) were
placed in RPMI 1640 (Gibco) with 1% fetal bovine serum (Gibco) on
ice to preserve viability. Tumor tissues were washed 2–3 times in
phosphate-buffered saline and then cut into smaller pieces using
sterile ophthalmic scissors on ice. Then, the pieces were transferred
to a 15-mL centrifugal tube and digested using a tumor dissociation
kit (Miltenyi Biotec). Tumor tissues were enzymatically digested at
37°C at a shaking speed of 50 r.p.m for 40–60 min. Dissociated cells
were repeatedly collected at an interval of 20 minutes to increase the
cell yield and viability. Then, the cell suspensions were filtered
through 70-μm cell strainers (Miltenyi Biotec) and lysed in ACK
lysis buffer (GS3309) to filter out cell clumps and remove red blood
cells. Single cells were washed in PBS with 0.04% bovine serum
albumin (Sigma). Dead cells were removed using the MACS Dead
Cell Removal Kit (Miltenyi Biotec). Cells collected from each group
(six replicate tumors were used in each group) were merged into one
sample and resuspended in PBS with 0.04% BSA at a density of 1 ×
106 cells/ml in preparation for single-cell library creation. Cell
viability and concentration were measured using the Countess II
Automated Cell Counter (Thermo Fisher Scientific). Viability was
85.8% for the tumor of the gemcitabine-treated group and 83.6% for
the saline-treated group.

ScRNA-seq

Preparation and sequencing of single-cell RNA-seq libraries
were performed in our previous study (Pan et al., 2019; Fei et al.,
2020). The single-cell suspensions were converted in a Chromium
single-cell controller to generate single-cell gel beads in the
emulsion, using the Chromium Single-Cell 5′ Library and Gel
Bead Kit and Chromium Single-Cell A Chip Kit (10 ×

Genomics). A total of approximately 10,000 cells to 12,000 cells/
chip were captured on the ×10 Chromium platform. The libraries
were pair-end sequenced on the Illumina NovaSeq 6000 platform
with read lengths of 150 bp (performed by CapitalBio, Beijing). All
the procedures, including the complementary DNA synthesis and
library preparation, were performed according to the standard
manufacturer’s protocol using version 2 chemistry.

Cell Ranger pipeline

Cell Ranger software version 3.0.1, available from 10x Genomics,
was used to process raw sequencing data obtained from the Illumina
sequencing output with default and recommended parameters. In
short, raw base call files were converted to FASTQ files for each
sample by cellranger mkfastq. The FASTQ files were mapped to the
GRCh38 human reference genome and mm10 mouse reference
genome to distinguish human and mouse cells using cellranger
count. Then, feature-barcode matrices were generated for each
sample by filtering, barcode counting, and unique molecular
identifier (UMI) counting. The cellranger aggr pipeline was used
to integrate the data from two samples into an experiment-wide
feature-barcode matrix. Finally, the feature-barcode matrix was
loaded to the R package Seurat for quality control and
downstream analyses.

Seurat pipeline

The combined dataset was read into the Seurat R package
(version 3.5.2) (Satija et al., 2015). First, low-quality cells were
filtered out according to the following thresholds.

Using these thresholds, the number of cells varied as follows:
(1) Raw: 12C: 1,291,344,765 reads; 12G: 1,218,276,921 reads.(2)

Cellranger: 12C: 12,868 cells (10,175 human cells and 2,693 mouse
cells); 12G: 11,969 cells (8,519 human cells and 3,450 mouse cells).
(3) Thresholds to filter droplets: 12C: 7,299 cells (5,334 human cells
and 1,965 mouse cells); 12G: 6,729 cells (4,446 human cells and
2,283 mouse cells).

Then, the data were normalized and scaled through Seurat’s
NormalizeData and ScaleData functions. The highly variable gene
(HVG) was identified using the FindVariableGenes function for the
next principal component analysis (PCA) with default parameters.
PCA was performed based on approximately 2,000 variant genes,
and the first 40 PCA components were used for the t-distributed
stochastic neighbor embedding (t-SNE) dimension reduction. Cell
clusters were identified by running the FindClusters function of
Seurat.

