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Inflammatory bowel disease (IBD) is a group of chronic inflammatory disorders of
the gastrointestinal tract, mainly including Crohn’s disease and ulcerative colitis.
Epidemiological findings suggest that inadequate dietary fibers intakemay be a risk
factor for IBD. Oat beta-glucan is a type of fermentable dietary fiber and has been
proved to reduce experimental colitis. However, the mechanism remains unclear.
The aim of this study was to explore the role and possible mechanism of oat beta-
glucan in reducing experimental colitis. We used a dextran sulfate sodium (DSS)-
inducedmice acute colitis model to explore the potential mechanism of oat beta-
glucan in reducing experimental colitis. As a result, oat beta-glucan upregulated
the expressions of Erythropoietin-producing hepatocyte receptor B6 (EPHB6) and
transcription factor EB (TFEB), promoted autophagy flux and downregulated the
expressions of interleukin 1 beta (IL-1β), interleukin 6 (IL-6) and tumor necrosis
factor alpha (TNF-α) in intestinal epithelial cells (IECs). The role of the EPHB6-TFEB
axis was explored using a lipopolysaccharide-induced HT-29 cells inflammation
model. The results revealed that EPHB6 regulated the expression of TFEB, and
knockdown of EPHB6 decreased the protein level of TFEB. When EPHB6 or TFEB
was knocked down, autophagy flux was inhibited, and the anti-inflammatory
effect of sodium butyrate, a main metabolite of oat beta-glucan in the gut, was
blocked. In summary, our findings demonstrated that oat beta-glucan reduced
DSS-induced acute colitis in mice, promoted autophagy flux via EPHB6-TFEB axis
and downregulated the expressions of IL-1β, IL-6 and TNF-α in IECs, and this effect
may be mediated by butyrate.
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Introduction

Inflammatory bowel disease (IBD) is a group of chronic inflammatory disorders of the
gastrointestinal tract, mainly including Crohn’s disease (CD) and ulcerative colitis (UC)
(Torres et al., 2017; Ungaro et al., 2017). The etiology of IBD has not been elucidated and
may involve genetic and environmental factors (Ananthakrishnan, 2015). Epidemiological
findings suggest that inadequate dietary fibers intake may be one of the potential risk factors
for IBD (Levine et al., 2018).

Chronic deficiency of dietary fibers may decrease intestinal microbial diversity and
reduce short-chain fatty acids (SCFAs) production, disrupting the intestinal epithelial barrier
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and promoting the occurrence and development of IBD (Martini
et al., 2017; Makki et al., 2018). SCFAs are key metabolites of dietary
fibers in the gut andmainly include acetate, propionate and butyrate.
Acetate and propionate are mainly metabolized in the periphery,
while butyrate is mainly metabolized in the colonic epithelial cells
and is an important source of energy for them (Koh et al., 2016;
Boets et al., 2017).

Studies have suggested that butyrate not only provides energy to
intestinal epithelial cells (IECs), but also regulates their function and
proliferation (Hamer et al., 2008; Couto et al., 2020; Hodgkinson
et al., 2022). Normally, IECs maintain intestinal homeostasis by
forming physical and biochemical barriers, and their functional
defects and abnormal death could disrupt the integrity of the
intestinal epithelial barrier and increase intestinal permeability
(Peterson and Artis, 2014; Patankar and Becker, 2020).

Dietary fibers come from a wide range of sources, and not all
types could reduce intestinal inflammation (Wong et al., 2016). Oat
beta-glucan is a fermentable dietary fiber that can be metabolized by
intestinal microbes to produce SCFAs (Gill et al., 2021). There is
evidence that alterations in the composition of intestinal microbes in
patients with CD and UC are mainly characterized by reduced
abundance of butyrate-producing bacteria such as Faecalibacterium
prausnitzii (Joossens et al., 2011; Machiels et al., 2014). Supplying
dietary fibers that promotes butyrate production is a potential
strategy to prevent or treat colitis. Oat beta-glucan has been
confirmed to increase butyrate level in the gut and reduce
experimental colitis in mice, but the exact mechanism remains
unclear (Liu et al., 2015; Bai et al., 2021).

