Check for updates

OPEN ACCESS

EDITED BY Li Li, The University of Queensland, Australia

REVIEWED BY

Haibo Xu, Chengdu University of Traditional Chinese Medicine, China Lihong Zhou, Shanghai University of Traditional Chinese Medicine, China

*CORRESPONDENCE Haibo Cheng, is hbcheng_njucm@163.com Dongdong Sun, is sundd@njucm.edu.cn

[†]These authors have contributed equally to this work

RECEIVED 18 April 2023 ACCEPTED 05 June 2023 PUBLISHED 04 July 2023

CITATION

Liu L, Yan Q, Chen Z, Wei X, Li L, Tang D, Tan J, Xu C, Yu C, Lai Y, Fan M, Tao L, Shen W, Li L, Wu M, Cheng H and Sun D (2023), Overview of research progress and application of experimental models of colorectal cancer. *Front. Pharmacol.* 14:1193213. doi: 10.3389/fphar.2023.1193213

COPYRIGHT

© 2023 Liu, Yan, Chen, Wei, Li, Tang, Tan, Xu, Yu, Lai, Fan, Tao, Shen, Li, Wu, Cheng and Sun. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Overview of research progress and application of experimental models of colorectal cancer

Li Liu^{1,2,3†}, Qiuying Yan^{2,3†}, Zihan Chen^{1†}, Xiaoman Wei², Lin Li¹, Dongxin Tang⁴, Jiani Tan^{2,3}, Changliang Xu^{2,3}, Chengtao Yu^{2,3}, Yueyang Lai^{2,3}, Minmin Fan^{2,3}, Lihuiping Tao^{2,3}, Weixing Shen^{2,3}, Liu Li^{2,3}, Mianhua Wu², Haibo Cheng^{2,3}* and Dongdong Sun^{1,2,3}*

¹School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China, ²Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China, ³Research Center for Pathogenesis Theory of Cancerous Toxin and Application, Nanjing University of Chinese Medicine, Nanjing, China, ⁴The First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China

Colorectal cancer (CRC) is the third most common malignancy in terms of global tumor incidence, and the rates of morbidity and mortality due to CRC are rising. Experimental models of CRC play a vital role in CRC research. Clinical studies aimed at investigating the evolution and mechanism underlying the formation of CRC are based on cellular and animal models with broad applications. The present review classifies the different experimental models used in CRC research, and describes the characteristics and limitations of these models by comparing the research models with the clinical symptoms. The review also discusses the future prospects of developing new experimental models of CRC.

KEYWORDS

colorectal cancer, cellular models, animal models, preclinical studies, drug development

1 Introduction

Colorectal cancer (CRC) is the most common malignancy worldwide, in terms of both morbidity and mortality (Sung et al., 2021). The understanding of the origin of CRC has increased dramatically over the past few decades. However, despite breakthroughs in diagnosis and treatment, CRC continues to be a major health concern worldwide. The morbidity and mortality due to CRC are on the rise owing to the overall low screening rates and changes in lifestyle, including poor diets, irregular lifestyles, smoking, and other factors (Minami et al., 2022). Strategies for the early screening and intervention of precancerous CRC lesions in developed countries have reduced the rates of incidence and mortality due to CRC (Zorzi and Urso, 2022). Similar to studies on other illnesses, research studies on CRC critically depend on experimental models with reliable and distinct characteristics. Although CRC tumors have heterogeneous characteristics, experimental models of CRC are established in such a manner that they represent the characteristics of CRC tumors. Selection of the appropriate model that reflects the tumor system is a crucial challenge in cancer screening. Therefore, experimental models of CRC have been extensively studied for determining the optimum model for studying the invasion, progression, and early detection of CRC. This review discusses the significance of CRC models as a platform for screening drugs and developing novel therapeutic approaches for CRC. The application of cellular and animal models of CRC were also summarized and discussed to aid further preclinical studies on CRC.

2 Cellular models based on intestinal cells and CRC cells

In vitro models of CRC established using intestinal cells and CRC cells are frequently employed for obtaining rapidly growing cellular models of CRC and for facilitating experimental control. *In vitro* models of CRC can simultaneously generate several populations of homogeneous cells. Specific cellular targets of macroscopic systems can be conveniently studied using these models by analyzing the experimental results (Saeidnia et al., 2015).

The first mammalian cell line was established in 1943, which served as a prelude to *in vitro* cell culture. The CoLo 205 CRC cell line was established in 1957, which promoted *in vitro* studies on CRC. Figure 1 depicts the history of development of *in vitro* models of CRC (Sanford et al., 1948; Ricci et al., 2007; Sharma et al., 2010; Jedrzejczak, 2017).

2.1 Two-dimensional (2D) cellular models of CRC

CRC cell lines are *in vitro* tumor models with different origins and types, and serve as fundamental tools for investigating the biomarkers of drug sensitivity, resistance, and toxicity. CRC cell lines are established by isolating CRC cells from patients or animals with CRC followed by culture on artificial media. The appropriate cell lines are selected based on the type of cancer or gene expression levels, according to the aims of the study. SW620, Caco-2, RKO, SW480, HT8, HT29, HT116, LoVo, and LS174 T cell lines are currently widely used in basic research studies on CRC (Akashi et al., 2000; Vécsey et al., 2002; Lind et al., 2004; Barretina et al., 2012; Ahmed et al., 2013; Gemei et al., 2013; Mouradov et al., 2014; Maletzki et al., 2015; Boot et al., 2016; Berg et al., 2017; Mooi et al., 2018; Kim et al., 2020; Bian et al., 2021).

Although the characteristics of CRC cell lines are highly consistent with those of human cancer models, they have certain limitations. CRC cell lines facilitate the investigation of the molecular and phenotypic characteristics of CRC. However, as only one side of the cells is in contact with the medium during culture, the majority of cells gradually flatten, undergo abnormal division, and lose their differentiation phenotype following isolation from tissues and plate culture. Additionally, CRC cells continue to proliferate *in vitro*, which may cause the cell lines to lose the characteristics of the original tumor. Another limitation of CRC cell lines is the scarcity of matrix ingredients in the tumor microenvironment (TME), including the cells and acellular components constituting the structural complexity of the *in vivo* environment. Altogether, these indicate that CRC cell lines fail to accurately mimic the *in vivo* growth characteristics of tumor cells.

2.2 Three-dimensional (3D) cellular models of CRC

Owing to the limitations of 2D cellular models of CRC, researchers are committed towards exploiting novel and physiologically representative models of CRC. *In vitro* 3D culture models, including spheroids and organoids, are therefore used for overcoming the limitations of 2D cellular models. Spheroids comprise a mixture of single-cell or multicellular systems, while organoids are generally formed of specific stem cells or ancestral cells from organs (Kimlin et al., 2013; Boucherit et al., 2020). Spheroids and organoids are superior at mimicking tumor cell heterogeneity and the complex interactions among different cells (Thoma et al., 2014).

2.2.1 Spheroids

Spheroids are one of the most commonly used models in CRC research. They are constructed by suspending cancer cell lines or isolated tumor tissues from patients in CRC. They have a convenient mode of production and application, and are particularly effective for studying micrometastases or avascular tumors. Spheroid models can be categorized into four types according to the origin and morphology of the cancer cells from which they are derived. These categories include multicellular tumor spheroids (MCTS), tumorospheres, tissue-derived tumor spheres (TDTS), and organotypic multicellular spheroids (OMS; Figure 2) (Weiswald et al., 2015).

MCTS models, first constructed by Bauleth-Ramos, consist of colonic epithelia, human intestinal fiber cells, and human mononuclear cells, and are inoculated into hydrogel microwells to form the spheroid model (Inch et al., 1970; Bauleth-Ramos, T

FIGURE 2

For the formation process of spherical cancer models (A) MCTS: Cell suspensions cultured under non-adherent conditions were aggregated and compacted to obtain MCTS; (B) Tumorospheres: Stem cells cultured under low-adherent conditions formed Tumorospheres by clonal proliferation (C) TDTS: Partial dissociation of tumor tissue and compaction/remodeling produced TDTS; (D) OMS: Cut tumor tissue aggregates formed OMS during culture under non-adherent conditions.

TABLE 1 Applications of cellular models of CRC.

Mechanism being investigated	Research model	Cell lines	References
Apoptosis	Induction of apoptosis via the overexpression of neurofibromin	HCT116 and SW620	Wu et al. (2020)
	(<i>NF2</i>), heterogeneous nuclear ribonucleoprotein L (<i>HNRNPL</i>), and other genes	HIEC, Caco2, HCT116, LoVo, and SW480	Zhao et al. (2021)
	Induction of apoptosis via the knockdown of ribosomal protein	HCT116, HT29, SW480, and RKO	Yuan et al. (2021)
	lateral stalk subunit P0 pseudogene 2 (<i>RPLP0P2</i>), Cadherin 17 (<i>CDH17</i>), and other genes	KM12SM, KM12C, Colo320, HT29, RKO, and SW480	Tian et al. (2018)
	Inhibition of apoptosis via the knockdown of receptor interacting protein kinase 3 (<i>RIP3</i>)	SW480, HCT-116, RIP3 ^{+/+-MEF} , and RIP3 ^{-/-MEF}	Han et al. (2018)
	Inhibition of glycolysis and promotion of apoptosis via the knockdown of hypoxia-inducible factor-1α (<i>HIF-1</i> α)	FHC, CCD841 CoN, HT29, SW480, LoVo, HCT116, and SW620	Liu et al. (2019)
	Cu nanoparticles (CuNPs)-induced apoptosis of CRC cells	SW480	Ghasemi et al. (2020)
Autophagy	Inhibition of autophagy with chloroquine	HCT116 and SW480	Ma et al. (2020)
	Rapamycin-induced model of autophagy	KM12SM, KM12C, Colo320, HT29, RKO, and SW480	Tian et al. (2018)
Angiogenesis	Inhibition of angiogenesis via the knockdown of cellular- myelocytomatosis viral oncogene (<i>c-Myc</i>), vascular endothelial growth factor (<i>VEGF</i>), and other genes	HCT116	Yin et al. (2010)
	Co-culture of patient-derived cancer-associated fibroblasts (CAFs) and HUVECs	Patient-derived CAFs	Unterleuthner et al. (2020)
Invasion and metastasis	Promotion of invasion and metastasis via the overexpression of zinc-	SW480, SW620, CL187, and RKO	Yang et al. (2021)
	1 finger protein 326 (ZNF326), metastasis associated 1 family member 3 (MTA3), and other genes	LoVo and HCT15	Jiao et al. (2017)
	Inhibition of invasion and metastasis via the overexpression of t-box transcription factor 5 (<i>TBX5</i>)	HT29, SW620, SW480, LoVo, and HCT116	Dong et al. (2020)
	Inhibition of invasive metastasis via the knockdown of sphingosine phosphate lyase 1 (<i>SGPL1</i>) forkhead Box O6 (<i>FOXO6</i>), and other	DLD-1, Caco-2, and CCD 841 CoN	Faqar et al. (2021)
	genes	HCT116-CSC	Zou et al. (2022)
		NCM460, Caco2, HT29, HCT116, and SW480	Li et al. (2019)
	Co-culture of EMT-CRC cells and HUVECs	NCM460, LoVo, HCT-116, DLD-1, SW620, and SW480	Dou et al. (2021)
Metabolic reprogramming	Reprogramming of energy metabolism via the overexpression of mitochondrial citrate carrier solute carrier family 25 member 1 (<i>SLC25A1</i>), human kallikrein 2 (<i>HK2</i>), and other genes	NCM460, SW480, HCT116, SW620, LoVo, LS174T, and HT29	Yang et al. (2021a)
	Inhibition of metabolic reprogramming via HIF-1 α knockout	HCT8, HCT15, HCT116, LoVo, SW480, SW1116, HT29, Caco-2, DLD-1, and T84	Dong et al. (2022)
Immune escape	Promotion of immune escape <i>via</i> lipopolysaccharide (LPS)-induced macrophage infiltration	HCT-8, HCT-116, SW620, SW480, DLD-1, CaCo-2, CT26, and HT-29	Liu et al. (2020a)
	Induction of immune escape via the overexpression of antigen-	HCA-7, HT-29, 293T, and TALL-104	Cen et al. (2021)
	presenting-cell, B7 nomolog x (B7x), and other genes	LoVo, Colo-205, SW480, SW620, HCT-116, CT-26, and MC-38	Li et al. (2020c)
Inflammation	LPS-induced model of inflammation	HCT116 and SW480	Zhu et al. (2019)
		_	Schafer and Werner (2008)
		Colon 26	Choo et al. (2005)
		_	Schottelius and Baldwin (1999)
	Induction of tumor necrosis factor- α (<i>TNF</i> - α), nuclear factor-kappa B (<i>NE kB</i>) and other provide the start factor.	Caco-2, HT29, SW480, SW48, and DLD1	Li et al. (2012)
	B (NF-kB), and other pro-inflammatory factors	Volo	Tai et al. (2012)

(Continued on following page)

TABLE 1 (Continued) Applications of cellular models of CRC.

Mechanism being investigated	Research model	Cell lines	References
EMT	Suppression of EMT via the knockdown of Pleckstrin homology-like	HCT116 and SW480	Ma et al. (2020)
	domain family A member 2 (<i>PHLDA2</i>), SRY-Box transcription Factor 2 (<i>SOX2</i>), and other genes	SW480 and SW620	Zhu et al. (2021)
		HCT116 and LoVo	Qi et al. (2021)
		HCT116 and DLD-1	Ju et al. (2020)
		HCT116, SW480, HT29, and SW620	Hua et al. (2020)
	Induction of EMT via interleukin-6 (IL-6), TNF-a, and other	SW480, SW620, and Caco-2	Rokavec et al. (2014)
	inflammatory factors	HCT116 and Caco-2	Wang et al. (2013)
	Induction of EMT via the overexpression of cryopyrin-associated	FHC, HT29, SW480, SW620, and DLD1	Zhao et al. (2019)
	(<i>NFATc1</i>), and other genes	SW620, LoVo, Caco-2, SW480, HT29, HCT116, and DLD-1	Shen et al. (2021)
		HCT116	Li et al. (2021)
	Induction of EMT by X-ray irradiation	SW480	Lin et al. (2017)
Genomic instability/ mutation (CIN)	Induction of CIN by DNA damage caused by the overexpression of	CRC PDOs	Bolhaqueiro et al. (2019)
		SW480 and DLD-1	Sun et al. (2020)
	other genes	HCT116	Chadla et al. (2021)
Senescent cells	Induction of cellular senescence via the overexpression of lamin B1	SW480, HT29, and IEC-6	Liu et al. (2013)
	(<i>LMNB1</i>), tribbles homolog 2 (<i>IRIB2</i>), and other genes	HEK 293 T, SW48, and LoVo	Hou et al. (2018)
	Drug-induced senescence of CRC cells using oxaliplatin,	SW620 and HCT116	Jung et al. (2015)
	adriamycin, aspirin, and other drugs	SW837, HCT116, and SW48	Tato-Costa et al. (2016)
		PROb and CT26	Seignez et al. (2014)
		HCT116	Vétillard et al. (2015)
		HCT116 and SW480	Zhang et al. (2011)
		C85	Dabrowska et al. (2011)
			Dabrowska et al. (2019)

et al., 2020). MCTS models are similar to solid tumors in terms of the growth kinetics, metabolic rate, and resistance to chemotherapy and radiotherapy *in vivo* (Ivascu and Kubbies, 2006), and have been employed for screening and evaluating the efficacy of drugs. However, the variability of MCTS models makes it difficult to obtain repeatable and stable experimental data, which affects the use of these models in tumor research.