Index Threshold

nUMI ≥1,000

nGene ≥300

log10GenesPerUMI >0.8

Mito.percent <20%
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Identification of cluster-specific genes and
pathway enrichment analysis

To confirm marker genes, the FindAllMarkers function was
used with the MAST test for single-cell gene expression. For each
cluster, only genes that were expressed in >25% of cells with at least a
0.25-fold difference were considered. For pathway analysis, the gene
sets were downloaded from the Molecular Signature Database
(MSigDB), the GSVA R software package was applied to the
scRNA-seq data, and pathway scores were calculated for each
cell. Pathway enrichment analysis of bulk RNA-seq was
performed using the limma R software package.

Copy number variation analysis

To distinguish tumor cells from all cells, copy number variation
(CNV) analysis was performed with R package inferCNV under
default parameters (https://github.com/broadinstitute/inferCNV)
according to the previous studies. The fibroblasts (cluster 17)
were used as reference normal cells for CNV analysis. The CNV
score was calculated as a quadratic sum of the CNV region.

RNA velocity

We performed this analysis as described by La Manno et al.,
2018. Based on our aligned bam files of scRNA-seq data, the number
of reads mapping to spliced and unspliced transcripts was counted
using the velocyto python package. The calculation of RNA velocity
values for each gene in each cell and embedding RNA velocity vector
to low-dimension space was performed as previously described. All
cells used for downstream analysis were taken into velocity models
to allow for more accurate estimation of the velocity steady states.

Construction and validation of the 5-gene
risk model

To construct the prognostic model, PDAC patients in The
Cancer Genome Atlas (TCGA) dataset were used as the training
set. The univariate Cox regression analysis was performed to
determine the association between the cluster 10 marker genes
identified by scRNA-seq analysis and overall survival (OS).
Significant genes related to OS (p < 0.05) were selected for
further least absolute shrinkage and selection operator (LASSO)
regression analysis. Then, LASSO-selected genes were used in the
multivariate Cox regression analysis to evaluate the independent
prognostic value of each gene. The risk score formula was
constructed as described in the previous study (Ma et al., 2018).
Patients in the training set were categorized into high-risk and low-
risk groups based on the median risk score, which is described in the
previous study (Wu and Zhang, 2020; Liu et al., 2021). The OS of the
two groups were compared using the Kaplan–Meier (K–M)method,
and the time-dependent receiver operating characteristic (ROC)
curves were used to evaluate the accuracy of the prognostic model.
Multivariate Cox regression analyses were performed to investigate
whether the risk score was independent of relevant clinical features.

PDAC patients of TCGA treated with gemcitabine were selected,
grouped into high- and low-risk groups, and analyzed for complete
response (CR) versus progressive disease (PD). Finally,
GSE71729 and GSE62452 from the Gene Expression Omnibus
(GEO) (Moffitt et al., 2015; Yang et al., 2016) and pancreatic
cancer-CA (PACA-CA) from the International Cancer Genome
Consortium (ICGC) were employed for external validation.

Statistical analysis

At least three biological replicates were used in each experiment
unless otherwise stated. Two-tailed Student’s t-tests and one-way
ANOVA were used for analyzing the quantitative data. Statistical
significance was defined as a p-value <0.05. Prism8 (GraphPad) was
used for statistical analyses.

Results

PDXs show diverse responses to
gemcitabine, and the most notable
responder is identified

To explore the sensitivity mechanism of gemcitabine in PDAC, we
developed a PDX set by using surgically removed PDAC tissue. We
selected 17 PDAC PDX models available. These PDX tumors were
histologically confirmed as PDAC, which was also consistent with the
diagnosis of the corresponding patients’ immunohistochemistry. The
PDX set was screened for sensitivity to gemcitabine, and the overall
study design is shown in the experimental scheme diagram (Figure 1A).
In this study, the PDX set showed diverse responses to gemcitabine, and
the relative tumor growth rate (T/C%) ranged from 10% in the most
sensitive to 85% in the least sensitive model. Eight of the 17 PDX
models showed T/C% less than 40%, and PC-12 showed the most
significant tumor growth inhibition in all models (Figure 1B,
Supplementary Figure S1A). The notable responder (PC-12) showed
remarkable tumor regression after gemcitabine treatment, as assessed
by the tumor volume (p < 0.001) and weight (p < 0.001; Figures 1C, D).