Erythropoietin-producing hepatocyte receptor B6 (EPHB6) is a
receptor tyrosine kinase that regulates the intestinal epithelial
barrier, and knockdown of EPHB6 significantly increases
intestinal permeability in mice (Li et al., 2020). Moreover,
EPHB6 has been reported to regulate the activation of
transcription factor EB (TFEB) (Zangrossi et al., 2021). TFEB is
an important regulatory transcription factor of autophagy and is
involved in regulating not only lysosomal biogenesis but also the
expressions of other autophagy-related genes (Sardiello et al., 2009;
Settembre and Ballabio, 2011; Settembre et al., 2011). It has been
reported that TFEB may regulate the inflammatory response by
regulating the autophagy-lysosome pathway and that specific
knockout of TFEB in IECs aggravates dextran sulfate sodium
(DSS)-induced colitis (Murano et al., 2017; Brady et al., 2018).

In this study, we used a DSS-induced mice acute colitis model to
explore the potential mechanism of oat beta-glucan in reducing
experimental colitis and a lipopolysaccharide-induced HT-29 cells
inflammation model to explore the role of the EPHB6-TFEB axis in
the mechanism of oat beta-glucan in reducing experimental colitis,
hoping to provide more evidence to support the prevention or
treatment of IBD with oat beta-glucan (Figure 1).

Materials and methods

Animals

C57BL/6 specific pathogen-free male mice (8-week-old,
weighting 21–23 g) were purchased from Beijing Vital River
Laboratory Animal Technology Co., Ltd., (Beijing, China). Mice

were housed in the barrier system experimental area of the
Experimental Animal Center of Huazhong University of Science
and Technology (Wuhan, China). The experimental area was at
constant temperature and humidity, with fixed light hours, and
experimental animals had free access to adequate food and water.
60 mice were randomly divided into 4 groups of 15 mice each:
control group (Control), oat beta-glucan group (βG), colitis group
(DSS) and oat beta-glucan treatment group (DSS+βG). The
modeling period was 2 weeks. In the first week, the Control and
DSS groups were given AIN-93M purified diet (Xietong, Nanjing,
China), and the βG and DSS+βG groups were given AIN-93M
purified diet with 10% (w/w) oat beta-glucan (purity: 80%, replace
corn starch, Xietong, Nanjing, China). In the second week, the
Control group was given AIN-93M purified diet, the βG group was
given AIN-93M purified diet with 10% (w/w) oat beta-glucan, the
DSS group was given AIN-93M purified diet and induced acute
colitis by administration of 3% (w/v) DSS (MP Biomedicals, IIIkirch,
France) in drinking water for 7 days, and the DSS+βG group was
given AIN-93M purified diet with 10% (w/w) oat beta-glucan and
induced acute colitis by administration of 3% (w/v) DSS in drinking
water for 7 days. At the end of modeling, mice were sacrificed, and
the colon of about 0.5 mm near the anal side was fixed in 4%
paraformaldehyde (Pinuofei, Wuhan, China) for 24 h and
embedded in paraffin by Wuhan Pinuofei Biological Technology
Co., Ltd., (Wuhan, China), and the rest of the colon tissues were used
to isolate intestinal epithelial cells (IECs) immediately for
subsequent study.

Disease activity index scoring

Disease activity index (DAI) score consists of three components:
body weight, stool consistency and stool blood, which were recorded
daily during the modeling period. The standard of weight loss score:
score 0 for no weight loss, score 1 for weight loss within 1%–5%,

FIGURE 1
Flow chart of the study.
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score 2 for weight loss within 5%–10%, score 3 for weight loss within
10%–15% and score 4 for weight loss more than 15%. The standard
of stool consistency score: score 0 for normal, score 2 for loose stool
and score 4 for diarrhea. The standard of stool blood score: score
0 for negative occult blood, score 2 for positive occult blood and
score 4 for rectal bleeding.