The tumorosphere model of CRC stem cells (CSCs) was used in the early 2000s for evaluating the differentiation capacity of tumors. However, because there are no morphological phenotypes associated with the phenotypic instability of CSCs, the tumorosphere model is unable to faithfully simulate the *in vivo* 3D framework and physiological condition of tumors (Valent et al., 2012).

The TDTS models consist of cancer and stromal cells, and are commonly used in studies on CRC. TDTS models of CRC tumors have a unique histological feature similar to the poorly differentiated globules produced by permanent cancer cell lines, and can fully simulate the characteristics of *in vitro* 3D cell culture models of CRC (Santini and Rainaldi, 1999; Weiswald et al., 2009).

OMS models are enriched in stem cells which can represent the complexity of parental tumor cells similar to *in vivo* tissues by forming an extracellular layer of epithelioid cells and an intracellular layer of mesenchymal cells, and thus maintaining the multicellular nature of CRC (Rajcevic et al., 2014). However, the difficulty of producing homogeneous spheres in a reproducible manner combined with the insufficiency of stable experimental data can prove to be a challenge during the application of the OMS model in CRC research and drug development.

2.2.2 Organoids

Spheroids are a simple experimental model that only partly represent the *in vivo* characteristics of tumor tissues. However, organoids are relatively complex three-dimensional (3D) culture models that are frequently used in CRC research. Organoids are self-

organizing organotypic cultures that are produced from various stem cells, including tissue specific adult stem cells (ASCs), embryonic stem cells (ESCs), or induced pluripotent stem cells (iPSCs) (Fujii et al., 2018; Fujii and Sato, 2021). The stem cells are grown in matrigel 3D culture conditions to mimic the *in vivo* growth environment, and to produce stable, near-physiological epithelial structures (Figure 3) (Lancaster and knoblich, 2014; Huch and Koo, 2015).

TABLE 2 Murine models of CRC.

Model	Strategy for model generation	Pathological mechanism	Detailed methodology	Range of application	Limitations	References
Spontaneous	Mutant animal	Proliferation	Mutation in APC	FAP model for studying	Survival time <	Moser et al. (1990)
animal model of CRC	models of CRC			hereditary CRC	4 months, tumor formation in small intestine, difficulty in	Shoemaker et al. (1997)
					metastasis	Shoemaker et al. (1998)
						Barker et al. (2007)
			Mutation in APC/Cre	Induction of colorectal adenoma	Difficulty in metastasis	Robanus-Maandag et al. (2010)
						Chen et al. (2020)
			Mutations in <i>Mlh1</i> , <i>Msh2</i> ,	Hereditary	Multi-tissue tumors,	Lynch et al. (1997)
			Msh3, Msh6, and Pms2	nonpolyposis CRC (HNPCC)	difficulty in metastasis	Papadopoulos and Lindblom (1997)
						Manceau et al. (2011)
			Mutation in SMAD4	Familial juvenile	Difficulty in metastasis	Takaku et al. (1998)
				polyposis model, acceleration of tumor development		Lu et al. (1998)
			Mutation in KRAS	Induction of colonic hyperplasia and generation of aberrant crypt foci (ACF) carcinogenesis model	CRC cannot be induced	Bos et al. (1987)
					by mutations in single genes, but is induced in combination with other gene mutations that induce carcinogenesis and enhance the incidence of CRC.	Campbell et al. (1998)
		Invasion and metastasis				Jen et al. (1994)
						Janssen et al. (2002)
						Janssen et al. (2006)
						Calcagno et al. (2008)
			Mutation in <i>PIK3CA</i>	Induction of colon adenoma	Single mutations generally do not induce CRC.	Juric et al. (2018)
			Mutation in FBXW7	Model of highly invasive colorectal cancer	Single mutations generally do not induce CRC.	Mao et al. (2004)
			Mutation in <i>p53</i>	Induction of distal intestinal tumor	Single mutations generally do not induce CRC.	Nakayama et al. (2017)
						Kadosh et al. (2020)
Diet- and chemical-induced models of CRC	Diet-induced models of CRC Chemical-induced models of CRC	iet-induced models of CRC Chemical-induced models of CRC Chemical-induced Anaerobic oxidation methane (AOM) dextran sodiur sulfate (DSS)	High-fat diet (HFD)/ western diet (NMD)	Colorectal barrier dysfunction and inflammation, invasive adenocarcinoma	Requires a long duration and has a low carcinogenic efficiency	Itano et al. (2012)
						Yu et al. (2022)
			2,4,6-Trinitro- benzenesulfonic acid (TNBS)	Induction of colitis- driven CRC	Cannot be used alone, necessary to break the intestinal mucosal screen before use, mortality rate of modeling is high	Scheiffele and Fuss (2002)
			Anaerobic oxidation of methane (AOM) + dextran sodium sulfate (DSS)	Tumors driven by colitis, induced distal CRC	The modeling rate is low and molding time is uncertain	Neufert et al. (2007)
						De-Robertis et al. (2011)
						Liang et al. (2017)
						Sun et al. (2022)

(Continued on following page)

TABLE 2 (Continued) Murine models of CRC.

ADMACF and CRC epithelial tumor modelThe period of modeling to log and time, comming, cannot be end for studying. Com to end for studying cannot be end for studying. Com tanks as low cand has a low cand has has low cand has has low cand has has low cand	Model	Strategy for model generation	Pathological mechanism	Detailed methodology	Range of application	Limitations	References
Animal model of transplanted CRCAnimal model of ectoric tumorInvasion and metastasisInvasion and metastasisInvasion and metastasisInduced color and metastasisRequires a long imperation of metastasisImperation of metastasisImperation of metastasisImperation of metastasisImperation <td></td> <td></td> <td>Proliferation</td> <td>AOM</td> <td>ACF and CRC epithelial tumor model</td> <td>The period of modeling is long and time-</td> <td>Femia and Caderni (2008)</td>			Proliferation	AOM	ACF and CRC epithelial tumor model	The period of modeling is long and time-	Femia and Caderni (2008)
$ \begin{array}{ c c c c c } \hline c c c c c c c c c c c c c c c c c c $						consuming, cannot be used for studying CRC	Izzo et al. (2008)
Animal model of transplanted CRC Animal model of ectopic tumor transplantation Investor and metastasts Induction of primary ector Risk of lapartomy is high in this model (ERCU NN- methyl-N- mintrosogura (MNNGi) Induction of primary (ERC that can metastastic to lassistic transplantation transplantation Risk of lapartomy is high in this model (ERC originate from the overlaw of introsogura (MNNGi) Mater at at an and transplantation Animal model of ectopic tumor transplantation Animal model of ectopic tumor transplantation Investor and metastasts Study of advanced CRC of GRC metastasis multiple metastass Kasure at a Eter at at at at at at an an an an an at an at						metastases	Orlando et al. (2008)
Animal model of transplantation Animal model of ecopic tumor transplantation Imagination and mask a low accinogenic efficity Induced instantion accinogenic efficity Kissow et a Aranganat Naim (Induced colon and and missimication, low study cycle Induced instantion and missimication, low study cycle Induced colon and missimication, low study cycle Induced colon and diministration, low specificity Induced colon and diministration, low specificity Induced mutations are random and drug volume quantification is difficult Reduy an Animal model of ecopic tumor transplantation N=ethyle animal model of ecopic tumor transplantation Induced instantion (MNN) Induced instantion (MNN) Induced instantion and missimation, low specificity Kiss of laparotomy is high in this model. (COV the mecosa, and whether tumor metastasis results from intraperitoneal cells cannot be exclused Induced mutations are random and drug volume quantification is difficult Talmadge (200 the mecosa, and whether tumor metastasis results from the overflow of intraperitoneal cells cannot be exclused Talmadge (200 the mecosa, and whether tumor metastasis results from the averflow of intraperitoneal cells cannot be exclused Talmadge (200 the mecosa, and whether tumor metastasis results from the averflow of intraperitoneal cells cannot be exclused Kasuya et a Bai et al. Vang et al. Fail vein injection Animal model of ecopic tumor Animal model of ecopic tumor Study of advanced CRC Differs from human CRC metastasis multiple metastase are prone to occur Kasuya et a Bai et al. Vang et al.				1,2 Dimethyl	Human sporadic CRC research model, tumorigenicity specificity	Requires a long time	Ma et al. (1996)
Animal model of transplanted CRC Animal model of ectopic tumor transplantation Animal model of ectopic tumor Invasion and transplantation Induction of primary transplantation Risk of laparotomy is high in this model. CRC originatiss results from the overhow and equice highly advanced cells cannot be excluded Talmadge transplantation Animal model of ectopic tumor transplantation Animal model of ectopic tumor Spleen planting Study of advanced CRC technical skilly advanced technical skills Kasuya et al (Narge et al (Narge et al (Narge et al) (Narge et al (Narge et al) (Narge				nydrazine (DMH)		carcinogenic efficiency	Kissow et al. (2012)
Arr							Aranganathan and Nalini (2013)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Parahydrogen-induced	ACF-induced rat model	Low incidence, long	Ito et al. (1991)
$ \frac{1}{3,2'-Dimethyl-4-A}{Aminobiphenyl (DMAB)} = Requires multiple administration low specificity administration low specificity administration low specificity administration low specificity specificity administration low specificity specific$				polarization (FIIF)		study cycle	Tanaka et al. (2005)
Animal model of transplanted CRC Animal model of orthotopic tumor Invasion and metastasis CCal transplantation Induced advanced CRC (MNNG) Induced of advanced CRC (MNNG) Induction of primary CRC that can metastasize to local lymphatic vessels, lungs, and liver Risk of laparotomy is high in this model. CRC originates from the nucces, and whether tumor metastasis results from the overhow of intraperioneal cells Talmadge (2007) Animal model of cransplantation Animal model of orthotopic tumor Invasion and metastasis Cecal transplantation Induction of primary CRC that can metastasis to local lymphatic vessels, lungs, and liver Risk of laparotomy is high in this model. CRC originates from the nucces, and whether tumor metastasis results from the overhow of intraperioneal cells Talmadge (2007) Animal model of ectopic tumor transplantation Spleen planting Study of advanced CRC framesplantation The operation is complex and requires highly advanced technical skills Kasuya et a complex and requires highly advanced technical skills Tail vein injection Lung metastasis model of CRC Ofly the late metastatic proces of CRC is simulated; tumor forms only at the site of Panis and N (1997)				3,2'-Dimethyl-4- Aminobiphenyl (DMAB)	Induced colon and small intestinal	Requires multiple administration, low	Reddy and Mori (1981)
Animal model of transplanted CRC Animal model of orthotopic tumor transplantation Invasion and metastasis Invasion and metastasis Induced distal CRC model Induced mutations are random and drug volume quantification is difficult Talmadge (2007) Animal model of transplanted CRC Animal model of orthotopic tumor transplantation Invasion and metastasis Induction of primary CRC that can metastasis to local lymphatic vessels, lungs, and liver Risk of laparotomy is metostasis results from the woreflow of intraperitoneal cells Talmadge (2007) Animal model of ectopic tumor transplantation Animal model of ectopic tumor transplantation Invasion and metastasis Spleen planting Study of advanced CRC test areas model of intraperitoneal cells Talmadge (2007) Image: transplantation Animal model of ectopic tumor Spleen planting Study of advanced CRC test areas model of intraperitoneal cells Tal vein injection Lung metastasis model of CRC is simulated it tumor for the spleen of coccur on only at the site of or only at the site of only at the					carcinogenesis	specificity	Reddy (1998)
Animal model of transplanted CRC Animal model of orthotopic tumor transplantation Invasion and metastasis Cecal transplantation Induction of primary CRC that can metastasize to local lymphatic vessels, lungs, and liver Risk of laparotomy is high in this model. CRC originates from the wencos, and whether tumor metastasis results from the overolow of intraperitoneal cells cannot be excluded Martin et al. Animal model of ectopic tumor transplantation Animal model of ectopic tumor transplantation Spleen planting Study of advanced CRC The operation is complex and requires highly advanced technical skills Kasuya et al. Tail vein injection Lung metastasis model of CRC Differs from human CRC metastasis, multiple metastases are prone to occur Wang et al. Liver implantation Liver implantation Liver metastasis model of CRC Only the late metastatic process of CRC is simulated; tumor forms only at the site of the			CIN	N-ethyl-N-nitrosourea (ENU)/N- methyl -N- nitrosourea (MNU)/ N-methyl-N- nitrosoguanidine (MNNG)	Induced distal CRC model	Induced mutations are random and drug volume quantification is difficult	Huang et al. (2020)
transplantation metastasize to local CRC originates from Martin et al lymphatic vessels, lungs, and liver the mucosa, and whether tumor Animal model of spleen planting Study of advanced CRC The operation is complex and requires Kasuya et al Animal model of ectopic tumor Tail vein injection Lung metastasis model Differs from human Kasuya et al Tail vein injection Liver implantation Liver metastasis model O'No the late metastasic Wang et al Liver implantation Liver implantation Liver metastasis model Only the late metastatic Panis and N (199) spleat the splead of process of CRC is simulated; tumor forms only at the site of Panis and N	Animal model of transplanted CRC	Animal model of orthotopic tumor transplantation	l model of Invasion and ppic tumor metastasis plantation	Cecal transplantation	Induction of primary CRC that can metastasize to local lymphatic vessels,	Risk of laparotomy is high in this model. CRC originates from the mucosa, and whether tumor metastasis results from the overflow of intraperitoneal cells cannot be excluded	Talmadge et al. (2007)
Animal model of ectopic tumor transplantation Spleen planting Study of advanced CRC The operation is complex and requires highly advanced technical skills Kasuya et a Tail vein injection Lung metastasis model of CRC Differs from human CRC metastasis, multiple metastases are prone to occur Wang et al Liver implantation Liver implantation Liver metastasis model of CRC Only the late metastatic process of CRC is simulated; tumor forms only at the site of Panis and N (199)							Martin et al. (2013)
Animal model of ectopic tumor transplantation Spleen planting Study of advanced CRC The operation is complex and requires highly advanced technical skills Kasuya et al Tail vein injection Lung metastasis model of CRC Differs from human CRC metastasis, multiple metastases are prone to occur Wang et al Liver implantation Liver metastasis model of CRC Only the late metastatic process of CRC is simulated; tumor forms only at the site of the sit					lungs, and liver		Lee et al. (2014)
Animal model of ectopic tumor transplantation Spleen planting Study of advanced CRC The operation is complex and requires highly advanced technical skills Bai et al. Tail vein injection Lung metastasis model of CRC Differs from human CRC metastasis, multiple metastases are prone to occur Wang et al. Liver implantation Liver metastasis model of CRC Only the late metastaci process of CRC is simulated, tumor forms only at the site of Panis and N (1997)							O'Rourke et al. (2017)
ectopic tumor transplantation Ecomplex and requires Bai et al. itransplantation Tail vein injection Lung metastasis model of CRC Differs from human CRC metastasis, multiple metastases are prone to occur Wang et al. Liver implantation Liver metastasis model of CRC Only the late metastatic process of CRC is simulated; tumor forms only at the site of Panis and N (1991)		Animal model of	mal model of topic tumor nsplantation	Spleen planting	Study of advanced CRC	The operation is complex and requires highly advanced technical skills	Kasuya et al. (2005)
Tail vein injection Lung metastasis model of CRC Differs from human CRC metastasis, multiple metastases are prone to occur Wang et al. Liver implantation Liver metastasis model of CRC Only the late metastatic process of CRC is simulated; tumor forms only at the site of Panis and N (1991)		transplantation					Bai et al. (2015)
Tail vein injection Lung metastasis model of CRC Differs from human CRC metastasis, multiple metastases are prone to occur Wang et al Liver implantation Liver metastasis model of CRC Only the late metastatic process of CRC is simulated; tumor forms only at the site of Panis and N (199)							Yang et al. (2021c)
Liver implantation Liver metastasis model Only the late metastatic process of CRC is simulated; tumor forms only at the site of Kopetz et a				Tail vein injection	Lung metastasis model of CRC	Differs from human CRC metastasis, multiple metastases are prone to occur	Wang et al. (2020)
only at the site of Kopetz et a				Liver implantation	Liver metastasis model of CRC	Only the late metastatic process of CRC is simulated; tumor forms only at the site of implantation	Panis and Nordlinger (1991)
							Kopetz et al. (2009)
Roque et al							Roque et al. (2019)
Intraperitoneal injectionPeritoneal metastasisUnsuitable for studyingLi et al. (of CRC cell for inducing metastasismodel of CRCearly metastasis oflymph nodes in CRC.				Intraperitoneal injection of CRC cell for inducing metastasis	Peritoneal metastasis model of CRC	Unsuitable for studying early metastasis of lymph nodes in CRC.	Li et al. (2016)
Proliferation Hypodermic implantation of CRC growth of CRC, not easy to study tumor invasion and metactoric Lehmann et			Proliferation	Hypodermic implantation	Real-time monitoring of CRC growth	Cannot simulate the <i>in</i> situ growth of CRC, not easy to study tumor invasion and metastasis	Rygaard and poulsen (1969) Lehmann et al. (2017)

