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Osteoarthritis (OA), a chronic joint cartilage disease, is characterized by the
imbalanced homeostasis between anabolism and catabolism. Oxidative stress
contributes to inflammatory responses, extracellular matrix (ECM) degradation,
and chondrocyte apoptosis and promotes the pathogenesis of OA. Nuclear factor
erythroid 2-related factor 2 (NRF2) is a central regulator of intracellular redox
homeostasis. Activation of the NRF2/ARE signaling may effectively suppress
oxidative stress, attenuate ECM degradation, and inhibit chondrocyte
apoptosis. Increasing evidence suggests that the NRF2/ARE signaling has
become a potential target for the therapeutic management of OA. Natural
compounds, such as polyphenols and terpenoids, have been explored to
protect against OA cartilage degeneration by activating the NRF2/ARE pathway.
Specifically, flavonoids may function as NRF2 activators and exhibit
chondroprotective activity. In conclusion, natural compounds provide rich
resources to explore the therapeutic management of OA by activating NRF2/
ARE signaling.
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Introduction

Osteoarthritis (OA), a degenerative and irreversible joint disease, has been
associated with chronic inflammation, trauma, and other diseases. No effective
strategies are available to cure OA. Clinically, non-steroidal anti-inflammatory drugs
(NSAIDs) have been used to alleviate OA symptoms, such as joint pain, stiffness, and
movement limitation, which may greatly decrease the quality of life and increase the
burden on society and patients (Lane et al., 2017). This awkward situation might be
attributed to the incomplete understanding of the pathological molecular mechanisms.
It is well-accepted that OA is correlated with the imbalance between anabolism and
catabolism in the joint cartilage. Both the reduction of anabolism and the stimulation of
catabolism can be driven by chronic inflammatory responses, oxidative stress, and other
aberrant signaling pathways. Effective agents used for preventing or inhibiting OA
progression are still lacking.

Excessive oxidative stress contributes to the pathological development of OA (Lepetsos and
Papavassiliou, 2016). Reactive oxygen/nitrogen species (ROS/RNS), such as hydrogen peroxide
(H2O2), hydroxyl radical, superoxide anion, nitric oxide (NO), and hypochlorite ion, are free
radicals, which have unpaired electrons. ROS can be produced by mitochondrion, non-
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mitochondrial membrane-bound nicotinamide adenine dinucleotide
phosphate (NADPH) oxidases (NOXs), and xanthine oxidase (XO)
(Turrens, 2003). Overproduction of ROS may induce damage to
macromolecules, including DNA, protein, and fat. In addition,
ROS can be the player involved in the intracellular signaling
pathways, which orchestrate the homeostasis of joint cartilage.
Increasing evidence shows that ROS overproduction and oxidative
stress have been observed in the joint cartilage of patients with OA,
and oxidative stress has been implicated in the mediation of
chondrocyte apoptosis and extracellular matrix (ECM) degradation
(Henrotin et al., 1993; Ertürk et al., 2012; Altay et al., 2015). Thus,
suppression of oxidative stress has become a therapeutic strategy for
OA management.

Nuclear factor erythroid 2-related factor 2 (NRF2), a
transcriptional factor, exhibits a central role in maintaining the
homeostasis of the intracellular redox system. NRF2 activation has
been reported to counteract ROS generation and oxidative stress by
binding to antioxidant response elements (AREs) in the promoters
of the downstream antioxidant genes, such as heme oxygenase-1
(HO-1) (Baird and Yamamoto, 2020). Potentially, any exogenous
bioactive ROS-scavenging or NRF2/ARE-activating agents that
balance the redox homeostasis may lead to therapeutic effects
against OA development. Naturally occurring compounds from
different sources have been explored to develop novel preventive
and therapeutic agents for treating various human diseases. Many of
them may regulate multiple signaling pathways at DNA, RNA, and
protein levels and exhibit favorable safety profiles (Khan et al., 2021).
These make them become the ideal options for the therapeutic
management of chronic diseases, such as OA. Natural compounds
with anti-oxidative activity, such as flavonoids, have been linked to
the confrontation of OA progression by inhibiting oxidative stress in
chondrocytes (Wang Q. et al., 2022; Zhu et al., 2022a). In this article,
we will summarize the protective activities of natural compounds
against OA development by mediating the NRF2/ARE signaling
pathway in chondrocytes.