Cell culture and plasmid transfection

HT-29 cells, a human colorectal adenocarcinoma cell line with
epithelial morphology, were obtained from the laboratory of
Department of Gastroenterology, Union Hospital, Tongji Medical
College, Huazhong University of Science and Technology (Wuhan,
China) and cultured in RPMI 1640 medium (Hycezmbio, Wuhan,
China) supplemented with 10% (v/v) fetal bovine serum (Gbico,
United States) and 1% (v/v) penicillin-streptomycin (Beyotime,
Shanghai, China) in the incubator at 37°C and 5% CO2

concentration. Knock down EPHB6 and TFEB in HT-29 cells
using EPHB6 specific short hairpin RNA (shRNA) plasmid
(Genechem, Shanghai, China) and TFEB specific shRNA plasmid
(Genechem, Shanghai, China), respectively. Cells were seeded in 24-
well plates 1 day before transfection, and the complete medium was
replaced 2 h before transfection. Cells were then transfected with the
transfection complex of 0.5 μg plasmid carrying shRNA, 50 μL Opti-
MEM (Gbico, United States) and 0.5 μL transfection reagent
(Neofect, Beijing, China) in 500 μL complete medium and
cultured for 48 h. Inflammation was induced using
lipopolysaccharide (LPS). There were 6 groups: control group
(Control), LPS group (LPS), sodium butyrate (NaB) treatment
group (LPS + NaB), empty plasmid vector group (shCtrl),

EPHB6 knockdown group (shEPHB6) and TFEB knockdown
group (shTFEB). The LPS group was given LPS (10 μg/mL,
Solarbio, Beijing, China), the LPS + NaB group was given LPS
(10 μg/mL) and NaB (0.5 mmol/L, Beyotime, Shanghai, China), and
the shCtrl, shEPHB6 and shTFEB groups were given LPS (10 μg/
mL) and NaB (0.5 mmol/L). Intervention duration for all groups
was 24 h.

Hematoxylin-eosin staining

Hematoxylin-eosin staining (H&E) was performed by Wuhan
Pinuofei Biological Technology Co., Ltd., (Wuhan, China). Images
were captured by the optical microscope (Olympus, Japan).

Immunohistochemistry

Immunohistochemistry (IHC) assay for interleukin 1 beta (IL-1β),
interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) was
performed by Wuhan Pinuofei Biological Technology Co., Ltd.,
(Wuhan, China). Images were captured by the optical microscope
(Olympus, Japan).

Immunofluorescence

Sections of colon tissues were deparaffinized and rehydrated.
Antigens were retrieved by treatment of slides with citrate buffer
(10 mmol/L, pH 6.0, Servicebio, Wuhan, China) for 2 min at 100°C,
and then slides were washed in PBS for 3 times, 5 min each time.
Non-specific staining was blocked by incubation of slides in normal
donkey serum (Antgene, Wuhan, China) for 30 min at room
temperature. Slides were then incubated with anti-microtubule
associated protein 1 light chain 3 beta (LC3B) primary antibody
(1:200, ABclonal, Wuhan, China) overnight at 4°C. After washed in
PBS for 3 times, 5 min each time, slides were incubated with Alexa
Fluor 488-conjugated secondary antibody (1:200, Servicebio,
Wuhan, China) for 1 h at room temperature. Slides were then
washed in PBS for 3 times, 5 min each time, and finally covered
with anti-fade mounting medium with DAPI (Antgene, Wuhan,
China). Images were captured by the fluorescence microscope
(Olympus, Japan).