The first intestinal epithelial 3D organoids were constructed by growing leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5⁺) intestinal stem cells in a medium containing stem cell

niche restatement factors and tissue-specific growth factors (Sato et al., 2011). An increasing number of studies have described the formation of patient-derived organoids (PDOs) by culturing minced

Classification	Animal	Advantages	Disadvantages	References
Invertebrate	Drosophila melanogaster (fruit fly)	The model can represent the composition of mammalian intestinal cells, aids in avoiding cancer heterogeneity	The model has no acquired immune function and has a short life cycle. It is impossible to simulate the complexity of tumor development	Bhandari and Shashidhara, 2001 Martorell et al., 2014
Vertebrate	Danio rerio	Histopathological features of intestinal tumors are similar to those of human tumors. High transparency of seedlings, small size, short	The culture temperature is inconsistent with the	Amatruda et al. (2002)
	(zebrafish)		growth temperature of tumor cells. Long-term tumor transplantation experiments cannot be	Trede et al. (2004)
		developmental cycle, <i>in vitro</i> fertilization, and large number of eggs. Requires small	performed	Haldi et al. (2006)
		experimental dosage and is less time-consuming		Brugman et al. (2009)
				Paquette et al. (2013)
	<i>Canis lupus</i>	The model has a similar physiological structure	Long duration of modeling, observational	Kamano et al. (1981)
	Jamiliaris (Dog)	to humans, and the mechanism of pathogenesis is similar to sporadic CRC in humans. Gentle character, good experimental coordination, and repeatability	inconveniences, not suitable for acute experiments	Kamano et al. (1983)
				Youmans et al. (2012)
	<i>Felis catus</i> (Domestic cat)	The histological subtype of the model is similar to that of advanced CRC in humans. Model can be used for studying the germination of intestinal tumor in CRC.	Low incidence, tumors mostly occur in the small intestine	Uneyama et al. (2021)
				Groll et al. (2021)
	Sus scrofa (Pig)	crofa (Pig)The anatomical structure of the small intestine is similar to that of humans. Model has a moderate size and long life. The progression and accumulation of mutations in CRC can be monitored by colonoscopy screening	The model cannot be used to study acute CRC as the process of cancer formation is slow	Llanos et al. (2006)
				Sangild et al. (2006)
				Flisikowska et al. (2012)
				Dean (2013)
				Flisikowska et al. (2017)
				Gonzalez et al. (2019)
	Ovis aries (Sheep)	Cellular differentiation in the model is similar to that of colon adenocarcinoma in humans. Model can be used to study advanced CRC.	Adenocarcinoma develops in the small intestine	Munday et al. (2006)
	Macaca mulatta	nulatta Shares high genomic homology with humans; anatomical and physiological similarities. Shares same clinicopathological features as human Lynch syndrome	Research cycle or modeling time-consuming	Bakken et al. (2016)
	(Rifesus monkey)			Dray et al. (2018)
				Ozirmak et al. (2022)

TABLE 3 Other animal models of CRC.

human CRC tumors in human intestinal stem cell medium (HISC), and the phenotype and genotype of the PDOs have been reported to be highly similar to those of the original tumor (Van et al., 2015; Vlachogiannis et al., 2018).

Organoids are typically used for investigating the mechanism underlying the development of CRC, screening anti-CRC drugs, and determining the efficacy and mechanism of action of drugs. However, there are various limitations to the application of organoids in studies on CRC, which are described hereafter. First, the current methods for organoid culture lack the technological means for maintaining the blood vessels, immune system, and peripheral nervous system of tumor cells, and organoids lacking these characteristics cannot be used in CRC research (Bredenoord et al., 2017). Second, as PDO models lack the cellular and acellular components of the TME of the original tumor, they cannot equivalently represent the in vivo environment of the tumor (Li X. et al., 2020). Third, there are no specific media for culturing organoids to date. Furthermore, it is unclear whether organoids can represent the overall heterogeneity of the tumor and all cell types in the tumor. Organoids can be applied to relevant studies by optimizing the culture conditions for maintaining the expression of genes related to microsatellite instability, B-Raf proto-oncogene, serine/threonine kinase (BRAF) mutations, poor differentiation, or mucinous phenotypes related to CRC. The application of organoids to CRC research can be improved by employing the co-culture model of organoids in which immune cells and mesenchymal cells are co-cultured for simulating the *in vivo* TME.

2.3 Application of cellular models of CRC

The establishment of models using the corresponding tumor cells is crucial for investigating the mechanism underlying the development of CRC and discovery of anti-CRC drugs (Senga and Grose, 2021). The applications of different cellular models of CRC according to the different molecular mechanisms underlying tumor formation, including epithelial–mesenchymal transition (EMT), apoptosis, invasion, metastasis, chromosome instability (CIN), and immune escape, are summarized in Table 1 and Figure 4.

TABLE 4 Applications of animal models of CRC.

Purpose of study	Research methods/models	References
Studying apoptosis in CRC	Investigation of apoptosis in CRC with CRC xenograft models	Han et al. (2018)
		Li et al. (2020a)
Investigation of angiogenesis in CRC	Studying the effect of AOM/DSS-induced expression of severe acute respiratory infection (<i>SARI</i>) gene on angiogenesis in CRC	Dai et al. (2016)
	DMH/DSS-induced expression of CRC angiogenesis factor in rat model	Liu et al. (2015a)
	Induction of tumor angiogenesis <i>in vivo via</i> the expression of <i>VEGF</i> and interleukin-8 (<i>IL-8</i>)	Liu et al. (2015b)
	Studying angiogenesis in CRC xenografts following induction with drugs,	Rupertus et al. (2014)
	C-A-C motir chemokine ligand 12 (CACL12), and CACL11	Yu et al. (2005)
		Jakopovic et al. (2020)
	Drug-induced in vivo inhibition of angiogenesis	Petrović et al. (2020)
	Dickkopf associated protein 2 (DKK2)-induced angiogenesis in CRC xenografts	Ding et al. (2016)
		Deng et al. (2019)
	Inhibition of angiogenesis by potentially inappropriate medication (PIM) kinase in orthotopically transplanted CRC tumors	Casillas et al. (2018)
	Induction of angiogenesis by hepatectomy in CRC xenografts	Lo et al. (2018)
	EG-VEGF induced angiogenesis in orthotopically transplanted CRC tumors	Goi et al. (2004)
Investigation of metabolic reprogramming in CRC	Induction of metabolic reprogramming in CRC xenograft model using	Bu et al. (2018)
	nexokinase, free faity acid (FFA), acetyl coenzyme A, citrate, and other agents	Wang et al. (2018)
		Dong et al. (2022)
		Zhang et al. (2022)
	AOM/DSS-induced CRC model of metabolic reprogramming	Wu et al. (2020)
		Yin et al. (2021)
	Initiation of metabolic reprogramming by DSS-induced inflammation	Qu et al. (2017)
Study of invasion and metastasis in CRC CRC xenograft model for studying invasion and metastasis in		Rokavec et al. (2014)
		Erreni et al. (2016)
		Li et al. (2019b)
Study of immune escape in CRC	Gene mutation-induced model of immune escape	Xing et al. (2021)
		Wei et al. (2022)
	Generation of immune escape model by ablation of zebrafish macrophages using chlorophosphonate liposomes	Póvoa et al. (2021)
Study of inflammation in CRC	TNBS/oxazolone/DSS-induced inflammatory CRC	Wirtz et al. (2007)
	LPS/DSS-induced inflammation	Garlanda et al. (2004)
	DSS-induced inflammation of intestinal epithelium and mucosa	Mashimo et al. (1996)
		Van et al. (2006)
	DSS/AOM-induced inflammation in sporadic CRC	De et al. (2019)
		Liang et al. (2017)
	TNBS-induced inflammation	Scheiffele and Fuss (2002)
	DMH-induced inflammation	Kumar et al. (2019)
	Radiofrequency ablation (RFA)-induced inflammation	Shi et al. (2019)
	HFD-induced inflammation	Hu et al. (2021)

(Continued on following page)

TABLE 4 (Continued) Applications of animal models of CRC.

Purpose of study	Research methods/models	References
Gene mutation-induced inflammatory CRC		Puppa et al. (2011)
		De et al. (2020)
	High-iron diet-induced inflammatory CRC	Seril et al. (2006)
Investigation of the mechanism of EMT in CRC	Induction of EMT models via mutations/overexpression/knockdown <i>p</i> rostate	Wang et al. (2014)
	transmembrane protein androgen induced 1 (<i>PMEPA1</i>), SOX2, histone deacetylase 1 (<i>HDAC1</i>), and other genes	Matsuda et al. (2016)
		Li et al. (2017a)
		Zhuang et al. (2018)
		Yang et al. (2019)
		Zhang et al. (2019)
		Liu et al. (2020b)
		Shen et al. (2021)
		Qi et al. (2021)
		Zhu et al. (2021)
		Liu et al. (2020)
	Transforming growth factor- β (TGF- β)-induced model of EMT	Li et al. (2021)
	Tumor EMT-induced metastatic model of CRC	Adams et al., 2021
Epigenetic reprogramming	CRC xenograft model for studying epigenetic reprogramming in CRC	Kodach et al. (2021)
	Induction of gene mutation for studying epigenetic reprogramming in CRC	Hashimoto et al. (2017)
Study of cell aging in CRC	Xenotransplantation model for studying cellular aging in CRC	Gao et al. (2010)
		Liu et al. (2013)
		Mikuła et al. (2015)
		Hou et al. (2018)
	DMH/DSS-induced model of cellular aging	Liu et al. (2013)
	AOM/DSS-induced model of cellular aging	Foersch et al. (2015)
Polymorphic microbiota	AOM/DSS-induced model for studying composition of intestinal microbiota	Wu et al. (2016)

TABLE 5 Applications of animal models of CRC.

TCM syndrome	Research methods/models	References
CRC with spleen qi deficiency syndromeHou et al., 2018 (SDS)	Restricted feeding/fatigue/purging + hypodermic implantation of C26 tumor cells to establish a spleen deficiency with cachexia model	Zhang et al. (2020)
CRC with damp-heat syndrome (DHS)	HFD/AOM/DSS-induced malignant tumor (stasis-toxin) model	Cao and Zhou (2020)
		Huang et al. (2022)
CRC with internal retention of toxin stagnation syndrome (IRTSS)	LPS tail vein and peritoneal injection + hypodermic implantation of C26 tumor cells to establish colorectal tumor-bearing with syndrome of heat-toxicity and blood stasis model	Li et al. (2017b)

3 CRC animal models based on experimental animals

The occurrence of diseases such as cancer that occur spontaneously in animals is largely attributed to genetic diversity and immune functions. Therefore, studying the methods for generating animal models of CRC can aid in elucidating the mechanisms underlying the development of cancer (Marian, 2004). Animal models can compensate for the limitations of cellular models that are incapable of simulating the mechanism underlying the development of CRC. Rat and murine models are the most frequently used animal models of CRC, and other animal

models of CRC, including fruit fly, zebrafish, and pigs, are also commonly used as sentinels and preclinical models in CRC research.

3.1 Rodent models

Rodent models are conducive tools for conducting cancer research, and are extensively used for elucidating the etiopathogenesis and molecular mechanisms underlying the development of CRC. Previous studies have demonstrated that the protein-coding genes of mice and humans share high homogeneity (Mouse Genome Sequencing Consortium, 2002). Additionally, the use of murine models is advantageous owing to the fact that mice have a short intergenerational interval, high reproducibility, and similar genetic background and formula as humans, compared to other animal models. Murine models of CRC can therefore be used as effective tools for studying the mechanism underlying the pathogenesis of CRC and determining novel strategies for the prevention and treatment of CRC (Doyle et al., 2012).

Transgenic mice models can serve as effective tools for preclinical evaluation and screening during the optimization and development of anticancer drugs. Mutations in APC (adenomatous polyposis coli) are commonly inherited in adenoma-carcinoma transitions observed during the development of CRC (Van et al., 2000). Additionally, the absence of mutations in DNA mismatch repair (MMR) genes increases deletion mutations in APC, which accelerates the formation of adenomas (Huang et al., 2004). It has been reported that mutations in tumor protein 53 (p53), Kirsten rats arcomaviral oncogene homolog (KRAS), phosphatidylinositol-4,5bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), F-box and WD repeat domain containing 7 (FBXW7), SMAD family member 4 (SMAD4), transcription factor 7-like 2 (TCF7L2), NRAS protooncogene (NRAS), AT-rich interaction domain 1 A (ARID1A), SRY-box transcription factor 9 (SOX9), and APC membrane recruitment protein 1 (FAM123B) can also increase the risk of CRC (Cancer Genome Atlas Network, 2012). Transgenic murine models are extensively used for studying the occurrence and elimination of tumors, underlying molecular pathways, and genomic regulation via gain-of-function or loss-of-function mutations in oncogenes and cancer suppressor genes.

CRC is caused by various risk factors, including poor dietary habits, environment, exposure to carcinogenic chemicals, and other factors (Hecht, 2003; Mehta et al., 2017). Animal models of CRC generated by treatment with chemicals serve as effective models in studies aimed at determining novel therapeutic approaches and investigating the diagnosis, prognosis, and identification of predictive markers. The differences among the methods and duration of treatment for inducing CRC with different chemical agents are depicted in Figure 5.

The use of chemical agents for generating models of CRC requires a long duration and these models have longer experimental cycles. Mofikawa et al. established the first orthotopic transplantation model of CRC in 1986 by transplanting human CRC cells under the cecal wall of nude mice. This shortened the period of study using animal models of CRC, and initiated the establishment of tumor transplantation models. Table 2 summarizes the different murine models of

CRC, and describes their scope of application and limitations in tumor research.

3.2 Other animal models of CRC

In addition to rodents, invertebrates such as fruit fly can be used for personalized diagnosis and developing potential therapeutic strategies for CRC. Vertebrates such as zebrafish, dogs, cats, pigs, and non-human primates are also used in studies on CRC. The advantages and disadvantages of the different animal models used in CRC research are summarized in Table 3.

3.3 Application of animal models of CRC

The carcinogenesis of CRC is affected by several contributing factors. The selection of the animal model of CRC depends on the purpose of the study, as summarized in Table 4.

Traditional Chinese medicine (TCM) and western medicine are two different medical theoretical systems. The research model based on the etiological mechanism theory of TCM is applied to animal studies with TCM syndrome, as shown in Table 5.