The clinical characteristics and treatment history of patients
providing the samples for PDX establishment are listed in
Supplementary Table S1. Of the 17 patients, the majority had
TNM stage II–III (13 cases) and were moderately differentiated
(15 cases). A total of 13 patients underwent postoperative
chemotherapy, and neoadjuvant therapy was not performed in
any patients in this cohort. Consistent with the clinical benefit of
the patients in the set, patients sensitive to gemcitabine in PDX
showed better OS (Supplementary Figure S1B, Supplementary Table
S1). The most notable responder who received a full course of
gemcitabine chemotherapy showed an optimal OS among the
17 patients. The median OS was 13.7 months.

Single-cell transcriptome profiling of the
notable responder

To comprehensively investigate the contribution of
heterogeneity for tumor cells to gemcitabine resistance, we
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performed scRNA-seq and bulk RNA-seq on freshly dissociated cells
of non-treatment and post-treatment PDX models for the notable
responder (PC-12) (Figure 1E). As reported previously, the human
tumor-associated stroma is rapidly lost and replaced by mouse
stromal cells in a PDX model (Schneeberger et al., 2016;
Knudsen et al., 2018). We used standard methods to obtain
single cells from tumor tissues of PDXs for scRNA-seq that
consist of human and mouse cells. The scRNA-seq data were
compared with the human and mouse reference genomes using a
computer algorithm to distinguish human and mouse cells. To
unravel the heterogeneity of the tumor, we further clustered cells
based on gene expression levels via the Cell Ranger and Seurat R
packages. First, the data were subjected to quality control to filter out
low-quality cells. The total number of cells retained after stringent
quality control filtering was 14,028, comprising 7,299 cells
originating from the control group and 6,729 cells originating
from the gem group. The control group included 5,334 human
cells and 1,965 mouse cells, and the gem group included
4,446 human cells and 2,283 mouse cells. Then, normalization
and PCA were performed for dimension reduction. We divided

cells into variant clusters with similar gene expression signatures via
unsupervised graph clustering, and we used Seurat’s t-SNE to
visualize the clusters. We identified two major human cell types
in the PDXmodel: tumor cells and fibroblasts. We also revealed that
the tumor microenvironment (TME) was mostly composed of
murine cells in the PDX, including fibroblasts, endothelial cells,
neutrophils, macrophages, and natural killer (NK) cells. Stromal
cells were abundant in the tumor tissues of PDAC, whereas our
results showed few fibroblasts in human cells and many murine
stromal cells in the PDX model, indicating that the stromal
components of human cells were lost and replaced by stromal
cells of mice in the PDX model (Figure 1F).

Intratumoral cellular heterogeneity changes
during gemcitabine treatment

To investigate the cellular diversity and molecular features, we
further divided the human cells into 20 clusters based on the t-SNE
analysis (Figure 2A). The gene expression levels were compared, and

FIGURE 1
Experimental overview. One PDAC PDX displays notable sensibility to gemcitabine. (A) Schematic diagram of experiments. PDXs of PDAC patient
tumors were established and propagated by xenograft transplantation in NODmice for gemcitabine screening. PDXs most sensitive to gemcitabine were
screened (PC-12) to perform single-cell RNA-seq. (B) Relative tumor growth rate (T/C%) of 17 PDAC PDX models treated with gemcitabine (n = 5–8)
versus untreated (n = 5–8). (C) PC-12 xenografts from NOD mice were treated intraperitoneally with normal saline control or gemcitabine at
100 mg/kg twice per week for 4 weeks. Each group contained six mice. Tumor volume and weight were thenmeasured. (D)Growth curve of PC-12 PDX
tumors treated with gemcitabine or untreated (n = 6; p < 0.001). (E) Tissue processing pipeline for single-cell RNA-seq and bulk RNA-seq. (F)
Representative H&E sections of the PDX in the control group and gem group.
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specific gene sets of each cluster were used to distinguish these
clusters. Notably, we found that the ductal cell markers and
epithelial cell-specific markers reported previously, such as
EPCAM, KRT18, SOX9, KRT19, MUC1, and FXYD3 (Peng
et al., 2019; Moncada et al., 2020; Chen et al., 2021), were
commonly expressed in the majority of clusters except for cluster
17, confirming tumor cell identity. In contrast, cluster 17 was
exclusively observed to have high expression of special fibroblast
markers, such as VIM, COL1A1, COL1A2, and SPARC (Bernard
et al., 2019; Elyada et al., 2019), suggesting that cluster 17 is a
fibroblast in PDAC (Figures 2B, C). To distinguish malignant cells
more explicitly, we further calculated the large-scale chromosomal

CNV for all cells based on the averaged expression patterns of
transcriptomes. The inferCNV clustered heatmap and violin plots
were created to demonstrate the distributions of CNV scores among
different cell types. We found that the majority of clusters exhibited
markedly higher CNV levels than cluster 17, which further
supported our clustering (Figures 2D, E).