IECs isolation

The colon was washed in cold phosphate buffered saline (PBS)
(Gbico, United States) and then cut into 5 mm tissue segments.
Tissues were incubated in 15 mL mixture of ethylene diamine
tetraacetic acid (EDTA) (Sigma, Germany) and dithiothreitol
(Roche, Switzerland) and shaken slowly for 75 min at 4°C. The
concentration of EDTA in the mixture was 8 mmol/L, and the
concentration of dithiothreitol was 1 mmol/L. Tissues were then
removed and washed in cold PBS and shaken vigorously for several
times. The tissue suspension was filtered quickly through a 70 μm
filter and centrifuged at 800 g for 5 min at 4°C. The sediment was
enriched with IECs.

TABLE 1 Primer sequences.

Gene name Primer sequences (5′-3′)

Il1β (mouse) Forward: GAAATGCCACCTTTTGACAGTG

Reverse: TGGATGCTCTCATCAGGACAG

Il6 (mouse) Forward: TAGTCCTTCCTACCCCAATTTCC

Reverse: TTGGTCCTTAGCCACTCCTTC

Tnfα (mouse) Forward: CCTGTAGCCCACGTCGTAG

Reverse: GGGAGTAGACAAGGTACAACCC

Actb (mouse) Forward: GTGACGTTGACATCCGTAAAGA

Reverse: GCCGGACTCATCGTACTCC

IL1β (human) Forward: ATGATGGCTTATTACAGTGGCAA

Reverse: GTCGGAGATTCGTAGCTGGA

IL6 (human) Forward: ACTCACCTCTTCAGAACGAATTG

Reverse: CCATCTTTGGAAGGTTCAGGTTG

TNFα (human) Forward: GAGGCCAAGCCCTGGTATG

Reverse: CGGGCCGATTGATCTCAGC

ACTB (human) Forward: CATGTACGTTGCTATCCAGGC

Reverse: CTCCTTAATGTCACGCACGAT

Frontiers in Pharmacology frontiersin.org03

Xu et al. 10.3389/fphar.2023.1189229

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1189229


RNA sequencing

5 samples of IECs were randomly selected from the DSS+βG and
DSS groups by random lottery method and sent for RNA sequencing.
RNA quantification and qualification, cDNA libraries preparation,
clustering and sequencing and data analyses were performed by
Metware Biotechnology Co., Ltd., (Wuhan, China). The cDNA
libraries were sequenced on the Illumina sequencing platform.

RNA isolation and quantitative real-time
polymerase chain reaction

Total RNA was isolated from IECs or HT-29 cells using
RNA-easy lsolation Reagent (Vazyme, Nanjing, China). 500 ng
of total RNA was then reversely transcribed to cDNA using
HiScript II qRT SuperMix II (Vazyme, Nanjing, China).
Quantitative real-time polymerase chain reaction (qRT-PCR)

FIGURE 2
Oat beta-glucan reduced DSS-induced acute colitis in mice. (A) Body weight. (B) DAI score (n = 3). (C,D) Colon length (n = 3). (E) H&E of the colon
tissues. (# DSS vs. Control, * DSS+βG vs. DSS, #p < 0.05, ##p < 0.01, *p < 0.05, **p < 0.01; ****p < 0.0001).
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was performed by LightCycler 480 qRT-PCR instrument
(Roche, Switzerland) using AceQ qPCR SYBR Green Master
Mix (Vazyme, Nanjing, China). Primers were synthesized by
Tsingke Biotechnology Co., Ltd., (Beijing, China). The relative
expressions were calculated by the 2−ΔΔCt method using Actb or
ACTB as an internal control. Primer sequences were shown in
Table 1.