4 Conclusions and future directions

Understanding the inherent advantages and limitations of the different models of CRC, and the appropriate application of these models in drug development and studies on the mechanism of tumor occurrence and development are important in CRC research.

Human cell lines and xenograft models have been extensively employed over the past few decades owing to their low cost and ease of application. However, these models are incapable of reproducing the heterogeneity of CRC tumors (Harma et al., 2010). The cell coculture technique can overcome the limitations of monolayer cell culture, and enables the construction of in vitro physiological or pathological models that closely represent the in vivo condition, and can be used for studying the interactions between cells, and between cells and the culture environment. It has been reported that 3D models can mimic the physiological characteristics of parental tumors, including tumor heterogeneity (Li et al., 2019). However, the shape, size, and activity of organoids are different under the same culture conditions, and the matrix limits the penetration of drugs and hinders drug screening (Zhao et al., 2020). It is therefore imperative to construct a model that closely represents the characteristics of CRC in vivo.

The intestinal microarray platforms used in CRC research, which consist of intestinal organoids and organic chips, can summarize the important structural features and functions of the natural duodenum. This platform can be applied for studying drug conveyance, metabolism, and drug-drug interactions (Kasendra et al., 2018). Multi-locus transfer chips consist of multiple 3D organoids that connect the CRC-like organs, liver, lungs, and endothelial flow via recirculating fluid systems, and enables cell tracking by fluorescence imaging technology. The transfer sites of CRC cells are also included in multi-locus transfer chips (Aleman and Skardal, 2019).

Animal models of CRC have been widely used for studying the complexity of CRC. There are primarily two types of animal models, namely, in situ models and the cell and tissue transplantation models of CRC. Owing to the relatively simple modeling approach of human tumor xenotransplantation, this model is presently widely used for studying the efficacy of anti-CRC drugs. The effects of CRC xenotransplantation can be closely related to clinical activity via the rational application of these models. For instance, genetically engineered murine models have been used for studying the progression of tissue-specific molecular changes in CRC by determining the effect of specific molecular targets. Chemical induced-CRC animal model is one of the most commonly CRC models, in which CAC model is usually induced by AOM/DSS to study the mechanism of inflammation related-tumorigenesis and development (Zeng et al., 2022). The CRC model with TCM syndrome is an artificial disease and syndrome experimental animal model created by simulating and replicating characteristics of human disease prototype according to TCM theory. An animal model combining with CRC and TCM syndromes might be useful to mimic the clinical characteristics of CRC patients with TCM syndrome (Zhang et al., 2020). Mouse is the commonly used to the models mentioned above, however, it is increasingly accepted that the use of larger animal models, especially dogs and pigs, can provide deeper insights in cancer research (Croker et al., 2009).

The application of molecular tools and genetic strategies has aided the advancement of cancer research, and the cellular and animal models of CRC are being continually improved. Further understanding of the genetic and epigenetic events in CRC, including the alterations in molecular networks associated with the initial stages of development, are facilitated by high-resolution approaches.

Although CRC research has advanced immensely in recent years, several clinical issues remain to be resolved to date, which is partly attributed to the absence of suitable preclinical research models. The application of *in vivo* and *in vitro* models in CRC research, combined with advanced scientific techniques for simulating a more realistic tumor environment *in vivo* and *in vitro*, can help replicate the complex scenarios of tumor occurrence and development, identify novel therapeutic approaches for inhibiting tumor growth, and elucidate the molecular mechanisms underlying tumor formation.

References

Ahmed, D., Eide, P. W., Eilertsen, I. A., Danielsen, S. A., Eknæs, M., Hektoen, M., et al. (2013). Epigenetic and genetic features of 24 colon cancer cell lines. *Oncogenesis* 2 (9), e71. doi:10.1038/oncsis.2013.35

Akashi, H., Han, H. J., Iizaka, M., and Nakamura, Y. (2000). Growth-suppressive effect of non-steroidal anti-inflammatory drugs on 11 colon-cancer cell lines and fluorescence differential display of genes whose expression is influenced by sulindac. *Int. J. Cancer* 88 (6), 873–880. doi:10.1002/1097-0215(20001215)88:6<873:aid-ijc6>3.0.co; 2-b

Aleman, J., and Skardal, A. (2019). A multi-site metastasis-on-a-chip microphysiological system for assessing metastatic preference of cancer cells. *Biotechnol. Bioeng.* 116 (4), 936–944. doi:10.1002/bit.26871

Amatruda, J. F., Shepard, J. L., Stern, H. M., and Zon, L. I. (2002). Zebrafish as a cancer model system. *Cancer Cell*. 1 (3), 229–231. doi:10.1016/s1535-6108(02)00052-1

Aranganathan, S., and Nalini, N. (2013). Antiproliferative efficacy of hesperetin (citrus flavanoid) in 1,2-dimethylhydrazine-induced colon cancer. *Phytotherapy Res. PTR* 27 (7), 999–1005. doi:10.1002/ptr.4826

Bai, J. S., Wang, J., and Zhao, X. F. (2015). Nude mice hemispleen method in hepatic metastases of colon cancer model. 37, 447–450. doi:10.11724/jdmu.2015.05.08

Author contributions

All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

Funding

This work was supported by the National Natural Science Foundation of China (82074318, 81930117 and 82004310), Natural Science Foundation Youth Project of Jiangsu Province (BK 20200846), Natural Science Research of Jiangsu Higher Education Institutions of China (19KJA310007), Qinglan Project of Jiangsu Province, College Students' Innovative Entrepreneurial Training Plan Program (202010315023Z and 202010315025), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Acknowledgments

The authors must be grateful to the BioRender (www.biorender. com), as the figures in this review were drawn by using the BioRender platform.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Bakken, T. E., Miller, J. A., Ding, S. L., Sunkin, S. M., Smith, K. A., Ng, L., et al. (2016). A comprehensive transcriptional map of primate brain development. *Nature* 535 (7612), 367–375. doi:10.1038/nature18637

Barker, N., Van Es, J. H., Kuipers, J., Kujala, P., Van den Born, M., Cozijnsen, M., et al. (2007). Identification of stem cells in small intestine and colon by marker gene Lgr5. *Nature* 449 (7165), 1003–1007. doi:10.1038/nature06196

Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A. A., Kim, S., et al. (2012). The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. *Nature* 483 (7391), 603–607. doi:10.1038/nature11003

Berg, K. C. G., Eide, P. W., Eilertsen, I. A., Johannessen, B., Bruun, J., Danielsen, S. A., et al. (2017). Multi-omics of 34 colorectal cancer cell lines - a resource for biomedical studies. *Mol. Cancer* 16 (1), 116. doi:10.1186/s12943-017-0691-y

Bhandari, P., and Shashidhara, L. S. (2001). Studies on human colon cancer gene APC by targeted expression in Drosophila. *Oncogene* 20 (47), 6871–6880. doi:10.1038/sj.onc. 1204849

Bian, X., Cao, F., Wang, X., Hou, Y., Zhao, H., and Liu, Y. (2021). Establishment and characterization of a new human colon cancer cell line, PUMC-CRC1. *Sci. Rep.* 11 (1), 13122. doi:10.1038/s41598-021-92491-7

Bolhaqueiro, A. C. F., Ponsioen, B., Bakker, B., Klaasen, S. J., Kucukkose, E., Van Jaarsveld, R. H., et al. (2019). Ongoing chromosomal instability and karyotype evolution in human colorectal cancer organoids. *Nat. Genet.* 51 (5), 824–834. doi:10.1038/s41588-019-0399-6

Boot, A., Van Eendenburg, J., Crobach, S., Ruano, D., Speetjens, F., Calame, J., et al. (2016). Characterization of novel low passage primary and metastatic colorectal cancer cell lines. *Oncotarget* 7 (12), 14499–14509. doi:10.18632/oncotarget.7391

Bos, J. L., Fearon, E. R., Hamilton, S. R., Verlaan-de Vries, M., van Boom, J. H., van der Eb, A. J., et al. (1987). Prevalence of Ras gene mutations in human colorectal cancers. *Nature* 327 (6120), 293–297. doi:10.1038/327293a0

Boucherit, N., Gorvel, L., and Olive, D. (2020). 3D tumor models and their use for the testing of immunotherapies. *Front. Immunol.* 11, 603640–640. doi:10.3389/fimmu.2020. 603640

Bredenoord, A. L., Clevers, H., and Knoblich, J. A. (2017). Human tissues in a dish: The research and ethical implications of organoid technology. *Science* 355 (6322), eaaf9414. doi:10.1126/science.aaf9414

Brugman, S., Liu, K. Y., Lindenbergh-Kortleve, D., Samsom, J. N., Furuta, G. T., Renshaw, S. A., et al. (2009). Oxazolone-induced enterocolitis in zebrafish depends on the composition of the intestinal microbiota. *Gastroenterology* 137 (5), 1757–1767. doi:10.1053/j.gastro.2009.07.069

Bu, P., Chen, K. Y., Xiang, K., Johnson, C., Crown, S. B., Rakhilin, N., et al. (2018). Aldolase B mediated fructose metabolism drives metabolic reprogramming of colon cancer liver metastasis. *Cell. Metab.* 27 (6), 1249–1262. doi:10.1016/j.cmet.2018.04.003

Calcagno, S. R., Li, S., Colon, M., Kreinest, P. A., Thompson, E. A., Fields, A. P., et al. (2008). Oncogenic K-ras promotes early carcinogenesis in the mouse proximal colon. *Int. J. Cancer* 122, 2462–2470. doi:10.1002/ijc.23383

Campbell, S. L., Khosravi-Far, R., Rossman, K. L., Clark, G. J., and Der, C. J. (1998). Increasing complexity of Ras signaling. *Oncogene* 17 (11), 1395–1413. doi:10.1038/sj. onc.1202174

Cancer Genome Atlas Network (2012). Comprehensive molecular characterization of human colon and rectal cancer. Nature 487 (7407), 330–337. doi:10.1038/nature11252

Cao, W., and Zhou, X. (2020). Establishment of intestinal cancer model in mice with damp-heat, phlegm-stagnation and stasis-toxin. *J. Hunan Univ. Chin. Med.* 40 (01), 38–41. doi:10.3969/j.issn.1674-070X.2020.01.009

Casali, A., and Batlle, E. (2009). Intestinal stem cells in mammals and drosophila. *Cell. Stem Cell.* 4 (2), 124–127. doi:10.1016/j.stem.2009.01.009

Casillas, A. L., Toth, R. K., Sainz, A. G., Singh, N., Desai, A. A., Kraft, A. S., et al. (2018). Hypoxia-inducible PIM kinase expression promotes resistance to antiangiogenic agents. *Clin. Cancer Res.* 24 (1), 169–180. doi:10.1158/1078-0432. CCR-17-1318

Cen, B., Wei, J., Wang, D., Xiong, Y., Shay, J. W., and DuBois, R. N. (2021). Mutant APC promotes tumor immune evasion via PD-L1 in colorectal cancer. *Oncogene* 40 (41), 5984–5992. doi:10.1038/s41388-021-01972-6

Chadla, P., Arbi, M., Nikou, S., Kalliakoudas, T., Papadaki, H., Taraviras, S., et al. (2021). Integrin-linked-kinase overexpression is implicated in mechanisms of genomic instability in human colorectal cancer. *Dig. Dis. Sci.* 66 (5), 1510–1523. doi:10.1007/ s10620-020-06364-6

Chen, L., Vasoya, R. P., Toke, N. H., Parthasarathy, A., Luo, S., Chiles, E., et al. (2020). HNF4 regulates fatty acid oxidation and is required for renewal of intestinal stem cells in mice. *Gastroenterology* 158 (4), 985–999. doi:10.1053/j.gastro.2019.11.031

Choo, M. K., Sakurai, H., Koizumi, K., and Saiki, I. (2005). Stimulation of cultured colon 26 cells with TNF-alpha promotes lung metastasis through the extracellular signal-regulated kinase pathway. *Cancer Lett.* 230 (1), 47–56. doi:10.1016/j.canlet.2004. 12.027

Croker, A. K., Goodale, D., Chu, J., Postenka, C., Hedley, B. D., Hess, D. A., et al. (2009). High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. *J. Cell. Mol. Med.* 13 (8B), 2236–2252. doi:10.1111/j.1582-4934.2008.00455.x

Dabrowska, M., Skoneczny, M., and Rode, W. (2011). Functional gene expression profile underlying methotrexate-induced senescence in human colon cancer cells. *Tumour Biol.* 32 (5), 965–976. doi:10.1007/s13277-011-0198-x

Dabrowska, M., Skoneczny, M., Uram, L., and Rode, W. (2019). Methotrexateinduced senescence of human colon cancer cells depends on p53 acetylation, but not genomic aberrations. *Anticancer Drugs* 30 (4), 374–382. doi:10.1097/CAD. 000000000000731

Dai, L., Cui, X., Zhang, X., Cheng, L., Liu, Y., Yang, Y., et al. (2016). SARI inhibits angiogenesis and tumour growth of human colon cancer through directly targeting ceruloplasmin. *Nat. Commun.* 7, 11996. doi:10.1038/ncomms11996

De Oliveira, T., Ramakrishnan, M., Diamanti, M. A., Ziegler, P. K., Brombacher, F., and Greten, F. R. (2019). Loss of Stat6 affects chromatin condensation in intestinal epithelial cells causing diverse outcome in murine models of inflammation-associated and sporadic colon carcinogenesis. *Oncogene* 38 (11), 1787–1801. doi:10.1038/s41388-018-0551-2

De Robertis, M., Massi, E., Poeta, M. L., Carotti, S., Morini, S., Cecchetelli, L., et al. (2011). The AOM/DSS murine model for the study of colon carcinogenesis: From pathways to diagnosis and therapy studies. J. Carcinog. 10, 9. doi:10.4103/1477-3163. 78279

De Santis, S., Verna, G., Serino, G., Armentano, R., Cavalcanti, E., Liso, M., et al. (2020). Winnie-APC^{Min/+} mice: A spontaneous model of colitis-associated colorectal cancer combining genetics and inflammation. *Int. J. Mol. Sci.* 21 (8), 2972. doi:10.3390/ ijms21082972

Dean, P. G. (2013). Commentary on "The pig as a preclinical model for intestinal ischemia-reperfusion and transplantation studies. J. Surg. Res. 185 (2), 541–542. doi:10. 1016/j.jss.2012.10.014

Deng, F., Zhou, R., Lin, C., Yang, S., Wang, H., Li, W., et al. (2019). Tumor-secreted dickkopf-2 accelerates aerobic glycolysis and promotes angiogenesis in colorectal cancer. *Theranostics* 9 (4), 1001–1014. doi:10.7150/thno.30056

Ding, C., Li, L., Yang, T., Fan, X., and Wu, G. (2016). Combined application of anti-VEGF and anti-EGFR attenuates the growth and angiogenesis of colorectal cancer mainly through suppressing AKT and ERK signaling in mice model. *BMC Cancer* 16 (1), 791. doi:10.1186/s12885-016-2834-8

Dolara, P., Luceri, C., De Filippo, C., Femia, A. P., Giovannelli, L., Caderni, G., et al. (2005). Red wine polyphenols influence carcinogenesis, intestinal microflora, oxidative damage and gene expression profiles of colonic mucosa in F344 rats. *Mutat. Res.* 591 (1-2), 237–246. doi:10.1016/j.mrfmnm.2005.04.022

Dong, M. J., Zhou, Y., Duan, M., Gao, Q. M., and Zhao, J. H. (2020). Clinical significance and mechanism of TBX5 gene in colorectal cancer. *Zhonghua Zhong Liu Za Zhi* 42 (5), 383–390. doi:10.3760/cma.j.cn112152-112152-20190829-00560