To reveal the remodeling of tumor cell subsets induced by
gemcitabine, cells from two different clusters are shown
separately in the t-SNE map, and the corresponding cell numbers
of clusters are shown in the histogram (Figures 2F, 4D upper panel).
We observed that gemcitabine results in a major redistribution of
tumor cell subsets with a substantial reduction in clusters 0, 2, 5, 6, 7,

FIGURE 2
Single-cell analysis reveals cellular heterogeneity between the control group and gem group of human PDAC. (A) t-SNE plot of intratumoral cells
from the two groups merged. (B) t-SNE plot of tumor cells displaying representative marker gene expression. The intensity of color indicates the level of
average expression. (C) Bubble plot showing selected cell type-specific markers across all clusters. The size of dots represents the fraction of cells
expressing a particular marker, and the intensity of color indicates the level of average expression. (D) Violin plot showing the CNV score of each
subpopulation. (E) Heatmap showing the large-scale CNV profile of each cell and reference cell subpopulation; the red and blue colors represent high
and low CNV levels, respectively. (F) Comparison of each cluster in the two groups.
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and 8 and an enhanced presence of clusters 3, 4, 10, 12, and 19. This
finding indicates that, in the tumors of sensitive individuals, the
different subclones also showed varying degrees of gemcitabine
sensitivity. Furthermore, we found that several upregulated genes
in those enhanced subclones, including SYT14, CREB5, and
ABCA1, were associated with drug resistance and tumor
proliferation in previous reports (Sheng et al., 2018; Wang et al.,
2020; Oberle et al., 2022; Tong et al., 2022) (Figures 2C, 4B).
Previous studies have shown that treatment resistance may result
from competition in the fitness of pre-existing resistance subclones
(Nowell, 1976), which is consistent with our results. In conclusion,
our results showed that gemcitabine remodeled intratumoral
subclones and promoted the proliferation of resistance subclones.

Tumor microenvironment remodeling
induced by gemcitabine in pancreatic
cancer

Treatment-induced alterations in the TME also affect tumor
chemoresistance and progression. As mentioned earlier, most of the
TME in PDX was replaced by murine cells. To investigate the

changes in the TME after gemcitabine treatment, we analyzed the
scRNA-seq data of murine cells in PDX tumors of the gem and
control groups. Cell types were annotated by SingleR and known
cell-type markers (Hosein et al., 2019; Fei et al., 2020). Three distinct
neutrophil clusters, nine distinct macrophage clusters, one cluster of
NK cells, one cluster of fibroblasts, and one cluster of endothelial
cells were identified (Figures 3A, B). Our results showed that
gemcitabine induced the remodeling of TME cells with a notable
reduction in neutrophils and enhancement of the presence of
macrophages and fibroblasts.

Tumor-infiltrating macrophages represented the largest
proportion in both groups, as shown in Figure 3C, and the total
number and proportion increased after gemcitabine treatment.
Macrophages showed high levels of oxidative phosphorylation,
which is reported to be characteristic of M2 macrophages (Saha
et al., 2017; Viola et al., 2019) (Figure 3D). In cluster 4, which mostly
existed in the gem group, cells expressed high levels of CCR2, CCL2,
and S100A4 genes that are associated with tumor progression and
metastasis (Dahlmann et al., 2016; Li et al., 2017) (Figures 3E, F,
Supplementary Figures S1D, F). Gene Ontology and KEGG
enrichment analyses revealed that cluster 4 displayed
upregulation of pathways associated with CCR2 chemokine