The interaction between oxidative
stress and OA

The pathological development of OA

OA elucidates a subset of the pathological alterations that are
influencing the joints. The pathogenesis of OA includes three
overlapping stages (Braaten et al., 2022). Firstly, ECM on the surface
of the articular cartilage is damaged. Various factors, such as genetic,
metabolic, biochemical, and environmental processes, contribute to the
destruction of ECM (Felson et al., 2000; Loeser, 2010). Progressive ECM
degeneration may lead to the development of clefts and fibrillation in
the articular cartilage. Particularly, these pathological changes may
affect the micro-environment of subchondral bone, leading to
alterations in joint shape and loading transmission. Secondly,
chondrocytes, the unique cell type in the joint cartilage, are affected
by the damage of ECM and subchondral tissues. Importantly, many
signaling pathways regulating the repair activity, such as bone
morphogenic proteins (BMPs), transforming growth factor-beta
(TGF-β), and insulin-like growth factor-I (IGF-I), are activated. On
the other hand, ECM breakdown may trigger the release of pro-

inflammatory cytokines and facilitate the expression of matrix
metalloproteases (MMPs), forming a vicious cycle of cartilage
degeneration. In addition, endochondral ossification is also
stimulated by up-regulating the expression of type X collagen. The
third stage is the failure of cartilage repair during OA development. The
repair activity of chondrocytes is rather limited. The continued catabolic
activity progressively contributes to the damage to cartilage and
subchondral bone and cell death. For example, upregulated
expression of MMPs and downregulated expression of tissue
inhibitors of metalloproteinase-1 (TIMP-1) are reported in OA
chondrocytes (Lotz and Loeser, 2012).

The pathological changes of OA are associated with the
dysregulation of signaling pathways, such as NRF2/ARE, NF-κB,
AMPK/Sirt1, HIFs, Wnt/β-catenin, TGFβ/BMP, and JAK2/STAT3
(Park and Lee, 2022; Yao et al., 2023). NRF2/ARE signaling is a
major factor in counteracting oxidative stress and ECM degradation.
Activation of the NRF2 signaling facilitates tomaintain the homeostasis
of chondrocytes and joint cartilage (Xiong et al., 2023). In addition,
activation of the NRF2 signaling may negatively regulate the
phosphorylation and nuclear translocation of p65, suppressing the
NF-κB and RANKL signaling pathways in IL-1β-treated
chondrocytes (Yang et al., 2023). HIF-1α exhibits protective activity
on articular cartilage by suppressing the NF-κB signaling in mice. Loss
of HIF-1α expression upregulates the expression of MMP-13 and HIF-
2α (Okada et al., 2020). Dysregulation of the Wnt/β-catenin signaling
contributes to the pathological development of OA. Increased
expression of β-catenin has been found in OA patients, and genetic
activation of β-catenin stimulates the expression of catabolic enzymes,
such as MMPs and ADAMTSs (Hui et al., 2018). Similarly, the TGFβ/
BMP/Smad signaling pathway also plays a key role in cartilage
homeostasis. Smad2/3 and Smad1/5/9 may exhibit distinctive effects
on chondrocyte biology. In chondrocyte-specific Smad3-null mice,
dysregulated expression of MMP-13 and Col10a1 is found, and
increased chondrocyte hypertrophy and stimulated cartilage
degeneration are observed (Chen et al., 2012). Combined knockout
of Smad1, 5, and 8 may induce severe chondrodysplasia (Retting et al.,
2009). The JAK2/STAT3 signaling is abnormally activated in OA
chondrocytes. Inhibition of JAK2 expression can lead to a significant
reduction in aggrecan loss and chondrocyte apoptosis (Lu et al., 2017).
Targeting the JAK2/STAT3 signaling has become a potential
therapeutic approach for OA treatment (Chen et al., 2023). Thus,
the pathological development of OA is related to multi-factors and
multi-pathways. Studies have shown that these signaling pathways can
be potential targets for the therapeuticmanagement ofOA (Cheng et al.,
2022; van der Kraan, 2022).