Western blot

Total protein was extracted from IECs or HT-29 cells using cold
RIPA buffer (Servicebio, Wuhan, China) with 1% (v/v) PMSF
(Solarbio, Beijing, China). The concentration of the total protein
was measured using the BCA protein assay kit (Aspen, Wuhan,
China). Protein samples were then mixed with SDS-PAGE sample

FIGURE 3
Oat beta-glucan downregulated the expressions of IL-1β, IL-6 and TNF-α in intestinal epithelial cells ofmicewith acute colitis. (A–D)Detection of IL-
1β, IL-6 and TNF-α expressions in the colon tissues by IHC (n = 3). (E–G) Detection of Il1β, Il6 and TnfαmRNA expressions in intestinal epithelial cells by
qRT-PCR (n = 3). (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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loading buffer (5X, Beyotime, Shanghai, China) and boiled for
10 min at 100°C. The total protein (15 μg/well) was separated by
12.5% SDS-PAGE gel (Epizyme, Shanghai, China) electrophoresis
and then transferred to PVDF membranes (Millipore, Germany).
The membranes were blocked with protein free rapid blocking
buffer (Epizyme, Shanghai, China) for 10 min at room
temperature and then incubated with anti-EPHB6 primary
antibody (1:1000, ABclonal, Wuhan, China), anti-TFEB primary
antibody (1:1000, ABclonal, Wuhan, China), anti-LC3B primary
antibody (1:1000, ABclonal, Wuhan, China), anti-p62 primary
antibody (1:1000, ABclonal, Wuhan, China) and anti-ACTB
primary antibody (1:1000, Servicebio, Wuhan, China),
respectively, overnight at 4°C. After washed in tris buffered saline
with 0.1% (v/v) tween-20 (TBST) (Servicebio, Wuhan, China) for
3 times, 10 min each time, the membranes were incubated with
HRP-conjugated secondary antibody (1:3000, Antgene, Wuhan,
China) for 1 h at room temperature. The membranes were then
washed in TBST for 3 times, 10 min each time. Proteins were finally
visualized by chemiluminescence imaging system (Clinx, Shanghai,
China) using ECL (Vazyme, Nanjing, China). The expressions of the
proteins were analyzed using ImageJ software.

Statistical analyses

Shapiro-Wilk test was used to check the normal distribution. One-
way ANOVA was used to analyze the differences between multiple
groups. Statistical analyses and figures were performed using GraphPad
Prism 9 (GraphPad Software, San Diego, California). Data analyses and
figure creation for RNA sequencing were performed using theMetware
Cloud (Wuhan, China), a free online platform for data analysis (https://
cloud.metware.cn). p-values < 0.05 were considered statistically
significant, and all p-values were two-tailed.

Results

Oat beta-glucan reduced DSS-induced
acute colitis in mice

Oat beta-glucan reversed weight loss, the increase of DAI scores
and colon shortening in mice with DSS-induced acute colitis
(Figures 2A–D). H&E showed less destruction of colon glands in
the DSS+βG group than that in the DSS group (Figure 2E).

FIGURE 4
Oat beta-glucan and NaB upregulated the expressions of EPHB6. (A)Heat map of differential genes (top 50) in intestinal epithelial cells between the
DSS+βG and DSS groups (n = 5). (B,C) Detection of EPHB6 expression in intestinal epithelial cells by WB (n = 3). (D,E) Detection of EPHB6 expression in
HT-29 cells by WB (n = 3). (*p < 0.05, **p < 0.01).
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According to the results, the administration of oat beta-
glucan did not cause significant effects on body weight and
the length and histopathology of the colon in mice.
Therefore, the βG group was not considered in the
subsequent study.

IHC result showed that the expressions of IL-1β, IL-6 and
TNF-α in the colon tissues were significantly lower in the
DSS+βG group than those in the DSS group (Figures 3A–D).
qRT-PCR result further confirmed that oat beta-glucan

significantly downregulated the expressions of Il1β, Il6 and
Tnfα mRNA in IECs (Figures 3E–G).