Dong, S., Liang, S., Cheng, Z., Zhang, X., Luo, L., Li, L., et al. (2022). ROS/PI3K/AKT and Wnt/ β -catenin signalings activate HIF-1 α -induced metabolic reprogramming to impart 5-fluorouracil resistance in colorectal cancer. *J. Exp. Clin. Cancer Res.* 41 (1), 15. doi:10.1186/s13046-021-02229-6

Dou, R., Liu, K., Yang, C., Zheng, J., Shi, D., Lin, X., et al. (2021). EMT-cancer cellsderived exosomal miR-27b-3p promotes circulating tumour cells-mediated metastasis by modulating vascular permeability in colorectal cancer. *Clin. Transl. Med.* 11 (12), 595. doi:10.1002/ctm2.595

Doyle, A., McGarry, M. P., Lee, N. A., and Lee, J. J. (2012). The construction of transgenic and gene knockout/knockin mouse models of human disease. *Transgenic Res.* 21 (2), 327–349. doi:10.1007/s11248-011-9537-3

Dray, B. K., Raveendran, M., Harris, R. A., Benavides, F., Gray, S. B., Perez, C. J., et al. (2018). Mismatch repair gene mutations lead to lynch syndrome colorectal cancer in rhesus macaques. *Genes. Cancer* 9 (3-4), 142–152. doi:10.18632/genesandcancer.170

Erreni, M., Siddiqui, I., Marelli, G., Grizzi, F., Bianchi, P., Morone, D., et al. (2016). The fractalkine-receptor Axis improves human colorectal cancer prognosis by limiting tumor metastatic dissemination. *J. Immunol.* 196 (2), 902–914. doi:10.4049/jimmunol. 1501335

Faqar-Uz-Zaman, W. F., Schmidt, K. G., Thomas, D., Pfeilschifter, J. M., Radeke, H. H., and Schwiebs, A. (2021). S1P lyase siRNA dampens malignancy of DLD-1 colorectal cancer Cells. *Lipids* 56 (2), 155–166. doi:10.1002/lipd.12282

Femia, A. P., and Caderni, G. (2008). Rodent models of colon carcinogenesis for the study of chemopreventive activity of natural products. *Planta Med.* 74 (13), 1602–1607. doi:10.1055/s-2008-1074577

Flisikowska, T., Merkl, C., Landmann, M., Eser, S., Rezaei, N., Cui, X., et al. (2012). A porcine model of familial adenomatous polyposis. *Gastroenterology* 143 (5), 1173–1175. doi:10.1053/j.gastro.2012.07.110

Flisikowska, T., Stachowiak, M., Xu, H., Wagner, A., Hernandez-Caceres, A., Wurmser, C., et al. (2017). Porcine familial adenomatous polyposis model enables systematic analysis of early events in adenoma progression. *Sci. Rep.* 7 (1), 6613. doi:10. 1038/s41598-017-06741-8

Foersch, S., Sperka, T., Lindner, C., Taut, A., Rudolph, K. L., Breier, G., et al. (2015). VEGFR2 signaling prevents colorectal cancer cell senescence to promote tumorigenesis in mice with colitis. *Gastroenterology* 149 (1), 177–189. doi:10.1053/j.gastro.2015.03.016

Fujii, M., Matano, M., Toshimitsu, K., Takano, A., Mikami, Y., Nishikori, S., et al. (2018). Human intestinal organoids maintain self-renewal capacity and cellular diversity in niche-inspired culture condition. *Cell. Stem Cell.* 23 (6), 787–793. doi:10.1016/j.stem.2018.11.016

Fujii, M., and Sato, T. (2021). Somatic cell-derived organoids as prototypes of human epithelial tissues and diseases. *Nat. Mat.* 20, 20156–20169. doi:10.1038/s41563-020-0754-0

Gao, F. H., Hu, X. H., Li, W., Liu, H., Zhang, Y. J., Guo, Z. Y., et al. (2010). Oridonin induces apoptosis and senescence in colorectal cancer cells by increasing histone hyperacetylation and regulation of p16, p21, p27 and c-Myc. *BMC Cancer* 10, 610. doi:10.1186/1471-2407-10-610

Garlanda, C., Riva, F., Polentarutti, N., Buracchi, C., Sironi, M., De Bortoli, M., et al. (2004). Intestinal inflammation in mice deficient in Tir8, an inhibitory member of the IL-1 receptor family. *Proc. Natl. Acad. Sci. U. S. A.* 101 (10), 3522–3526. doi:10.1073/pnas.0308680101

Ghasemi, P., Shafiee, G., Ziamajidi, N., and Abbasalipourkabir, R. (2020). Copper nanoparticles induce apoptosis and oxidative stress in SW480 human colon cancer cell line. *Biol. Trace Elem. Res.* doi:10.1007/s12011-022-03458-2 Goi, T., Fujioka, M., Satoh, Y., Tabata, S., Koneri, K., Nagano, H., et al. (2004). Angiogenesis and tumor proliferation/metastasis of human colorectal cancer cell line SW620 transfected with endocrine glands-derived-vascular endothelial growth factor, as a new angiogenic factor. *Cancer Res.* 64 (6), 1906–1910. doi:10.1158/0008-5472.can-3696-2

Gonzalez, L. M., Stewart, A. S., Freund, J., Kucera, C. R., Dekaney, C. M., Magness, S. T., et al. (2019). Preservation of reserve intestinal epithelial stem cells following severe ischemic injury. *Am. J. Physiol. Gastrointest. Liver Physiol.* 316 (4), G482-G494–G494. doi:10.1152/ajpgi.00262.2018

Gregorieff, A., Liu, Y., Inanlou, M. R., Khomchuk, Y., and Wrana, J. L. (2015). Yapdependent reprogramming of Lgr5(+) stem cells drives intestinal regeneration and cancer. *Nature* 526 (7575), 715–718. doi:10.1038/nature15382

Groll, T., Schopf, F., Denk, D., Mogler, C., Schwittlick, U., Aupperle-Lellbach, H., et al. (2021). Bridging the species gap: Morphological and molecular comparison of feline and human intestinal carcinomas. *Cancers (Basel)*. 13 (23), 5941. doi:10.3390/ cancers13235941

Haldi, M., Ton, C., Seng, W. L., and McGrath, P. (2006). Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish. *Angiogenesis* 9, 9139–9151. doi:10.1007/s10456-006-9040-2

Han, Q., Ma, Y., Wang, H., Dai, Y., Chen, C., Liu, Y., et al. (2018). Resibufogenin suppresses colorectal cancer growth and metastasis through RIP3-mediated necroptosis. *J. Transl. Med.* 16 (1), 201. doi:10.1186/s12967-018-1580-x

Harma, S., Haber, D., and Settleman, J. (2010). Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. *Nat. Rev. Cancer* 10 (4), 241–253. doi:10.1038/nrc2820

Hashimoto, K., Yamada, Y., Semi, K., Yagi, M., Tanaka, A., Itakura, F., et al. (2017). Cellular context-dependent consequences of APC mutations on gene regulation and cellular behavior. *Proc. Natl. Acad. Sci. U. S. A.* 114 (4), 758–763. doi:10.1073/pnas. 1614197114

Hason, M., and Bartůněk, P. (2019). Zebrafish models of cancer-new insights on modeling human cancer in a non-mammalian vertebrate. *Genes. (Basel).* 10 (11), 935. doi:10.3390/genes10110935

Hecht, S. S. (2003). Tobacco carcinogens, their biomarkers and tobacco-induced cancer. *Nat. Rev. Cancer* 3 (10), 733-744. doi:10.1038/nrc1190

Hou, Z., Guo, K., Sun, X., Hu, F., Chen, Q., Luo, X., et al. (2018). TRIB2 functions as novel oncogene in colorectal cancer by blocking cellular senescence through AP4/ p21 signaling. *Mol. Cancer* 17 (1), 172. doi:10.1186/s12943-018-0922-x

Hu, X., Fatima, S., Chen, M., Xu, K., Huang, C., Gong, R. H., et al. (2021). Toll-like receptor 4 is a master regulator for colorectal cancer growth under high-fat diet by programming cancer metabolism. *Cell. Death Dis.* 12 (8), 791. doi:10.1038/s41419-021-04076-x

Hua, R., Yu, J., Yan, X., Ni, Q., Zhi, X., Li, X., et al. (2020). Syndecan-2 in colorectal cancer plays oncogenic role via epithelial-mesenchymal transition and MAPK pathway. *Biomed. Pharmacother.* 121, 109630. doi:10.1016/j.biopha.2019.109630

Huang, J., Jiang, T., Kang, J., Xu, J., Dengzhang, Y., Zhao, Z., et al. (2022). Synergistic effect of Huangqin decoction combined treatment with Radix *Actinidiae chinensis* on DSS and AOM-induced colorectal cancer. *Front. Pharmacol.* 13, 933070. doi:10.3389/ fphar.2022.933070

Huang, J., Zheng, S., Jin, S. H., and Zhang, S. Z. (2004). Somatic mutations of APC gene in carcinomas from hereditary non-polyposis colorectal cancer patients. *World J. Gastroenterol.* 10 (6), 834–836. doi:10.3748/wjg.v10.i6.834

Huang, Z., Liu, C. A., Cai, P. Z., Xu, F. P., Zhu, W. J., Wang, W. W., et al. (2020). Omega-3PUFA Attenuates MNU-induced colorectal cancer in rats by blocking PI3K/ AKT/Bcl-2 signaling. *Onco Targets Ther.* 13, 1953–1965. doi:10.2147/OTT.S241298

Huch, M., and Koo, B. K. (2015). Modeling mouse and human development using organoid cultures. *Development* 142 (18), 3113–3125. doi:10.1242/dev.118570

Inch, W. R., McCredie, J. A., and Sutherland, R. M. (1970). Growth of nodular carcinomas in rodents compared with multi-cell spheroids in tissue culture. *Growth* 34 (3), 271–282.

Itano, O., Fan, K., Yang, K., Suzuki, K., Quimby, F., Dong, Z., et al. (2012). Effect of caloric intake on Western-style diet-induced intestinal tumors in a mouse model for hereditary colon cancer. *Nutr. Cancer* 64 (3), 401–408. doi:10.1080/01635581.2012.660672

Ito, N., Hasegawa, R., Sano, M., Tamano, S., Esumi, H., Takayama, S., et al. (1991). A new colon and mammary carcinogen in cooked food, 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (PhIP). *Carcinogenesis* 12 (8), 1503–1506. doi:10. 1093/carcin/12.8.1503

Ivascu, A., and Kubbies, M. (2006). Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis. *J. Biomol. Screen* 11 (8), 922–932. doi:10.1177/1087057106292763

Izzo, A. A., Aviello, G., Petrosino, S., Orlando, P., Marsicano, G., Lutz, B., et al. (2008). Increased endocannabinoid levels reduce the development of precancerous lesions in the mouse colon. J. Mol. Med. Berl. 86 (1), 89–98. doi:10.1007/s00109-007-0248-4

Jakopovic, B., Oršolić, N., and Kraljević, P. S. (2020). Antitumor, immunomodulatory and antiangiogenic efficacy of medicinal mushroom extract mixtures in advanced colorectal cancer animal model. *Molecules* 25 (21), 5005. doi:10.3390/ molecules25215005

Janssen, K. P., Alberici, P., Fsihi, H., Gaspar, C., Breukel, C., Franken, P., et al. (2006). APC and oncogenic KRAS are synergistic in enhancing Wnt signaling in intestinal tumor formation and progression. *Gastroenterology* 131 (4), 1096–1109. doi:10.1053/j. gastro.2006.08.011

Janssen, K. P., El-Marjou, F., Pinto, D., Sastre, X., Rouillard, D., Fouquet, C., et al. (2002). Targeted expression of oncogenic KRAS in intestinal epithelium causes spontaneous tumorigenesis in mice. *Gastroenterology* 123 (2), 492–504. doi:10.1053/gast.2002.34786

Jedrzejczak, S. M. (2017). "History of cell culture," in *In new insights into cell culture technology* (Rijeka, Croatia: InTech). doi:10.5772/66905

Jen, J., Powell, S. M., Papadopoulos, N., Smith, K. J., Hamilton, S. R., Vogelstein, B., et al. (1994). Molecular determinants of dysplasia in colorectal lesions. *Cancer Res.* 54 (21), 5523–5526.

Jiao, T., Li, Y., Gao, T., Zhang, Y., Feng, M., Liu, M., et al. (2017). MTA3 regulates malignant progression of colorectal cancer through Wnt signaling pathway. *Tumour Biol.* 39 (3), 1010428317695027. doi:10.1177/1010428317695027

Ju, S., Wang, F., Wang, Y., and Ju, S. (2020). CSN8 is a key regulator in hypoxiainduced epithelial-mesenchymal transition and dormancy of colorectal cancer cells. *Mol. Cancer* 19 (1), 168. doi:10.1186/s12943-020-01285-4

Jung, Y. R., Kim, E. J., Choi, H. J., Park, J. J., Kim, H. S., Lee, Y. J., et al. (2015). Aspirin targets SIRT1 and AMPK to induce senescence of colorectal carcinoma cells. *Mol. Pharmacol.* 88 (4), 708–719. doi:10.1124/mol.115.098616

Juric, D., Rodon, J., Tabernero, J., Janku, F., Burris, H. A., Schellens, J. H. M., et al. (2018). Phosphatidylinositol 3-kinase α -selective inhibition with alpelisib (BYL719) in PIK3CA-altered solid tumors: Results from the first-in-human study. *J. Clin. Oncol.* 36 (13), 1291–1299. doi:10.1200/JCO.2017.72.7107

Kadosh, E., Snir-Alkalay, I., Venkatachalam, A., May, S., Lasry, A., Elyada, E., et al. (2020). The gut microbiome switches mutant p53 from tumour-suppressive to oncogenic. *Nature* 586 (7827), 133–138. doi:10.1038/s41586-020-2541-0

Kamano, T., Kishino, H., Mizukami, K., Azuma, N., Tamura, J., Katami, A., et al. (1983). Histopathological study on N-ethyl-N'-nitro-N-nitrosoguanidine-induced colon cancer in dogs. *Int. J. Cancer* 32 (2), 255–258. doi:10.1002/ijc.2910320219

Kamano, T., Kurihara, M., Kishino, H., Mizukami, K., Kidokoro, T., Wakabayashi, K., et al. (1981). Experimental colonic cancer in a dog. *Jpn. J. Surg.* 11 (3), 214–218. doi:10. 1007/BF02468841

Kasendra, M., Tovaglieri, A., Sontheimer-Phelps, A., Jalili-Firoozinezhad, S., Bein, A., Chalkiadaki, A., et al. (2018). Development of a primary human small intestine-on-achip using biopsy-derived organoids. *Sci. Rep.* 8 (1), 2871. doi:10.1038/s41598-018-21201-7

Kasuya, H., Kuruppu, D. K., Donahue, J. M., Choi, E. W., Kawasaki, H., Tanabe, K. K., et al. (2020). Establishment and characterization of 18 human colorectal cancer cell lines. *Sci. Rep.* 10 (1), 6801. doi:10.1038/s41598-020-63812-z

Kasuya, H., Kuruppu, D. K., Donahue, J. M., Choi, E. W., Kawasaki, H., and Tanabe, K. K. (2005). Mouse models of subcutaneous spleen reservoir for multiple portal venous injections to treat liver malignancies. *Cancer Res.* 65 (9), 3823–3827. doi:10.1158/0008-5472.CAN-04-2631

Kim, S. C., Kim, H. S., Kim, J. H., Jeong, N., Shin, Y. K., Kim, M. J., et al. (2020). Establishment and characterization of 18 human colorectal cancer cell lines. *Sci. Rep.* 10 (1), 6801. doi:10.1038/s41598-020-63812-z

Kimlin, L. C., Casagrande, G., and Virador, V. M. (2013). *In vitro* three-dimensional (3D) models in cancer research: An update. *Mol. Carcinog.* 52 (3), 167–182. doi:10. 1002/mc.21844

Kissow, H., Hartmann, B., Holst, J. J., Viby, N. E., Hansen, L. S., Rosenkilde, M. M., et al. (2012). Glucagon-like peptide-1 (GLP-1) receptor agonism or DPP-4 inhibition does not accelerate neoplasia in carcinogen treated mice. *Regul. Pept.* 179 (1-3), 91–100. doi:10.1016/j.regpep.2012.08.016

Kodach, L. L., Jacobs, R. J., Voorneveld, P. W., Wildenberg, M. E., Verspaget, H. W., Van Wezel, T., et al. (2011). Statins augment the chemosensitivity of colorectal cancer cells inducing epigenetic reprogramming and reducing colorectal cancer cell 'stemness' via the bone morphogenetic protein pathway. *Gut* 60 (11), 1544–1553. doi:10.1136/gut.2011.237495

Kopetz, S., Lesslie, D. P., Dallas, N. A., Park, S. I., Johnson, M., Parikh, N. U., et al. (2009). Synergistic activity of the SRC family kinase inhibitor dasatinib and oxaliplatin in colon carcinoma cells is mediated by oxidative stress. *Cancer Res.* 69 (9), 3842–3849. doi:10.1158/0008-5472.CAN-08-2246

Kumar, V. L., Verma, S., and Das, P. (2019). Artesunate suppresses inflammation and oxidative stress in a rat model of colorectal cancer. *Drug Dev. Res.* 80 (8), 1089–1097. doi:10.1002/ddr.21590

Lancaster, M. A., and Knoblich, J. A. (2014). Organogenesis in a dish: Modeling development and disease using organoid technologies. *Science* 345 (6194), 1247125. doi:10.1126/science.1247125

Lee, W. Y., Hong, H. K., Ham, S. K., Kim, C. I., and Cho, Y. B. (2014). Comparison of colorectal cancer in differentially established liver metastasis models. *Anticancer Res.* 34 (7), 3321–3328.