The involvement of oxidative stress in the
pathogenesis of OA

Oxidative stress contributes to inflammatory responses in OA
chondrocytes. Inflammatory responses are involved in the
dysregulated balance between anabolism and catabolism in
chondrocytes (Scanzello and Goldring, 2012). The balance
between PI3K/AKT and MAPK signaling pathways exhibits a
critical role in inflammatory responses and OA pathogenesis (Yu
and Kim, 2015). Increased ROS production in OA chondrocytes has
been demonstrated to suppress the activity of the PI3K/AKT
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pathway. In addition, ROS may stimulate the expression of the
MAPK pathway. Thymoquinone (TQ), a major metabolite of black
seed oil, can induce ROS generation. TQ may increase the
production of COX-2 and PGE2 by activating the p38 and ERK
pathways in rabbit OA chondrocytes. N-acetyl cysteine (NAC), an
antioxidant, may abolish TQ-induced ROS production and
inflammatory responses (Yu and Kim, 2015). Advanced oxidation
protein products (AOPPs) can enhance the expression of IL-1β and
TNFα by up-regulating the p38-MAPK signaling in OA
chondrocytes (Liao et al., 2020). H2O2 increases the secretion of
IL-6 and TNFα by activating the NF-κB signaling in OA
chondrocytes (Wang et al., 2023).

Oxidative stress facilitates ECM degradation. NOX enzyme
family is a key source of superoxide anion and H2O2. NOX-4
may enhance IL-1β-stimulated expression of MMPs, which
promote ECM degradation (Grange et al., 2006).
NOX4 deficiency decreases MMP-13 and collagen I expression,
enhances aggrecan production, and reduces cartilage degradation
in DMM-induced OA mice (Renaudin et al., 2023). Another study
reports that AOPPs may upregulate the expression of NOX4 in
chondrocytes. Apocynin, a NOX inhibitor, can block the
detrimental effects of AOPPs, as shown by increased collagen II
and GAG expression and attenuated ECM degradation (Liao et al.,
2020). Sirt4 deficiency downregulates the expression of antioxidant
enzymes, such as SOD1, SOD2, and CAT. Knockdown of Sirt4 may
decrease the production of collagen II and aggrecan and increase the
generation of MMP-13 in OA chondrocytes (Dai et al., 2020).

Oxidative stress promotes cell death in OA chondrocytes. ROS
production increases with aging, due to the decline of mitochondrial
functions (Chistiakov et al., 2014). In addition, excessive mechanical
loading in chondrocytes may induce the generation of superoxide anion
and decrease the expression of superoxide dismutase (SOD), which
catalyzes the conversion of superoxide anion toH2O2 (Koike et al., 2015).
Mitochondrial H2O2 can induce human chondrocyte cell death by up-
regulating the activity of the MKK3/6-p38 signaling pathway (Collins
et al., 2016). Similarly, ROS also promotes chondrocyte cell death by
activating protein kinase C (PKC-β1) expression, and inhibition of PKC-
β1 may abolish ROS-induced chondrocyte cell death (DelCarlo and
Loeser, 2006). Advanced glycation end products (AGEs) may induce
mitochondrial dysfunction in OA chondrocytes. It has been reported
that AGEs can induce oxidative stress and chondrocyte apoptosis by
down-regulating theAMPKα/Sirt1/PGC-1α signaling (Yang et al., 2022).
Collectively, inhibiting redox-sensitive factors implicated in cell death
and stimulating antioxidant expression may facilitate chondrocyte
survival and promote cartilage integrity (Figure 1).