Oat beta-glucan upregulated
EPHB6 expression in IECs

RNA sequencing was used to analyze the differences in gene
expression of IECs between the DSS+βG and DSS groups, and a total

FIGURE 5
Oat beta-glucan and NaB promoted autophagy flux. (A) Detection of LC3B expression in the colon tissues by IHC. (B–E) Detection of TFEB, LC3B
and p62 expressions in intestinal epithelial cells by WB (n = 3). (F–I) Detection of TFEB, LC3B and p62 expressions in HT-29 cells by WB (n = 3). (J–L)
Detection of IL1β, IL6, and TNFα mRNA expressions in HT-29 cells by qRT-PCR (n = 3). (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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of 185 genes were revealed to be significantly different, of which the
top 50 were shown in Figure 4A. The result showed that oat beta-
glucan significantly upregulated the expression of Ephb6 in IECs of
mice with acute colitis. Western blot (WB) result showed that the
expression of EPHB6 in IECs was significantly higher in the DSS+βG
group than that in the DSS group, which was consistent with the
RNA sequencing result (Figures 4B, C).

NaB was administered to the LPS-induced HT-29 cells
inflammation model to assess the effect of butyrate on
EPHB6 expression, and the result showed that NaB also
significantly upregulated EPHB6 expression (Figures 4D, E).

Oat beta-glucan upregulated TFEB
expression and promoted autophagy flux in
IECs

LC3B was detected in the colon tissues by immunofluorescence
for preliminary assessment of the autophagy level. The result
showed that the expression of LC3B in the colon epithelium was
higher in the DSS+βG group than that in the DSS group (Figure 5A).

WB result showed that the expressions of TFEB and LC3B in
IECs were significantly higher in the DSS+βG group than that in
the DSS group, and the expression of p62 was significantly lower
in the DSS+βG group than that in the DSS group
(Figures 5B–E).

The results of in vitro experiments showed that NaB
significantly upregulated the expressions of TFEB and LC3B,
decreased the protein level of p62 (Figures 5F–I) and

downregulated the relative expressions of IL1β, IL6 and TNFα
mRNA (Figures 5J–L).

EPHB6-TFEB axis mediated the promotion
of autophagy flux in IECs and the anti-
inflammatory effect of NaB

WB result showed that the expression of TFEB was significantly
lower in the shEPHB6 group compared with the shCtrl group, while
the expression of LC3B-II was not significantly different and the
expression of p62 was significantly higher in the shEPHB6 group
(Figure 6A). Between the shTFEB and shCtrl groups, there was no
significant difference in the expressions of EPHB6 and LC3B-II,
while the expression of p62 was significantly higher in the shTFEB
group than that in the shCtrl group (Figure 6B).

qRT-PCR result showed that the relative expressions of IL1β, IL6
and TNFα mRNA were significantly higher in the shEPHB6 and
shTFEB groups than those in the shCtrl group (Figures 6C–E).

Discussion

Oat beta-glucan, a type of fermentable dietary fiber, has been
shown to reduce experimental colitis, and this effect is associated
with its increased butyrate level in the gut (Liu et al., 2015; Bai et al.,
2021). Our results were consistent with previous studies, in which
oat beta-glucan given in the diet reduced DSS-induced acute colitis
in mice. It reversed weight loss, the increase of DAI scores and colon

FIGURE 6
EPHB6-TFEB axis mediated the promotion of autophagy flux and the anti-inflammatory effect of NaB. (A) Detection of EPHB6, TFEB, LC3B-II and
p62 expressions in the shCtrl and shEPHB6 groups by WB (n = 3). (B) Detection of EPHB6, TFEB, LC3B-II and p62 expressions in the shCtrl and shTFEB
groups by WB (n = 3). (C–E) Detection of IL1β, IL6 and TNFα mRNA expressions in HT-29 cells by qRT-PCR (n = 3). (*p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001).
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shortening in mice with acute colitis, attenuated the destruction of
colon glands and immune cells infiltration and downregulated the
expressions of IL-1β, IL-6 and TNF-α in colon tissues.