Lehmann, B., Biburger, M., Brückner, C., Ipsen-Escobedo, A., Gordan, S., Lehmann, C., et al. (2017). Tumor location determines tissue-specific recruitment of tumorassociated macrophages and antibody-dependent immunotherapy response. *Sci. Immunol.* 2 (7), 6413. doi:10.1126/sciimmunol.aah6413

Li, M., and Izpisua Belmonte, J. C. (2019a). Organoids-preclinical models of human disease. N. Engl. J. Med. 380 (6), 569–579. doi:10.1056/NEJMra1806175

Li, Q., Tang, H., Hu, F., and Qin, C. (2019b). Silencing of FOXO6 inhibits the proliferation, invasion, and glycolysis in colorectal cancer cells. *J. Cell. Biochem.* 120 (3), 3853–3860. doi:10.1002/jcb.27667

Li, Q., Zhang, S., Hu, M., Xu, M., and Jiang, X. (2020a). Silencing of synaptotagmin 13 inhibits tumor growth through suppressing proliferation and promoting apoptosis of colorectal cancer cells. *Int. J. Mol. Med.* 45 (1), 234–244. doi:10.3892/ijmm.2019.4412

Li, S., Shi, X., Chen, M., Xu, N., Sun, D., Bai, R., et al. (2019c). Angiogenin promotes colorectal cancer metastasis via tiRNA production. *Int. J. Cancer* 145 (5), 1395–1407. doi:10.1002/ijc.32245

Li, S., Zhang, J., Qian, S., Wu, X., Sun, L., Ling, T., et al. (2021). S100A8 promotes epithelial-mesenchymal transition and metastasis under TGF-β/USF2 axis in colorectal cancer. *Cancer Commun.* 41 (2), 154–170. doi:10.1002/cac2.12130

Li, X., Larsson, P., Ljuslinder, I., Öhlund, D., Myte, R., Löfgren-Burström, A., et al. (2020b). *Ex vivo* organoid cultures reveal the importance of the tumor microenvironment for maintenance of colorectal cancer stem cells. *Cancers (Basel)* 12 (4), 923. doi:10.3390/cancers12040923

Li, Y., Deuring, J., Peppelenbosch, M. P., Kuipers, E. J., De Haar, C., and Van der Woude, C. J. (2012). IL-6-induced DNMT1 activity mediates SOCS3 promoter hypermethylation in ulcerative colitis-related colorectal cancer. *Carcinogenesis* 33 (10), 1889–1896. doi:10.1093/carcin/bgs214

Li, Y., Liu, Y., Zhao, N., Yang, X., Li, Y., Zhai, F., et al. (2020c). Checkpoint regulator B7x is epigenetically regulated by HDAC3 and mediates resistance to HDAC inhibitors by reprogramming the tumor immune environment in colorectal cancer. *Cell. Death Dis.* 11 (9), 753. doi:10.1038/s41419-020-02968-y

Li, Y., Qian, L. Y., Tang, P. L., Guo, Y., Men, C., Cui, Y., et al. (2017b). Cathelicidin LL37 promotes epithelial and smooth-muscle-like differentiation of adipose-derived stem cells through the wnt/ β -catenin and NF- κ B pathways. *Chin. J. Traditional Chin. Med.* 82 (03), 1336–1345. doi:10.1134/S0006297917110116

Li, Y., Yang, Y., Liu, J., Liu, H., Chen, F., Li, B., et al. (2017a). USP22 drives colorectal cancer invasion and metastasis via epithelial-mesenchymal transition by activating AP4. *Oncotarget* 8 (20), 32683–32695. doi:10.18632/oncotarget.15950

Li, Z., Wang, J., Zhou, T., and Ye, X. (2016). Establishment of a colorectal cancer nude mouse visualization model of HIF-1a overexpression. *Oncol. Lett.* 11 (4), 2725–2732. doi:10.3892/ol.2016.4287

Liang, X., Xie, R., Su, J., Ye, B., Wei, S., Liang, Z., et al. (2017). Inhibition of RNA polymerase III transcription by triptolide attenuates colorectal tumorigenesis. *J. Exp. Clin. Cancer Res.* 38 (1), 217. doi:10.1186/s13046-019-1232-x

Lin, S., Chen, S., Chen, Z., Dai, Q., and Ke, C. (2017). X-ray-induced epithelialmesenchymal transition in SW480 colorectal cancer cells and its potential mechanisms. *J. BUON* 22 (6), 1457–1462.

Lind, G. E., Thorstensen, L., Løvig, T., Meling, G. I., Hamelin, R., Rognum, T. O., et al. (2004). A CpG island hypermethylation profile of primary colorectal carcinomas and colon cancer cell lines. *Mol. Cancer* 3, 28. doi:10.1186/1476-4598-3-28

Liu, C., Yao, Z., Wang, J., Zhang, W., Yang, Y., Zhang, Y., et al. (2020a). Macrophagederived CCL5 facilitates immune escape of colorectal cancer cells via the p65/STAT3-CSN5-PD-L1 pathway. *Cell. Death Differ*. 27 (6), 1765–1781. doi:10.1038/s41418-019-0460-0

Liu, J., Deng, G. H., Zhang, J., Wang, Y., Xia, X. Y., Luo, X. M., et al. (2015a). The effect of chronic stress on anti-angiogenesis of sunitinib in colorectal cancer models. *Psychoneuroendocrinology* 52, 130–142. doi:10.1016/j.psyneuen.2014.11.008

Liu, L., Wang, J., Shi, L., Zhang, W., Du, X., Wang, Z., et al. (2013). β-Asarone induces senescence in colorectal cancer cells by inducing lamin B1 expression. *Phytomedicine* 20 (6), 512–520. doi:10.1016/j.phymed.2012.12.008

Liu, M., Xiao, Y., Tang, W., Li, J., Hong, L., Dai, W., et al. (2020b). HOXD9 promote epithelial-mesenchymal transition and metastasis in colorectal carcinoma. *Cancer Med.* 9 (11), 3932–3943. doi:10.1002/cam4.2967

Liu, W., Li, W., Liu, H., and Yu, X. (2019). Xanthohumol inhibits colorectal cancer cells via downregulation of Hexokinases II-mediated glycolysis. *Int. J. Biol. Sci.* 15 (11), 2497–2508. doi:10.7150/ijbs.37481

Liu, W. X., Gu, S. Z., Zhang, S., Ren, Y., Sang, L. X., and Dai, C. (2015b). Angiopoietin and vascular endothelial growth factor expression in colorectal disease models. *World J. Gastroenterol.* 21 (9), 2645–2650. doi:10.3748/wjgv21i9.2645

Llanos, J. C., Bakonyi Neto, A., Lerco, M. M., Clark, R. M., Polachini do Valle, A., and Sousa, M. M. (2006). Induction of short gut syndrome and transplantation in a porcine model. *Transpl. Proc.* 38 (6), 1855–1856. doi:10.1016/j.transproceed.2006.06.085

Lo Dico, R., Tijeras-Raballand, A., Bonnin, P., Launay, J. M., Kaci, R., Pimpie, C., et al. (2018). Hepatectomy increases metastatic graft and growth in an immunocompetent murine model of peritoneal metastases. *Eur. J. Surg. Oncol.* 44 (6), 784–791. doi:10.1016/j.ejso.2018.01.096

Lu, S. L., Kawabata, M., Imamura, T., Akiyama, Y., Nomizu, T., Miyazono, K., et al. (1998). HNPCC associated with germline mutation in the TGF-beta type II receptor gene. *Nat. Genet.* 19 (1), 17–18. doi:10.1038/ng0598-17

Lynch, H. T., Smyrk, T., and Lynch, J. (1997). An update of HNPCC (Lynch syndrome). *Cancer Genet. Cytogenet* 93 (1), 84–99. doi:10.1016/s0165-4608(96) 00290-7

Ma, Q., Hoper, M., Anderson, N., and Rowlands, B. J. (1996). Effect of supplemental L-arginine in a chemical-induced model of colorectal cancer. *World J. Surg.* 20 (8), 1087–1091. doi:10.1007/s002689900165

Ma, Z., Lou, S., and Jiang, Z. (2020). PHLDA2 regulates EMT and autophagy in colorectal cancer via the PI3K/AKT signaling pathway. *Aging (Albany NY)* 12 (9), 7985–8000. doi:10.18632/aging.103117

Maletzki, C., Gock, M., Randow, M., Klar, E., Huehns, M., Prall, F., et al. (2015). Establishment and characterization of cell lines from chromosomal instable colorectal cancer. *World J. Gastroenterol.* 21 (1), 164–176. doi:10.3748/wjgv21.i1.164

Manceau, G., Karoui, M., Charachon, A., Delchier, J. C., and Sobhani, I. (2011). HNPCC (hereditary non-polyposis colorectal cancer) or lynch syndrome: A syndrome related to a failure of DNA repair system. *Bull. Cancer* 98 (3), 323–336. doi:10.1684/bdc. 2011.1328

Mao, J. H., Perez-Losada, J., Wu, D., Delrosario, R., Tsunematsu, R., Nakayama, K. I., et al. (2004). Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. *Nature* 432, 775–779. doi:10.1038/nature03155

Marian, B. (2004). Colorectal cancer: Modeling causes, prevention and therapy. Drug Discov. Today Dis. Models 1 (1), 11-17. doi:10.1016/jddmod.2004.07.006

Martin, E. S., Belmont, P. J., Sinnamon, M. J., Richard, L. G., Yuan, J., Coffee, E. M., et al. (2013). Development of a colon cancer GEMM-derived orthotopic transplant model for drug discovery and validation. *Clin. Cancer Res.* 19 (11), 2929–2940. doi:10. 1158/1078-0432.CCR-12-2307

Martorell, Ò., Merlos-Suárez, A., Campbell, K., Barriga, F. M., Christov, C. P., Miguel-Aliaga, I., et al. (2014). Conserved mechanisms of tumorigenesis in the Drosophila adult midgut. *PLoS ONE* 9, 88413. doi:10.1371/journal.pone.0088413

Mashimo, H., Wu, D. C., Podolsky, D. K., and Fishman, M. C. (1996). Impaired defense of intestinal mucosa in mice lacking intestinal trefoil factor. *Science* 274 (5285), 262–265. doi:10.1126/science.274.5285.262

Matsuda, Y., Miura, K., Yamane, J., Shima, H., Fujibuchi, W., Ishida, K., et al. (2016). SERPINI1 regulates epithelial-mesenchymal transition in an orthotopic implantation model of colorectal cancer. *Cancer Sci.* 07 (5), 619–628. doi:10.1111/cas.12909

Mehta, G., Hsiao, A. Y., Ingram, M., Luker, G. D., and Takayama, S. (2012). Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. *J. Control Release* 164 (2), 192–204. doi:10.1016/j.jconrel.2012. 04.045

Mehta, R. S., Song, M., Nishihara, R., Drew, D. A., Wu, K., Qian, Z. R., et al. (2017). Dietary patterns and risk of colorectal cancer: Analysis by tumor location and molecular subtypes. *Gastroenterology* 152 (8), 1944–1953.e1. doi:10.1053/j. gastro.2017.02.015

Mikuła-Pietrasik, J., Sosińska, P., Maksin, K., Kucińska, M. G., Piotrowska, H., Murias, M., et al. (2015). Colorectal cancer-promoting activity of the senescent peritoneal mesothelium. *Oncotarget* 6 (30), 29178–29195. doi:10.18632/oncotarget.4932

Minami, Y., Kanemura, S., Kusaka, J., Kinouchi, M., Suzuki, S., Nishino, Y., et al. (2022). Associations of cigarette smoking, alcohol drinking and body mass index with survival after colorectal cancer diagnosis by anatomic subsite: A prospective patient cohort study in Japan. *Jpn. J. Clin. Oncol.* 52 (12), 1375–1388. doi:10.1093/jjco/hyac140

Mooi, J. K., Luk, I. Y., and Mariadason, J. M. (2018). Cell line models of molecular subtypes of colorectal cancer. *Methods Mol. Biol.* 1765, 3–26. doi:10.1007/978-1-4939-7765-9_1

Moser, A. R., Pitot, H. C., and Dove, W. F. (1990). A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. *Science* 247 (4940), 322–324. doi:10.1126/science.2296722

Mouradov, D., Sloggett, C., Jorissen, R. N., Love, C. G., Li, S., Burgess, A. W., et al. (2014). Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer. *Cancer Res.* 74 (12), 3238–3247. doi:10.1158/0008-5472. CAN-14-0013

Mouse Genome Sequencing Consortium, Waterston, R. H., Lindblad-Toh, K., Birney, E., Rogers, J., Abril, J. F., Agarwal, P., et al. (2002). Initial sequencing and comparative analysis of the mouse genome. *Nature* 420 (6915), 520–562. doi:10.1038/nature01262

Munday, J. S., Brennan, M. M., Jaber, A. M., and Kiupel, M. (2006). Ovine intestinal adenocarcinomas: Histologic and phenotypic comparison with human colon cancer. *Comp. Med.* 56 (2), 136–141.