FIGURE 3
Gemcitabine induces remodeling of tumor-infiltrating lymphoid cells. (A) t-SNE plot showing the distribution of 4,248 mouse cells in mixed tumors
of the control and gem groups. Cells are colored according to their corresponding cell type. (B) Bubble plot showing selected cell type-specific markers
of all clusters. The dot size represents the percentage of cells within the subtype, and the intensity of color indicates the level of average expression. (C)
Proportion ofmouse cell clusters from the control group and gem group. (D)Heatmap of Hallmark andGeneOntology pathways enriched inmouse
cell clusters. (E) t-SNE plots displaying representative marker gene expression of cluster 3 (macrophage) and cluster 4 (neutrophil). The intensity of color
indicates the level of average expression. (F) Comparison of each cluster in the two groups.
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receptor binding (Figure 3D). Using immunohistochemical staining,
we confirmed that the number of CD68+ macrophages and CCR2+

cells increased after gemcitabine treatment (Supplementary Figures
S1C, D, F). We also identified a significant decline in the neutrophil
cluster, which expressed genes encoding S100A8, S100A9, CD24a,
G0S2, and CCL3 (Figure 3B), from an average of 33.1% in the
control group to an average of 17.6% in the gem group (Figure 3C).
In addition, the number of LY6G+ cells decreased after gemcitabine
treatment in the immunohistochemical analysis (Supplementary
Figures S1E, F). However, neutrophils in the gem group
expressed high levels of CXCR2, LRG1, and LCN2 genes (Figures
3E, F), which are associated with tumor progression and metastasis
(Yao et al., 2020; Olson et al., 2021; Singhal et al., 2021). Following
gemcitabine treatment, the proportions of fibroblasts increased, and
the fibroblasts displayed positive regulation of
epithelial–mesenchymal transition (Figures 3C, D).

Although the adaptive immune system of NOD-SCID mice is
compromised, studies have shown that functional macrophages and
NK cells are still present in NOD-SCID mice (Miao et al., 2021; Zhu
et al., 2021), which is consistent with our results. It is known that
PDAC patients with less infiltration of macrophages in tumor tissue
respond better to gemcitabine therapy (Yang et al., 2020). In
summary, these findings demonstrate that gemcitabine increased
the number of tumor-infiltrating macrophages and suppressed the
infiltration of neutrophils, which may be associated with drug
resistance.

Trajectory analysis identified gemcitabine-
tolerant subclones

To investigate the evolution among tumor cell populations
during gemcitabine treatment, we further performed trajectory
analysis. We applied RNA velocity analysis to determine the
transcriptional fate of the tumor cells using information about
the expression of genes at the unspliced and spliced levels. The
data from the gem and control groups were merged, and the
projection of the velocity field arrows on the t-SNE plot
extrapolated the future state of subclones (Figure 4A,
Supplementary Figures S2A, B). Interestingly, velocity graphs
showed that there was a common evolutionary direction of
clusters 2, 3, 6, 9, 12, 14, and 19, and these paths ultimately
converged and terminated in cluster 10 (Figure 4A). Gene
expression analysis revealed that the expression of genes
associated with tumorigenesis and drug resistance, including
SYT14, CREB5, and ABCA1, gradually increased during
transformation toward cluster 10 (Figure 4B). This finding
demonstrated that cluster 10 may be a special subclone related to
gemcitabine tolerance. Gemcitabine results in the remodeling of the
subclones of tumor cells in PDAC tumors with a notable reduction
in cluster 8 and the enhanced presence of cluster 4. Compared with
cluster 8, genes related to tumor proliferation and drug resistance,
such as DUSP4 and MUC4 (Xu et al., 2020; Chen et al., 2021), were
highly expressed in cluster 4 (Figure 4B). This result indicated that
the evolutionary direction of tumor cells was changed by
gemcitabine, and tumor cells transformed into resistant
populations under the pressure of chemotherapy. Therefore, our
results revealed the dynamic differentiation trajectories of PDAC

tumor subclones during gemcitabine treatment. Although
preliminary, our findings suggest the interesting hypothesis that
gemcitabine resistance arises from a small pre-existing resistant
subclone that transforms into the major cell type under
chemotherapy. Taken together, these data provide compelling
evidence for the plasticity of gemcitabine resistance in PDAC.