The roles of the NRF2/ARE signaling in the
pathological development of OA

It is well-accepted that the NRF2/ARE pathway is negatively
mediated by Keap1 (Suraweera et al., 2020; Saha et al., 2021). Under
normal conditions, NRF2-Keap1 complex interacts with the
E3 ubiquitin ligase complex Cullin 3 (Cul3) and leads to the
ubiquitination and proteasomal degradation of NRF2. Under
stressed conditions, modification of the cysteine residues may
induce the conformational changes of Keap1. Then, the
conformational changes of Keap1 induce its dissociation from

NRF2. The dissociation of Keap1 prevents NRF2 from
ubiquitination and degradation, and NRF2 is stabilized and then
translocated into the nucleus for transcriptional regulation
(Dinkova-Kostova et al., 2018). Additionally, NRF2 can also be
phosphorylated by PKC, casein kinase II (CKII), protein kinase
R-like endoplasmic reticulum kinase (PERK), JNK, and ERK (Zuo
et al., 2022).

Activation of the NRF2/ARE signaling pathway exhibits the
protective activity against OA pathogenesis by up-regulating the
expression of antioxidant factors, such as HO-1, NADPH gene of
quinone oxidoreductase 1 (NQO1), GSH, GPx, and SOD, and
suppressing oxidative stress in chondrocytes (Ashrafizadeh et al.,
2020) (Figure 1). In OA chondrocytes, NRF2/ARE signaling
activation is associated with anti-inflammatory effects.
Specifically, activation of the NRF2/ARE signaling may suppress
M1 polarization and promote M2 polarization through signaling
transductions, including TGFβ/Smad, JAK/STAT, and NF-κB
pathways (Wang and He, 2022). NLRP3 inflammasome can be
stimulated by the TLR/NF-κB signaling pathway. It is also reported
that activation of the NRF2 signaling may alleviate the progression
of OA by suppressing NLRP3 inflammasome in primary mouse
chondrocytes (Yan et al., 2020). MCC950 is an inhibitor of NLRP3.
It has been shown that MCC950 may ameliorate inflammatory
responses and protect cartilage against degeneration by up-
regulating the expression of NRF2/HO-1/NQO-1 signaling
pathway in mouse chondrocytes (Ni et al., 2021).

Activation of the NRF2 signaling also contributes to the
inhibition of ECM degradation and chondrocyte apoptosis. It has
been reported that NRF2 signaling may increase the expression of
collagen II and SOX9 and decrease the expression of MMP-13 and
ADAMTS5, protecting against IL-1β-induced ECM degradation in
OA chondrocytes (Liang et al., 2022). Manganese (Mn) deficiency

FIGURE 1
Oxidative stress is implicated in the pathogenesis of OA.
Oxidative stress may contribute to the development of OA by
increasing inflammatory responses, ECM degradation, and
chondrocyte apoptosis. Oxidative stress also stimulates the
NRF2/ARE signaling pathway by dissociating Keap1 from NRF2.
Activated NRF2 enters the nucleus for transcriptional regulation by
binding to ARE, up regulating the expression of HO-1 and NQO-1.
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can negatively affect tibial cartilage development by stimulating
oxidative stress and inflammation. Mn deficiency may downregulate
NRF2 signaling and upregulate MMP-1, MMP-9, and MMP-13

expression in broiler chicks (Dong et al., 2022). Knockdown of
NRF2 may promote MMP-13 expression, decrease aggrecan
production, and suppress cell apoptosis in TBHP-treated

SCHEME 1
Continued.
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chondrocytes (Shao et al., 2020). It has been demonstrated that
NRF2 activation may suppress IL-1β-induced mitochondrial
dysfunction, ROS generation, and apoptosis in OA chondrocytes.
Mechanically, overexpression of NRF2 upregulates the expression of
anti-apoptotic factors, downregulates pro-apoptotic proteins, and
activates ERK1/2 and its downstream factors, such as ELK1,
P70S6K, and P90RSK (Khan et al., 2018).