Nakayama, M., Sakai, E., Echizen, K., Yamada, Y., Oshima, H., Han, T. S., et al. (2017). Intestinal cancer progression by mutant p53 through the acquisition of invasiveness associated with complex glandular formation. *Oncogene* 36 (42), 5885–5896. doi:10. 1038/onc.2017.194

Neufert, C., Becker, C., and Neurath, M. F. (2007). An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression. *Nat. Protoc.* 2, 1998–2004. doi:10.1038/nprot.2007.279

O'Rourke, K. P., Loizou, E., Livshits, G., Schatoff, E. M., Baslan, T., Manchado, E., et al. (2017). Transplantation of engineered organoids enables rapid generation of metastatic mouse models of colorectal cancer. *Nat. Biotechnol.* 35 (6), 577–582. doi:10. 1038/nbt.3837

Orlando, F. A., Tan, D., Baltodano, J. D., Khoury, T., Gibbs, J. F., Hassid, V. J., et al. (2008). Aberrant crypt foci as precursors in colorectal cancer progression. *J. Surg. Oncol.* 98 (3), 207–213. doi:10.1002/jso.21106

Ozirmak Lermi, N., Gray, S. B., Bowen, C. M., Reyes-Uribe, L., Dray, B. K., Deng, N., et al. (2022). Comparative molecular genomic analyses of a spontaneous rhesus macaque model of mismatch repair-deficient colorectal cancer. *PLoS Genet.* 18 (4), 1010163. doi:10.1371/journal.pgen.1010163

Panis, Y., and Nordlinger, B. (1991). Experimental models for hepatic metastases from colorectal tumors. *Ann. Chir.* 45 (3), 222-228.

Papadopoulos, N., and Lindblom, A. (1997). Molecular basis of HNPCC: Mutations of MMR genes. *Hum. Mutat.* 10 (2), 89–99. doi:10.1002/(SICI)1098-1004(1997)10: 2<89:AID-HUMU1>3.0.CO;2-H

Paquette, C. E., Kent, M. L., Buchner, C., Tanguay, R. L., Guillemin, K., Mason, T. J., et al. (2013). A retrospective study of the prevalence and classification of intestinal neoplasia in zebrafish (*Danio rerio*). *Zebrafish* 10 (2), 228–236. doi:10.1089/zeb.2012.0828

Petrović, J., Glamočlija, J., Ilić-Tomić, T., Soković, M., Robajac, D., Nedić, O., et al. (2020). Lectin from Laetiporus sulphureus effectively inhibits angiogenesis and tumor development in the zebrafish xenograft models of colorectal carcinoma and melanoma. *Int. J. Biol. Macromol.* 148, 129–139. doi:10.1016/j.ijbiomac.2020. 01.033

Póvoa, V., Rebelo de Almeida, C., Maia-Gil, M., Sobral, D., Domingues, M., Martinez-Lopez, M., et al. (2021). Innate immune evasion revealed in a colorectal zebrafish xenograft model. *Nat. Commun.* 12 (1), 1156. doi:10.1038/s41467-021-21421-y

Puppa, M. J., White, J. P., Sato, S., Cairns, M., Baynes, J. W., and Carson, J. A. (2011). Gut barrier dysfunction in the $APC^{(Min/+)}$ mouse model of colon cancer cachexia. *Biochim. Biophys. Acta* 1812 (12), 1601–1606. doi:10.1016/j.bbadis.2011.08.010

Qi, Z. P., Yalikong, A., Zhang, J. W., Cai, S. L., Li, B., Di, S., et al. (2021). HDAC2 promotes the EMT of colorectal cancer cells and via the modular scaffold function of ENSG00000274093.1. *J. Cell. Mol. Med.* 25 (2), 1190–1197. doi:10.1111/ jcmm.16186

Qu, D., Shen, L., Liu, S., Li, H., Ma, Y., Zhang, R., et al. (2017). Chronic inflammation confers to the metabolic reprogramming associated with tumorigenesis of colorectal cancer. *Cancer Biol. Ther.* 18 (4), 237–244. doi:10.1080/15384047.2017.1294292

Rajcevic, U., Knol, J. C., Piersma, S., Bougnaud, S., Fack, F., Sundlisaeter, E., et al. (2014). Colorectal cancer derived organotypic spheroids maintain essential tissue characteristics but adapt their metabolism in culture. *Proteome Sci.* 12, 39. doi:10. 1186/1477-5956-12-39

Reddy, B. S. (1998). Colon carcinogenesis models for chemoprevention studies. Hematol. Oncol. Clin. North Am. 12 (5), 963–973. doi:10.1016/s0889-8588(05) 70036-8

Reddy, B. S., and Mori, H. (1981). Effect of dietary wheat bran and dehydrated citrus fiber on 3,2'-dimethyl-4-aminobiphenyl-induced intestinal carcinogenesis in F344 rats. *Carcinogenesis* 2 (1), 21–25. doi:10.1093/carcin/2.1.21

Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C., et al. (2007). Identification and expansion of human colon-cancer-initiating cells. *Nature* 445 (7123), 111–115. doi:10.1038/nature05384

Robanus-Maandag, E. C., Koelink, P. J., Breukel, C., Salvatori, D. C., Jagmohan-Changur, S. C., Bosch, C. A., et al. (2010). A new conditional APC-mutant mouse model for colorectal cancer. *Carcinogenesis* 31 (5), 946–952. doi:10.1093/carcin/bgq046

Rokavec, M., Öner, M. G., Li, H., Jackstadt, R., Jiang, L., Lodygin, D., et al. (2014). IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. *J. Clin. Investig.* 124 (4), 1853–1867. doi:10.1172/JCI73531

Roque-Lima, B., Roque, C. C. T. A., Begnami, M. D., Peresi, P., Lima, E. N. P., Mello, C. A. L., et al. (2019). Development of patient-derived orthotopic xenografts from metastatic colorectal cancer in nude mice. *J. Drug Target* 27 (9), 943–949. doi:10.1080/1061186X.2018.1509983

Rupertus, K., Sinistra, J., Scheuer, C., Nickels, R. M., Schilling, M. K., Menger, M. D., et al. (2014). Interaction of the chemokines I-TAC (CXCL11) and SDF-1 (CXCL12) in the regulation of tumor angiogenesis of colorectal cancer. *Clin. Exp. Metastasis* 31 (4), 447–459. doi:10.1007/s10585-014-9639-4

Rygaard, J., and Poulsen, C. O. (1969). Heterotransplantation of a human malignant tumour to "nude"mice. *Acta Pathol. Microbiol. Scand.* 77, 758–760. doi:10.1111/j.1699-0463.1969.tb04520.x

Saeidnia, S., Manayi, A., and Abdollahi, M. (2015). From *in vitro* experiments to *in vivo* and clinical studies; pros and cons. *Curr. Drug Discov. Technol.* 12 (4), 218–224. doi:10.2174/1570163813666160114093140

Sanford, K. K., Earle, W. R., and Likely, G. D. (1948). The growth *in vitro* of single isolated tissue cells. J. Natl. Cancer Inst. 9 (3), 229-246.

Sangild, P. T., Siggers, R. H., Schmidt, M., Elnif, J., Bjornvad, C. R., Thymann, T., et al. (2006). Diet and colonization-dependent intestinal dysfunction predisposes to

necrotizing enterocolitis in preterm pigs. Gastroenterology 130 (6), 1776–1792. doi:10.1053/j.gastro.2006.02.026

Santini, M. T., and Rainaldi, G. (1999). Three-dimensional spheroid model in tumor biology. *Pathobiology* 67 (3), 148–157. doi:10.1159/000028065

Sato, T., Stange, D. E., Ferrante, M., Vries, R. G., Van Es, J. H., Van den Brink, S., et al. (2011). Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. *Gastroenterology* 141 (5), 1762–1772. doi:10. 1053/j.gastro.2011.07.050

Schafer, M., and Werner, S. (2008). Cancer as an overhealing wound: An old hypothesis revisited. Nat. Rev. Mol. Cell. Biol. 9 (8), 628–638. doi:10.1038/nrm2455

Scheiffele, F., and Fuss, I. J. (2002). Induction of TNBS colitis in mice. *Curr. Protoc. Immunol.* 15, 15.19. doi:10.1002/0471142735.im1519s49

Schottelius, A., and Baldwin, A., Jr (1999). A role for transcription factor NF-κB in intestinal inflammation. *Int. J. Color. Dis.* 14, 18–28. doi:10.1007/s003840050178

Seignez, C., Martin, A., Rollet, C. E., Racoeur, C., Scagliarini, A., Jeannin, J. F., et al. (2014). Senescence of tumor cells induced by oxaliplatin increases the efficiency of a lipid A immunotherapy via the recruitment of neutrophils. *Oncotarget* 5 (22), 11442–11451. doi:10.18632/oncotarget.2556

Senga, S. S., and Grose, R. P. (2021). Hallmarks of cancer-the new testament. Open Biol. 11 (1), 200358. doi:10.1098/rsob.200358

Seril, D. N., Liao, J., West, A. B., and Yang, G. Y. (2006). High-iron diet: Foe or feat in ulcerative colitis and ulcerative colitis-associated carcinogenesis. *J. Clin. Gastroenterol.* 40 (5), 391–397. doi:10.1097/00004836-200605000-00006

Sharma, S. V., Haber, D. A., and Settleman, J. (2010). Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. *Nat. Rev. Cancer* 10 (4), 241–253. doi:10.1038/nrc2820

Shen, T., Yue, C., Wang, X., Wang, Z., Wu, Y., Zhao, C., et al. (2021). NFATC1 promotes epithelial-mesenchymal transition and facilitates colorectal cancer metastasis by targeting SNAI1. *Exp. Cell. Res.* 408 (1), 112854. doi:10.1016/j. yexcr.2021.112854

Shi, L., Wang, J., Ding, N., Zhang, Y., Zhu, Y., Dong, S., et al. (2019). Inflammation induced by incomplete radiofrequency ablation accelerates tumor progression and hinders PD-1 immunotherapy. *Nat. Commun.* 10 (1), 5421. doi:10.1038/s41467-019-13204-3

Shoemaker, A. R., Gould, K. A., Luongo, C., Moser, A. R., and Dove, W. F. (1997). Studies of neoplasia in the Min mouse. *Biochim. Biophys. Acta* 1332 (2), 25–48. doi:10. 1016/s0304-419x(96)00041-8

Shoemaker, A. R., Moser, A. R., Midgley, C. A., Clipson, L., Newton, M. A., and Dove, W. F. (1998). A resistant genetic background leading to incomplete penetrance of intestinal neoplasia and reduced loss of heterozygosity in APC^{Min/+} mice. *Proc. Natl. Acad. Sci. U. S. A.* 95 (18), 10826–10831. doi:10.1073/pnas.95.18.10826

Smits, R., Kartheuser, A., Jagmohan-Changur, S., Leblanc, V., Breukel, C., De Vries, A., et al. (1997). Loss of APC and the entire chromosome 18 but absence of mutations at the Ras and Tp53 genes in intestinal tumors from APC1638N, a mouse model for APC-driven carcinogenesis. *Carcinogenesis* 18, 321–327. doi:10. 1093/carcin/18.2.321

Sun, Q., Yang, H., Liu, M., Ren, S., Zhao, H., Ming, T., et al. (2022). Berberine suppresses colorectal cancer by regulation of Hedgehog signaling pathway activity and gut microbiota. *Phytomedicine* 103, 154227. doi:10.1016/j.phymed.2022.154227

Sun, X., Jiang, X., Wu, J., Ma, R., Wu, Y., Cao, H., et al. (2020). IRX5 prompts genomic instability in colorectal cancer cells. *J. Cell. Biochem.* 121 (11), 4680–4689. doi:10.1002/ jcb.29693

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J. Clin.* 71 (3), 209–249. doi:10. 3322/caac.21660

Tai, J., Wang, G., Liu, T., Wang, L., Lin, C., and Li, F. (2012). Effects of siRNA targeting c-Myc and VEGF on human colorectal cancer Volo cells. J. Biochem. Mol. Toxicol. 26 (12), 499–505. doi:10.1002/jbt.21455

Takaku, K., Oshima, M., Miyoshi, H., Matsui, M., Seldin, M. F., and Taketo, M. M. (1998). Intestinal tumorigenesis in compound mutant mice of both Dpc4 (SMAD4) and APC genes. *Cell.* 92, 645–656. doi:10.1016/s0092-8674(00)81132-0

Talmadge, J. E., Singh, R. K., Fidler, I. J., and Raz, A. (2007). Murine models to evaluate novel and conventional therapeutic strategies for cancer. *Am. J. Pathol.* 170 (3), 793–804. doi:10.2353/ajpath.2007.060929

Tanaka, T., Suzuki, R., Kohno, H., Sugie, S., Takahashi, M., and Wakabayashi, K. (2005). Colonic adenocarcinomas rapidly induced by the combined treatment with 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine and dextran sodium sulfate in male ICR mice possess β -catenin gene mutations and increases immunoreactivity for β -catenin, cyclooxygenase-2 and inducible nitric oxide synthase. *Carcinogenesis* 26, 229–238. doi:10.1093/carcin/bgh292

Tato-Costa, J., Casimiro, S., Pacheco, T., Pires, R., Fernandes, A., Alho, I., et al. (2016). Therapy-induced cellular senescence induces epithelial-to-mesenchymal transition and increases invasiveness in rectal cancer. *Clin. Colorectal Cancer* 15 (2), 170–178. doi:10. 1016/j.clcc.2015.09.003 Thoma, C. R., Zimmermann, M., Agarkova, I., Kelm, J. M., and Krek, W. (2014). 3D cell culture systems modeling tumor growth determinants in cancer target discovery. *Adv. Drug Deliv. Rev.* 69-70, 29–41. doi:10.1016/j.addr.2014.03.001

Tian, X., Han, Z., Zhu, Q., Tan, J., Liu, W., Wang, Y., et al. (2018). Silencing of cadherin-17 enhances apoptosis and inhibits autophagy in colorectal cancer cells. *Biomed. Pharmacother.* 108, 331–337. doi:10.1016/j.biopha.2018.09.020

Trede, N. S., Langenau, D. M., Traver, D., Look, A. T., and Zon, L. I. (2004). The use of zebrafish to understand immunity. *Immunity* 20 (4), 367–379. doi:10.1016/s1074-7613(04)00084-6

Uneyama, M., Chambers, J. K., Nakashima, K., Uchida, K., and Nakayama, H. (2021). Histological classification and immunohistochemical study of feline colorectal epithelial tumors. *Vet. Pathol.* 58 (2), 305–314. doi:10.1177/0300985820974279

Unterleuthner, D., Neuhold, P., Schwarz, K., Janker, L., Neuditschko, B., Nivarthi, H., et al. (2020). Cancer-associated fibroblast-derived WNT2 increases tumor angiogenesis in colon cancer. *Angiogenesis* 23 (2), 159–177. doi:10.1007/s10456-019-09688-8

Valent, P., Bonnet, D., De Maria, R., Lapidot, T., Copland, M., Melo, J. V., et al. (2012). Cancer stem cell definitions and terminology: The devil is in the details. *Nat. Rev. Cancer* 12 (11), 767–775. doi:10.1038/nrc3368

Van de Wetering, M., Francies, H. E., Francis, J. M., Bounova, G., Iorio, F., Pronk, A., et al. (2015). Prospective derivation of a living organoid biobank of colorectal cancer patients. *Cell.* 161 (4), 933–945. doi:10.1016/j.cell.2015.03.053

Van der Sluis, M., De Koning, B. A., De Bruijn, A. C., Velcich, A., Meijerink, J. P., Van Goudoever, J. B., et al. (2006). MUC2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. *Gastroenterology* 131 (1), 117–129. doi:10.1053/j.gastro.2006.04.020

Van, R. B., Tops, C. M., and Vasen, H. F. (2000). From gene to disease; the APC gene and familial adenomatous polyposis coli. *Ned. Tijdschr. Geneeskd.* 144 (42), 2007–2009.