Cell type-specific unique gene expression in
chemoresistant subclones

To simultaneously define gene expression changes at the global
and cellular levels, we also performed bulk RNA-seq of gemcitabine-
treated and control samples of the notable responder in parallel. As
shown in the volcano map of bulk RNA-seq, 248 upregulated genes
and 223 downregulated genes were detected in gemcitabine-treated
samples (Figure 4C). Bulk and single-cell transcriptome data were
combined to investigate the consistency between single-cell
sequencing and bulk RNA-seq. The expression levels of the
differentially expressed genes (DEGs) obtained by bulk RNA-seq
are displayed as a heatmap of multiple cell types (Figure 4D,
Supplementary Figures S2C, D). Most of the upregulated genes
were concentrated in clusters 3, 9, and 10, and most of the
downregulated genes were concentrated in clusters 0, 7, and 8.
The cell count of cluster 9 was shown to be unaltered in the scRNA-
seq data of the control and gem groups, whereas it was obviously
enriched in upregulated genes of bulk RNA-seq (Figure 4D).
Conversely, clusters 2, 5, and 6 were downregulated markedly in
the gem group, whereas the downregulated genes were not enriched
in these subgroups. Taken together, these differences reflect the
intercellular heterogeneity of gene expression, suggesting that
further investigation of gene expression diversity in each cell type
of tumor cells in PDAC is important.

To further investigate the biological function of these genes,
functional enrichment analysis was performed on the DEGs. The
results indicated that extracellular structure organization and
epithelial cell migration were specifically activated in the
upregulated genes of the gem group, whereas the downregulated
genes were mainly enriched in the pyruvate metabolic process and
response to hypoxia (Figures 4E, F). To identify characteristics in the
resistant subgroup, we further performed GSEA with the marker
genes of cluster 10, which was aforementioned as a terminal and
typical resistant subgroup. Cluster 10 marker genes were highly
enriched in the regulation of cell migration pathways, pathways
regulating cell motility, and pathways regulating locomotion
(Figure 4G), which were associated with tumor metastasis and
proliferation.

Development of the transcriptional
prognostic signature

The general flowchart of this part is described in Figure 5A.
Based on the trajectory and gene enrichment results, we found that
cluster 10 was a specific subclone of drug resistance. To investigate
the gene expression characteristics of the drug-resistant subclone of
PDAC, we analyzed the transcriptional data of cluster 10. First,
293 marker genes of cluster 10 were identified (log2FC > 0.5, p <
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0.05, Supplementary Table S2) by the function FindAllmarkers.
Then, 128 genes predicting the prognosis of PDAC were
preliminarily screened out among the 293 marker genes using
univariate Cox’s proportional hazard model (p < 0.05,
Supplementary Table S3) with mRNA expression data in the
TCGA dataset (n = 173). Next, LASSO regression analysis was
performed for these genes to further eliminate confounders
(Supplementary Figures S3A–C). According to the results of
LASSO regression, five genes (SLC46A1, PCSK1N, KRT7, CAV2,
and LDHA) were selected as a 5-GSGP to construct the prognostic
prediction model. According to the model, we calculated the risk
scores of 173 PDAC patients in the TCGA dataset, and patients were
divided into high- and low-risk groups based on the median value.
K–M analysis showed that the low-risk PDAC patients were
significantly associated with a favorable OS (p < 0.001,
Figure 5B). Multivariate Cox regression analysis showed that the
5-GSGP was an independent risk factor associated with patient OS
(HR = 2.993%95% CI: 1.929–4.646, p < 0.001, Figure 5C) after
adjusting for stage, tumor size, grade, age, and sex in the TCGA
dataset. Then, the areas under the ROC curves (AUCs) were

calculated to assess the OS prediction efficiency of the risk model
(AUC1yr = 0.75, AUC2yr = 0.7, and AUC3yr = 0.77, Figure 5D),
indicating that this model had favorable predictive power. In
addition, to understand the clinical association of the risk score
with PDAC chemoresistance, patients who received gemcitabine in
the TCGA dataset were segregated into high- and low-risk groups by
the median value. Low-risk patients were more responsive to
gemcitabine, and 67% of patients with a high-risk score exhibited
progressive disease after gemcitabine treatment (p = 0.01, Figure 5E).