However, one study reports that inhibition of the NRF2/ARE
signaling can ameliorate LPS-stimulated NLRP3 inflammasome in
SW982 cells. Increased expression of NRF2/HO-1 and NLRP3 are
also observed in rat OA models (Chen et al., 2019). Another study
suggests that there is no difference in NRF2 expression between OA
and healthy human cartilage chondrocytes (Cai et al., 2019b). The
discrepancy in NRF2 expression in OA chondrocytes might be

SCHEME 1
(Continued). The chemical structures of natural compounds.
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TABLE 1 The protective effects of some natural compounds against OA development by mediating the NRF2 signaling pathway in animal models.

Compounds Sources and availability Models Doses Routines Biological actions Ref

Genistein Soybean; 26.8–102.5 mg/100 g Rat ACLT 40 mg/kg/day gavage OARIS Score↓, GAG↑ Liu et al.
(2019)

Myricetin Garlic; 693 mg/kg Mouse
DMM

20 mg/kg/2 days gavage NRF2↑, p-Akt↑, OARIS Score↓ Pan et al.
(2019)

moracin Cortex Mori.; 0.01%–0.6% Rat ACLT 30 mg/kg/day gavage OARIS Score↓, NRF2↑, collagen II↑ Zhou et al.
(2020)

Lico A licorice root; 4–10 mg/g Mouse
DMM

10 mg/kg/day gavage OARIS Score↓, NRF2↑, IL-1β↑, IL-18↑ Yan et al.
(2020)

7,8-DHF Lepisorus ussuriensis;
0.48 mg/kg

Mouse
DMM

5 mg/kg/week i.p OARIS Score↓, NRF2↑, HO-1↑, IL-1β↓, IL-6↓,
TNFα↓, MMP-1/-3/-13↓

Cai et al.
(2019a)

Polydatin cocoa powder; 7.14 μg/g Mouse
DMM

100 mg/kg/day i.p OARIS Score↓, Synovitis Score↓ Tang et al.
(2018)

Engeletin Grape skin; 2.4 mg/kg Rat ACLT 50 μg/week i.a OARIS Score↓ Wang et al.
(2021a)

18β-GA Glycyrrhiza glabra; 0.1%–1.6% Mouse
DMM

50 mg/kg/day i.p OARIS Score↓, NRF2↑ Chen et al.
(2021a)

ASD Rhizome of Dipsacus asper
Wall; 15.0 g/kg

Mouse
DMM

100 mg/kg/3 days gavage OARIS Score↓, NRF2↑ Gu et al.
(2020)

AST Haematococcus lacustris; 4% of
dry weight

Mouse
DMM

20 mg/kg twice a
week

i.a OARIS Score↓, NRF2↑ Sun et al.
(2019)

COR Corydalis bungeana Turcz.;
9 mg/kg

Mouse
DMM

15 and
30 mg/kg/day

gavage OARIS Score↓, NRF2↑, collagen II↑ Li et al. (2022)

Note: i.p., intraperitoneal injections; i.a., intra-articular injection.

TABLE 2 The protective effects of some natural compounds against OA development by mediating the NRF2 signaling pathway in vitro

Compounds Cell lines Concentrations Biological actions Ref

moracin Rat chondrocytes 5, 10, and 15 μM NRF2↑, HO-1↑, p65 nuclear translocation↓, IL-6↓, TNFα↓, COX-2↓, PGE2↓, iNOS↓,
NO↓, MMP-13↓, ADAMTS5↓

Zhou et al.
(2020)

Lico A Mouse
chondrocytes

5, 25, and 50 μM NRF2↑, HO-1↑, p65↓, NLRP3↓, Cleaved GSDMD↓, Cleaved caspse-1↓, collagen II↑,
aggrecan↑

Yan et al.
(2020)

Hyperoside Mouse
chondrocytes

10, 20, and 40 μM ROS↓, COX-2↓, iNOS↓, MMP-3↓, MMP-13↓, ADAMTS5↓, collagen II↑, aggrecan↑,
SOX9↑, cleaved caspase-3/-9↓, Bax↓, Bcl-xL↑, cytochrome c↓

Sun et al.
(2021)

7,8-DHF Mouse
chondrocytes

1, 3, and 9 μM NRF2↑, HO-1↑, MDA↓, SOD↑ Cai et al.
(2019a)

