Check for updates

OPEN ACCESS

EDITED AND REVIEWED BY Robert John Unwin, University College London, United Kingdom

*CORRESPONDENCE Yanyun Xie, ⊠ xieyanyun@csu.edu.cn

[†]These authors have contributed equally to this work

SPECIALTY SECTION This article was submitted to Renal Pharmacology, a section of the journal Frontiers in Pharmacology

RECEIVED 17 March 2023 ACCEPTED 27 March 2023 PUBLISHED 05 April 2023

CITATION

Li J, Jiang Y, Dai Q, Yu Y, Lv X, Zhang Y, Liao X, Ao L, Hu G, Meng J, Peng Z, Tao L and Xie Y (2023), Corrigendum: Protective effects of Mefunidone on ischemia-reperfusion injury/folic acidinduced acute kidney injury. *Front. Pharmacol.* 14:1188615. doi: 10.3389/fphar.2023.1188615

COPYRIGHT

© 2023 Li, Jiang, Dai, Yu, Lv, Zhang, Liao, Ao, Hu, Meng, Peng, Tao and Xie. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Corrigendum: Protective effects of Mefunidone on ischemia-reperfusion injury/folic acid-induced acute kidney injury

Jiajia Li^{1,2,3†}, Yupeng Jiang^{1,2,3,4†}, Qin Dai¹, Yue Yu¹, Xin Lv¹, Yan Zhang¹, Xiaohua Liao¹, Liyun Ao¹, Gaoyun Hu⁵, Jie Meng^{2,6}, Zhangzhe Peng^{1,2,3}, Lijian Tao^{1,2,3} and Yanyun Xie^{1,2,3}*

¹Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China, ²Hunan Key Lab of Organ Fibrosis, Changsha, China, ³National International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, China, ⁴Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China, ⁵Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China, ⁶Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China

KEYWORDS

renal ischemia-reperfusion injury, folic acid, acute kidney injury, chronic kidney disease, mefunidone

A Corrigendum on

Protective effects of mefunidone on ischemia-reperfusion injury/folic acid-induced acute kidney injury

by Li J, Jiang Y, Dai Q, Yu Y, Lv X, Zhang Y, Liao X, Ao L, Hu G, Meng J, Peng Z, Tao L and Xie Y (2022). Front. Pharmacol. 13:1043945. doi: 10.3389/fphar.2022.1043945

In the published article, there was an error in the legend for Figure 1F as published. Figure 1F was displayed as "Vimentin positive area (%)." The correct Figure 1F is "NGAL positive area (%)." The corrected legend appears below.

Furthermore, there was an error in the **Supplementary Material**. **Supplementary Figure S1** was displayed as "CCK-8 to determine the optimal drug concentration of mefunidone for 24 h for HK-2 cell viability"; **Supplementary Figure S2** was displayed as "Mefunidone alleviated kidney fibrosis and inhibited EMT in IRI-induced CKD." The correct **Supplementary Figure S1** is "Mefunidone alleviated kidney fibrosis and inhibited EMT in IRI-induced CKD"; The correct **Supplementary Figure S2** is "CCK-8 to determine the optimal drug concentration of mefunidone for 24 h for HK-2 cell viability."

The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphar.2023.1188615/full#supplementary-material

SUPPLEMENTARY FIGURE S1

Mefunidone alleviated kidney fibrosis and inhibited EMT in IRI-induced CKD (A) HE staining ($\times 200$) and tubular injury scores showed protective effect of Mefunidone on renal tubular injury on day 14 after IRI modeling. arrows for renal tubular damage. (B) Masson's trichrome staining (×200) and kidney fibrotic scores showed protective effect of Mefunidone on renal tubular injury on day 14 after IRI modeling. arrows for renal tubular damage and renal fibrosis. (C) Histological images of immunohistochemical staining with collagen I and evaluation of collagen I positive area in each group on day 14 after IRI modeling (×200). (D) Histological images of immunohistochemical staining with vimentin and evaluation of vimentin positive area in each group on day 14 after IRI modeling (×200). (E) Western blot analysis and quantitative data of α -SMA and E-Cadherin in each group on day 14 after IRI modeling. Mefunidone: 100 mg/kg. Data represent mean ± SEM (n = 5-6). *p < 0.05, vs Sham group; **p < 0.01, vs Sham group; ***p < 0.001, vs Sham group; ****p < 0.0001, vs Sham group; #p < 0.05, vs IRI group; ##p < 0.01, vs IRI group; ###p < 0.001, vs IRI group.

SUPPLEMENTARY FIGURE S2

CCK-8 to determine the optimal drug concentration of Mefunidone for 24 h for HK-2 cell viability. HK-2 cells were treated with Mefunidone at concentrations of 0, 20, 40, 80, 120 and 160 µg/ml. *p < 0.05, **p < 0.01.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

FIGURE 1

Mefunidone ameliorated IRI-induced AKI (A) HE staining showed protective effect of mefunidone at various doses of 50 mg/kg, 75 mg/kg, 100 mg/kg, 125 mg/kg on renal tubular injury on day 2 after IRI modeling (x200). arrows for renal tubular damage. (B) The tubular injury scores of HE staining for kidney damage. (C) Serum creatinine (SCr) levels of mefunidone at various doses of 50 mg/kg, 75 mg/kg, 100 mg/kg, 125 mg/kg on renal tubular injury on day 2 after IRI modeling. (D) Blood urea nitrogen (BUN) levels of mefunidone at various doses of 50 mg/kg, 75 mg/kg, 100 mg/kg, 125 mg/kg on renal tubular injury on day 2 after IRI modeling. (E,F) Histological images of immunohistochemical staining with NGAL and evaluation of NGAL positive area in each group on day 2 after IRI modeling (x200). Mefunidone: 100 mg/kg. (G) Western blot analysis and quantitative data of NGAL in each group on day 2 after IRI modeling. Nefunidone: 100 mg/kg. (T) = 3-5). *p < 0.05, vs. Sham group; **p < 0.01, vs. Sham group; *p < 0.05, vs. IRI group; ##p < 0.01, vs. IRI group; ##p < 0.01, vs. IRI group.