To validate the prognostic value of the 5-GSGP, we further
calculated the risk scores of PDAC patients in GSE71729, GSE62452,
and PACA-CA. Notably, the risk scores divided the patients of
validation sets into high-risk and low-risk subgroups, and the high-
risk group had significantly shorter OS than the low-risk group (p <
0.001, p = 0.007, and p = 0.003, Figures 5F–H).We further calculated
the AUCs of the three validation cohorts (AUC1yr = 0.68, AUC2yr =
0.72, AUC3yr = 0.81; AUC1yr = 0.62, AUC2yr = 0.77, AUC3yr = 0.82;
and AUC1yr = 0.59, AUC2yr = 0.66, and AUC3yr = 0.67;
Supplementary Figures S3D–F), and the risk score also showed a
favorable predictive power. The results showed that the 5-GSGP can

FIGURE 4
Gemcitabine changed the evolution direction of subclones in tumor cells. (A)Velocity graph superimposed to the t-SNE embedding of cells from the
two groups merged. Cells are colored according to cell types. (B) Violin plots showing the high expression of marker genes of clusters 3, 4, 10, 12, and 19.
(C) Volcano plot showing the DEGs in bulk RNA-seq data of each group (n = 3). (D) The histogram showing the composition of cells in each
subpopulation, and the heatmap showing the DEG enrichment in each subpopulation. Bar plots of KEGG enrichment analysis by the upregulated
genes (E) and the downregulated genes (F) of bulk RNA-seq. (G)GSEA indicated significant enrichment of GO pathways in themarker genes of cluster 10.
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robustly predict the prognosis of PDAC patients both in the TCGA
dataset and in independent validation datasets.

Discussion

PDAC is highly malignant with extremely poor outcomes. As we
know, chemoresistance is one of the major problems leading to
postoperative recurrence and poor overall survival of PDAC.

Previous studies have suggested that the cause of drug resistance
in PDAC may be pre-existing subsets of drug-resistant cells in
tumors (Seth et al., 2019). However, the role of intratumoral
heterogeneity and the subclonal architecture in gemcitabine
resistance in PDAC patients is unknown. Previous studies on
gemcitabine in PDAC have focused on molecular functions and
pathways related to drug metabolism, while few studies have been
conducted at the level of cellular heterogeneity. In this study, we
used scRNA-seq to analyze intratumor heterogeneity in PDAC.

FIGURE 5
Construction of a diagnostic model. (A) The flowchart for development and validation of the diagnostic model. (B) The K–Mcurves of OS for the two
prognostic groups stratified by the risk score in the training cohort. (C) Univariate Cox regression analysis of clinical characteristics and the risk score. (D)
Comparison of time-dependent ROC curves of the risk score for predicting the 1-, 2-, and 3-year OS rates. (E) Hierarchy graph demonstrating TCGA
analysis on high- and low-risk scores of PDAC patients with progressive disease (PD) and complete response (CR) after gemcitabine treatment.
(F–H) The K–M curves of OS for the two prognostic groups stratified by the risk score in the validation cohorts.
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Leveraging the PDXs of PDAC, we demonstrated that a small
number of subpopulations of tumor cells resistant to gemcitabine
already existed in tumors before treatment.

Recently, scRNA-seq has greatly improved our depth of
investigation of tumor heterogeneity and even identified the role of
rare cell populations in tumor evolution. ScRNA-seq has been used to
study chemotherapy resistance in many cancers. According to previous
reports, the occurrence of drug resistance in tumors may be due to pre-
existing drug resistance subclones in the original cell population. Aissa
et al. revealed that scRNA-seq can be used to distinguish drug-tolerant
states and to discover unique drug-resistant cell subpopulations (Aissa
et al., 2021). Kim et al. identified that subpopulations exhibit differential
therapeutic sensitivity by scRNA-seq in lung cancer (Kim et al., 2015).
In addition, Savage et al. revealed that EGFRhigh subpopulations in
triple-negative breast cancer tumors showed particular sensitivity to
gefitinib (Savage et al., 2017). Our scRNA-seq data identified a specific
drug-resistant subpopulation in tumors that existed prior to
gemcitabine treatment, survived, and proliferated to become the
dominant subpopulation. We further investigated the particular
drug-resistant subpopulation and established a 5-GSGP for PDAC
patients. The 5-GSGP was an independent risk factor for PDAC
and could be used to assess survival and to predict the sensitivity to
gemcitabine of PDAC patients.

Previous studies have explored the impact of chemotherapy on
tumor evolution, while the effect in PDAC remains unclear. Nowell
et al. first proposed the theory of clonal evolution of tumor cell
populations, which states that tumor progression results from
successive rounds of clone selection (Nowell, 1976). Maynard et al.
(2020) revealed the therapy-induced evolution of human lung cancer.
Our results also found that chemotherapy changed the predominant
subpopulations in tumors, which led to the evolution of subpopulations
toward drug resistance. As a result of adaptive competition among
tumor cell subpopulations under pharmacological pressure, tumors are
able to develop drug resistance. The function and mechanism of
therapy-induced evolution in PDAC warrant further investigation.