Vécsey-Semjén, B., Becker, K. F., Sinski, A., Blennow, E., Vietor, I., Zatloukal, K., et al. (2002). Novel colon cancer cell lines leading to better understanding of the diversity of respective primary cancers. *Oncogene* 21 (30), 4646–4662. doi:10.1038/sj.onc.1205577

Vétillard, A., Jonchère, B., Moreau, M., Toutain, B., Henry, C., Fontanel, S., et al. (2015). Akt inhibition improves irinotecan treatment and prevents cell emergence by switching the senescence response to apoptosis. Oncotarget 6 (41), 43342–43362. doi:10.18632/oncotarget.6126

Vlachogiannis, G., Hedayat, S., Vatsiou, A., Jamin, Y., Fernández-Mateos, J., Khan, K., et al. (2018). Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. *Science* 359 (6378), 920–926. doi:10.1126/scienceaao2774

Wang, G., Yang, X., Li, C., Cao, X., Luo, X., and Hu, J. (2014). PIK3R3 induces epithelial-to-mesenchymal transition and promotes metastasis in colorectal cancer. *Mol. Cancer Ther.* 13 (7), 1837–1847. doi:10.1158/1535-7163.MCT-14-0049

Wang, H., Wang, H. S., Zhou, B. H., Li, C. L., Zhang, F., Wang, X. F., et al. (2013). Epithelial-mesenchymal transition (EMT) induced by TNF- α requires AKT/GSK-3 β -mediated stabilization of snail in colorectal cancer. *PLoS One* 8 (2), e56664. doi:10.1371/journal.pone.0056664

Wang, J., Chen, D., Song, W., Liu, Z., Ma, W., Li, X., et al. (2020). ATP6L promotes metastasis of colorectal cancer by inducing epithelial-mesenchymal transition. *Cancer Sci.* 111 (2), 477–488. doi:10.1111/cas.14283

Wang, L., Zuo, X., Xie, K., and Wei, D. (2018). The role of CD44 and cancer stem cells. Methods Mol. Biol. 1692, 31-42. doi:10.1007/978-1-4939-7401-6_3

Wei, J., Zhang, J., Wang, D., Cen, B., Lang, J. D., and DuBois, R. N. (2022). The COX-2-PGE2 pathway promotes tumor evasion in colorectal adenomas. *Cancer Prev. Res.* (*Phila*). 15 (5), 285–296. doi:10.1158/1940-6207.CAPR-21-0572

Weiswald, L. B., Bellet, D., and Dangles, M. V. (2015). Spherical cancer models in tumor biology. *Neoplasia* 17 (1), 1–15. doi:10.1016/j.neo.2014.12.004

Weiswald, L. B., Richon, S., Validire, P., Briffod, M., Lai-Kuen, R., Cordelières, F. P., et al. (2009). Newly characterised *ex vivo* colospheres as a three-dimensional colon cancer cell model of tumour aggressiveness. *Br. J. Cancer* 101 (3), 473–482. doi:10.1038/sj.bjc.6605173

Wirtz, S., Neufert, C., Weigmann, B., and Neurath, M. F. (2007). Chemically induced mouse models of intestinal inflammation. *Nat. Protoc.* 2 (3), 541–546. doi:10.1038/nprot.2007.41

Wu, M., Wu, Y., Deng, B., Li, J., Cao, H., Qu, Y., et al. (2016). Isoliquiritigenin decreases the incidence of colitis-associated colorectal cancer by modulating the intestinal microbiota. *Oncotarget* 7 (51), 85318–85331. doi:10.18632/oncotarget.13347

Wu, X., Mao, F., Li, N., Li, W., Luo, Y., Shi, W., et al. (2020). NF2/Merlin suppresses proliferation and induces apoptosis in colorectal cancer cells. *Front. Biosci. (Landmark Ed.* 25 (3), 513–525. doi:10.2741/4817

Wu, Z., Zuo, M., Zeng, L., Cui, K., Liu, B., Yan, C., et al. (2021). OMA1 reprograms metabolism under hypoxia to promote colorectal cancer development. *EMBO Rep.* 22 (1), 50827. doi:10.15252/embr.202050827

Xing, C., Wang, M., Ajibade, A. A., Tan, P., Fu, C., Chen, L., et al. (2021). Microbiota regulate innate immune signaling and protective immunity against cancer. *Cell. Host Microbe* 29 (6), 959–974.e7. doi:10.1016/j.chom.2021.03.016

Yang, Y., He, J., Zhang, B., Zhang, Z., Jia, G., Liu, S., et al. (2021a). SLC25A1 promotes tumor growth and survival by reprogramming energy metabolism in colorectal cancer. *Cell. Death Dis.* 12 (12), 1108. doi:10.1038/s41419-021-04411-2

Yang, Y. S., Wen, D., and Zhao, X. F. (2021c). Sophocarpine can enhance the inhibiting effect of oxaliplatin on colon cancer liver metastasis-*in vitro* and *in vivo*. *Naunyn Schmiedeb*. *Arch. Pharmacol.* 394 (6), 1263–1274. doi:10.1007/s00210-020-02032-8

Yang, Y., Yan, T., Han, Q., Zhang, M., Zhang, Y., Luo, Y., et al. (2021b). ZNF326 promotes colorectal cancer epithelial-mesenchymal transition. *Pathol. Res. Pract.* 225, 153554. doi:10.1016/j.prp.2021.153554

Yang, Z., Wu, D., Chen, Y., Min, Z., and Quan, Y. (2019). GRHL2 inhibits colorectal cancer progression and metastasis via oppressing epithelial-mesenchymal transition. *Cancer Biol. Ther.* 20 (9), 1195–1205. doi:10.1080/15384047.2019.1599664

Yin, K., Lee, J., Liu, Z., Kim, H., Martin, D. R., Wu, D., et al. (2021). Mitophagy protein PINK1 suppresses colon tumor growth by metabolic reprogramming via p53 activation and reducing acetyl-CoA production. *Cell. Death Differ.* 28 (8), 2421–2435. doi:10.1038/s41418-021-00760-9

Yin, Y., Cao, L. Y., Wu, W. Q., Li, H., Jiang, Y., and Zhang, H. F ((2010). Blocking effects of siRNA on VEGF expression in human colorectal cancer cells. *World J. Gastroenterol.* 16 (9), 1086–1092. doi:10.3748/wjg.v16.i9.1086

Youmans, L., Taylor, C., Shin, E., Harrell, A., Ellis, A. E., Séguin, B., et al. (2012). Frequent alteration of the tumor suppressor gene APC in sporadic canine colorectal tumors. *PLoS One* 7 (12), 50813. doi:10.1371/journal.pone.0050813

Yu, H. K., Ahn, J. H., Lee, H. J., Lee, S. K., Hong, S. W., Yoon, Y., et al. (2005). Expression of human apolipoprotein(a) kringles in colon cancer cells suppresses angiogenesis-dependent tumor growth and peritoneal dissemination. *J. Gene Med.* 7 (1), 39–49. doi:10.1002/jgm.638

Yu, Y., Cai, Y., Yang, B., Xie, S., Shen, W., Wu, Y., et al. (2022). High-fat diet enhances the liver metastasis potential of colorectal cancer through microbiota dysbiosis. *Cancers (Basel)*. 14 (11), 2573. doi:10.3390/cancers14112573

Yuan, H., Tu, S., Ma, Y., and Sun, Y. (2021). Downregulation of lncRNA RPLP0P2 inhibits cell proliferation, invasion and migration, and promotes apoptosis in colorectal cancer. *Mol. Med. Rep.* 23 (5), 309. doi:10.3892/mmr.2021.11948

Zeng, S., Tan, L., Sun, Q., Chen, L., Zhao, H., Liu, M., et al. (2022). Suppression of colitis-associated colorectal cancer by scutellarin through inhibiting Hedgehog signaling pathway activity. *Phytomedicine* 98, 153972. doi:10.1016/j.phymed.2022.153972

Zhang, C., Wang, X. Y., Zhang, P., He, T. C., Han, J. H., Zhang, R., et al. (2022). Cancer-derived exosomal HSPC111 promotes colorectal cancer liver metastasis by reprogramming lipid metabolism in cancer-associated fibroblasts. *Cell. Death Dis.* 13 (1), 57. doi:10.1038/s41419-022-04506-4

Zhang, L., Wang, X., Lai, C., Zhang, H., and Lai, M. (2019). PMEPA1 induces EMT via a non-canonical TGF- β signalling in colorectal cancer. J. Cell. Mol. Med. 23 (5), 3603–3615. doi:10.1111/jcmm.14261

Zhang, W. L., Li, N., Shen, Q., Fan, M., Guo, X. D., Zhang, X. W., et al. (2020). Establishment of a mouse model of cancer cachexia with spleen deficiency syndrome and the effects of atractylenolide I. *Acta Pharmacol. Sin.* 41 (2), 237–248. doi:10.1038/s41401-019-0275-z

Zhang, Y., Gao, Y., Zhang, G., Huang, S., Dong, Z., Kong, C., et al. (2011). DNMT3a plays a role in switches between doxorubicin-induced senescence and apoptosis of colorectal cancer cells. *Int. J. Cancer* 128 (3), 551–561. doi:10.1002/ijc.25365

Zhao, G. X., Xu, Y. Y., Weng, S. Q., Zhang, S., Chen, Y., Shen, X. Z., et al. (2019). CAPS1 promotes colorectal cancer metastasis via Snail mediated epithelial mesenchymal transformation. *Oncogene* 38 (23), 4574–4589. doi:10.1038/s41388-019-0740-7

Zhao, Q., Guan, J., and Wang, X. (2020). Intestinal stem cells and intestinal organoids. J. Genet. Genomics 47 (6), 289–299. doi:10.1016/j.jgg.2020.06.005

Zhao, Y., Wang, Y., and Wang, Q. (2021). HNRNPL affects the proliferation and apoptosis of colorectal cancer cells by regulating PD-L1. *Pathol. Res. Pract.* 218, 153320. doi:10.1016/j.prp.2020.153320

Zhao, Y., Zhang, B., Ma, Y., Zhao, F., Chen, J., Wang, B., et al. (2022). Colorectal cancer patient-derived 2d and 3d models efficiently recapitulate inter- and intratumoral heterogeneity. *Adv. Sci. (Weinheim, Baden-Wurttemberg, Ger.* 9 (22), e2201539. doi:10.1002/advs.202201539

Zhu, G., Cheng, Z., Lin, C., Hoffman, R. M., Huang, Y., Singh, S. R., et al. (2019). MyD88 regulates LPS-induced NF-κB/MAPK cytokines and promotes inflammation and malignancy in colorectal cancer cells. *Cancer Genomics Proteomics* 16 (6), 409–419. doi:10. 21873/cgp.20145

Zhu, Y., Huang, S., Chen, S., Chen, J., Wang, Z., Wang, Y., et al. (2021). SOX2 promotes chemoresistance, cancer stem cells properties, and epithelial-mesenchymal transition by β -catenin and Beclin1/autophagy signaling in colorectal cancer. *Cell. Death Dis.* 12 (5), 449. doi:10.1038/s41419-021-03733-5

Zhuang, Y. W., Wu, C. E., Zhou, J. Y., Zhao, Z. M., Liu, C. L., Shen, J. Y., et al. (2018). Solasodine reverses stemness and epithelial-mesenchymal transition in human colorectal cancer. Biochem. Biophys. Res. Commun. 505 (2), 485–491. doi:10.1016/j.bbrc.2018.09.094

Zorzi, M., and Urso, E. D. L. (2022). Impact of colorectal cancer screening on incidence, mortality and surgery rates: Evidences from programs based on the fecal immunochemical test in Italy. *Dig. Liver Dis.* S1590-8658 (22), 336–341. doi:10.1016/j.dld.2022.08.013

Zou, W., Zhang, Y., Bai, G., Zhuang, J., Wei, L., Wang, Z., et al. (2022). siRNAinduced CD44 knockdown suppresses the proliferation and invasion of colorectal cancer stem cells through inhibiting epithelial-mesenchymal transition. *J. Cell. Mol. Med.* 26 (7), 1969–1978. doi:10.1111/jcmm.17221

Glossary

G10556	ar y	KRAS	Kirsten rats arcomaviral oncogene homolog
ACF	Aberrant crypt foci	LGR5 ⁺	Leucine-rich repeat-containing G-protein-coupled receptor 5
АОМ	Anaerobic oxidation of methane	LMNB1	Lamin B1
APC	Adenomatous polyposis coli	LPS	Lipopolysaccharide
ARID1A	AT-rich interaction domain 1A	MCTS	Multicellular tumor spheroids
ASCs	Adult stem cells	MNU	N-methyl-N-nitrosourea
B7x	B7 homolog x	MNNG	N-methyl-N-nitrosoguanidine
BRAF	B-Raf proto-oncogene, serine/threonine kinase	MTA3	Metastasis associated 1 family member 3
CAFs	Cancer-associated fibroblasts	NFATc1	Nuclear factor of activated T-cells
CAPS1	Cryopyrin-associated periodic syndromes 1	NF2	Neurofibromin 2
CDH17	Cadherin 17	NF-kB	Nuclear factor-kappa B
CIN	Chromosome instability	NRAS	NRAS proto-oncogene, GTPase
C-Myc	Cellular-myelocytomatosis viral oncogene	OMS	Organotypic multicellular spheroids
CRC	Colorectal cancer	p53	Tumor protein 53
CSCs	Colorectal cancer stem cells	PDOs	Patient-derived organoids
CXCL12	C-X-C motif chemokine ligand 12	PhIP	Parahydrogen-induced polarization
DHS	Damp-heat syndrome	PHLDA2	Pleckstrin homology-like domain family A member 2
DKK2	Dickkopf associated protein 2	PIM	Potentially inappropriate medication
DMH	1,2 Dimethyl hydrazine	PIK3CA	Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha
DMAB	3,2'-Dimethyl-4-Aminobiphenyl	PMEPA1	Prostate transmembrane protein androgen induced 1
DSS	Dextran sodium sulfate	RIP3	Receptor interacting protein kinase 3
EMT	Epithelial-mesenchymal transition	RPLP0P2	Ribosomal protein lateral stalk subunit P0 pseudogene 2
ENU	N-ethyl-N-nitrosourea	SARI	Severe acute respiratory infection
ESCs	Embryonic stem cells	SDS	Spleen qi deficiency syndrome
FAM123B	APC membrane recruitment protein 1	SGPL1	Sphingosine phosphate lyase 1
FBXW7	F-box and WD repeat domain containing 7	SLC25A1	Solute carrier family 25 member 1
FFA	Free fatty acids	SMAD4	SMAD family member 4
FOXO6	Forkhead Box O6	SOX2	SRY-box transcription Factor 2
HDAC1	Histone deacetylase 1	SOX9	SRY-box transcription factor 9
HFD	High-fat diet	TBX5	T-box transcription factor 5
HIF-1a	Hypoxia-inducible factor-1a	TCF7L2	Transcription factor 7-like 2
HISC	Human intestinal stem cell	ТСМ	Traditional Chinese medicine
HK2	Human kallikrein 2	TDTS	Tissue-derived tumor spheres
HNRNPL	Heterogeneous nuclear ribonucleoprotein L	TGF-β	Transforming growth factor β
HNPCC	Hereditary nonpolyposis colorectal cancer	TME	Tumor microenvironment
ILK	Integrin-linked kinase	TNBS	2,4,6-Trinitro-benzenesulfonic acid
iPSCs	Induced pluripotent stem cells	TNF-a	Tumor necrosis factor-a
IL-6	Interleukin-6	TRIB2	Tribbles homolog 2
IL-8	Interleukin-8	VEGF	Vascular endothelial growth factor
IRTSS	Internal retention of toxin stagnation syndrome	ZNF326	Zinc-finger protein 326
IRX5	Iroquois homeobox gene 5		