IBD is characterized by impaired intestinal epithelial barrier, which
could increase intestinal permeability (Camilleri, 2019). EPHB6 belongs
to the EPH family of receptor tyrosine kinases. EPH receptors play an
important role in regulating cell proliferation, differentiation and
migration, and there is evidence that EPH receptors regulate the
intestinal epithelial barrier, maintain intestinal homeostasis and are
involved in the occurrence and development of several chronic
inflammatory diseases (Batlle et al., 2002; Pasquale, 2005; Holmberg
et al., 2006; Pasquale, 2008; Coulthard et al., 2012; Kania and Klein,
2016). EPHB6 has no kinase activity but acts as a molecular switch to
regulate the signaling of other EPH receptors (Liang et al., 2019; Strozen
et al., 2021). We used RNA sequencing to reveal that oat beta-glucan
significantly upregulated Ephb6 expression in IECs of mice with acute
colitis. And our findings demonstrated that oat beta-glucan upregulated
TFEB expression as well, which was regulated by EPHB6.

TFEB is known to regulate autophagy. Autophagy dysfunction
may lead to a variety of diseases including IBD (Larabi et al., 2020;
Klionsky et al., 2021). Genome-wide association studies show that
polymorphisms in several autophagy-related genes, such as
ATG16L1, are associated with susceptibility to IBD (Hampe et al.,
2007; Parkes et al., 2007; Rioux et al., 2007). Previous studies have
reported that TFEB regulates autophagy by driving the expressions
of lysosomal and autophagy-related gene, and autophagy plays an
important role in regulating the intestinal epithelial barrier and
maintaining intestinal homeostasis by reducing proinflammatory
cytokines production, removing intracellular pathogenic microbes
and protecting IECs from cellular stress-induced injury (Patel and
Stappenbeck, 2013; Baxt and Xavier, 2015; Lassen and Xavier, 2018;
Wu et al., 2019; Foerster et al., 2022). So, we speculated whether
TFEBmight also be involved in driving the expressions of genes such
as antimicrobial defense or tissue repair in IECs, but more studies
would be required to confirm this. Upregulation of TFEB expression
would contribute to promote autophagy flux, which was proved in
our study. Administration of oat beta-glucan promoted autophagy
flux in IECs of mice with acute colitis while upregulating TFEB.
Promotion of autophagy flux in IECs could reduce TNF-α-induced
cell death, thereby maintaining the intestinal epithelial barrier and
reducing intestinal permeability (Pott et al., 2018; Saha et al., 2022).

Our results showed that DSS-induced acute colitis led to
impaired autophagy flux in IECs, and that administration of oat
beta-glucan could promote autophagy flux in IECs, downregulate
the expressions of IL-1β, IL-6 and TNF-α and reduce intestinal
inflammation. We observed in the RNA sequencing results as well
that genes related to acute inflammatory response, leukocyte
migration, leukocyte chemotaxis and TNF signaling pathway
were downregulated in IECs of the DSS+βG group compared to
the DSS group. This further supported that oat beta-glucan
alleviated DSS-induced inflammation in the gut. Like the effect of
oat beta-glucan, NaB promoted autophagy flux and suppressed LPS-
induced inflammation in vitro. When EPHB6 or TFEB was knocked
down in the LPS-induced HT-29 cells inflammation model,
promotion of autophagy flux by NaB was then inhibited, and
levels of proinflammatory cytokines increased. This suggested
that EPHB6-TFEB axis played an important role in promotion of
autophagy flux and downregulation of proinflammatory cytokines

by oat beta-glucan. Moreover, this study had some limitations.
Although previous studies have confirmed that oat beta-glucan
could significantly increase butyrate level in the feces of mice
(Liu et al., 2015), in our study, we did not collect fecal samples
from mice and did not detect the level of butyrate and inflammatory
markers in the stool or anti-inflammatory markers in the gut.

In summary, we demonstrated that oat beta-glucan could
promote autophagy flux in IECs via EPHB6-TFEB axis and
downregulate the expressions of proinflammatory cytokines,
thereby reducing DSS-induced acute colitis in mice, and this
effect may be mediated by butyrate.
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