Our data suggest that there may likely be complex relationships
between molecular alterations and the subpopulations that exist in
PDAC tumors treated with gemcitabine. We identified significantly
altered genes after gemcitabine treatment that are potentially
associated with resistance. Candidate resistance genes from our
work include DUSP4, ABCA1, and SYT14. DUSP4, a member of
the dual specificity phosphatase family, is considered an oncogenic
gene that has been shown to be associated with proliferation,
migration, and tumorigenicity in esophageal squamous cell
carcinoma, renal cell carcinoma, and colorectal cancer (Xu et al.,
2020; Han et al., 2021; Zeng et al., 2021). In addition,
DUSP4 expression was significantly correlated with the prognosis
of PDACpatients in the TCGA database. The ABCA1 gene, which has
not been studied in depth in PDAC, is a member of the ABC
transporter family. ABCA1 has been shown to play a crucial role
in the development of resistance and proliferation of colorectal cancer
(Aguirre-Portoles et al., 2018). Furthermore, increased expression of
ABCA1 is associated with the development of acquired chemotherapy
resistance and poor patient outcome in ovarian cancer (Wang et al.,
2021; Gao et al., 2022). SYT14 is a membrane-trafficking protein that
can promote the growth of human glioma cells (Sheng et al., 2018).

TheTMEhas been suggested to play a key role in the chemoresistance
ofmany cancers, including PDAC, and it has been reported that increased

tumor-infiltrating macrophages are associated with therapeutic resistance
(Bulle et al., 2020; Minz et al., 2022). In our study, we found that
gemcitabine promoted the infiltration of macrophages and recruited
macrophages associated with tumor progression and metastasis.
Similar to tumor-infiltrating macrophages, several previous studies
have shown that TME-derived neutrophils also play a chemoresistant
role. Nielsen et al. reported that suppression of neutrophil development
and migration attenuates PDAC progression (Nielsen et al., 2021). In
contrast, our results show that gemcitabine reduced the infiltration of
neutrophils, whereas, at the same time, it promoted neutrophil expression
of genes associated with tumor progression and metastasis. Our study
implies that the response induced by gemcitabine in the TME may
contribute to the development of drug resistance in PDAC. However, due
to the PDX model, where mice are immunocompromised and thus may
not accurately represent changes in the microenvironment, changes in
other immune cells after gemcitabine treatment warrant further
investigation.

The limitations of our study include the small number of PDXs
that were analyzed at single-cell resolution. Future work will need to
be performed in a larger cohort of PDAC patients to investigate the
generalizability of chemotherapy-induced adaptation patterns.
Functional studies will also be needed to validate the changes in
molecular features after chemotherapy.

Conclusion

In conclusion, our study provides new insight into the natural
selection of tumor cell subclones and the remodeling of TME cells
induced by gemcitabine. We revealed a specific drug resistance
subclone, and based on the characteristics of this subclone, we
constructed a GSGP that can robustly predict gemcitabine
sensitivity and prognosis in pancreatic cancer, which provides a
theoretical basis for individualized clinical treatment.
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SUPPLEMENTARY FIGURE S1
(A) Tumor growth curves for 17 PDX models either left normal saline or
gemcitabine. (B) The K–Mplot of OS in 17 PDAC patients with T/C% less than
40% or T/C% more than 40%. (C–E) Results of immunohistochemical
staining. (F) IHC staining with anti-CD68, anti-CCR2, and anti-LY6G
antibodies in the control group and gem group tumors (n = 5) at low (×100)
and high magnification (×400). Scale bar = 50 μm (red line at the bottom
left).

SUPPLEMENTARY FIGURE S2
(A–B) RNA velocity vectors atop are visualized on the t-SNE projection of
cells from the two groups merged. (C–D) Heatmap showing the DEG
enrichment in each subpopulation separately.

SUPPLEMENTARY FIGURE S3
(A) Cross-validation for tuning parameter (lambda) screening in the LASSO
regression model. (B) LASSO coefficient profiles of five genes selected as a
5-GSGP. (C) Forest plot of the 128 genes. (D–F) Comparison of time-
dependent ROC curves of the risk score for predicting the 1-, 2-, and 3-year
OS rates in the validation cohorts.
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