Pterostilbene Rat chondrocytes 4, 8, 10, and 20 μM NRF2↑, COX-2↓, PGE2↓, iNOS↓, NO↓, ROS↓ Xue et al.
(2017)

Engeletin Rat chondrocytes 10 and 20 μM NRF2↑, HO-1↑, NQO-1↑, P-p65↓, MAPK↓, MMP-3↓, MMP-9↓, collagen II↑, aggrecan↑ Wang et al.
(2021a)

Biochanin A Mouse
chondrocytes

12 and 24 μM MMP-3↓, collagen II↑, Bcl-2↑, TFR1↓, ROS↓, GPX4↑, xCT↑, NRF2↑, HO-1↑ He et al. (2022)

18β-GA Mouse
chondrocytes

10, 25, and 50 μM NRF2↑, HO-1↑, IL-6↓, TNFα↓, COX-2↓, PGE2↓, iNOS↓, NO↓, MMP-13↓, ADAMTS5↓ Chen et al.
(2021a)

ASD Mouse
chondrocytes

50, 100, and 200 μM NRF2↑, HO-1↑, p65↓, IL-6↓, TNFα↓, COX-2↓, PGE2↓, iNOS↓, NO↓, MMP-13↓,
ADAMTS5↓, collagen II↑, aggrecan↑

Gu et al. (2020)

AST Mouse
chondrocytes

5, 10, and 20 μM NRF2↑, HO-1↑, p-p65/p65↓, MAPK↓, TNFα↓, COX-2↓, iNOS↓, MMP-3/-13↓,
ADAMTS5↓, collagen II↑

Sun et al.
(2019)

COR Mouse
chondrocytes

2 and 4 μM NRF2↑, HO-1↑, p-p65/p65↓, IL-6↓, COX-2↓, iNOS↓, MMP-3/-13↓, ADAMTS5↓,
collagen II↑, aggrecan↑

Li et al. (2022)
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related to various factors, such as experimental conditions, cell types,
and cell situations. Thus, more efforts are still needed for elucidating
the roles of NRF2 in the pathological development of OA.

Natural compounds activate the NRF2/ARE
signaling to protect against OA development

The important roles of oxidative stress in the development of
OA indicate that suppression of oxidative stress can be a useful
strategy for OA treatment. Exploration of natural compounds with
anti-oxidative activity has become one of the research interests in
treating redox-imbalanced diseases, such as OA. Dietary
supplements and nutraceuticals are also involved in the
therapeutic management of OA. For example, allicin,
sulforaphane (SFN), and lycopene are the antioxidants isolated
from garlic, broccoli, and tomato, respectively, and they may
decrease oxidative stress and inflammatory responses. It has been
reported that allicin, SFN, and lycopene can effectively inhibit H2O2-
induced oxidative stress and chondrocytes apoptosis by activating

the Keap1/NRF2 signaling pathway (Yang J. et al., 2020). Most
natural compounds with anti-oxidative activity by activating the
NRF2/ARE signaling pathway are mainly polyphenols and
terpenoids (Scheme 1). Particularly, natural flavonoids may act as
NRF2 activators to protect against oxidative stress.

Polyphenols/flavonoids activate the
NRF2 signaling

Flavonoids have various pharmacological activities, including
anti-inflammation, anti-oxidation, anti-cancer, anti-apoptosis, and
bone system protection (Ghitti et al., 2022). Natural flavonoids
provide health-benefiting effects against chronic diseases, such as
OA. Particularly, isoflavones can act as phytoestrogens due to their
structural similarity to estrogen. The estrogen-like effects of
flavonoids greatly trigger the research interest because they may
provide similar effects to the hormones (Guo et al., 2022). Natural
flavonoids can inhibit inflammatory responses, attenuate ECM
degradation, and suppress cell death in OA chondrocytes.

TABLE 3 The clinical studies of natural compounds against OA development by mediating the NRF2/ARE signaling pathway.

Compounds Models/Doses Biological actions Conclusions Ref

Genistein IL-1β-treated human
chondrocytes/10 μM

NRF2↑, HO-1↑, COX-2↓, iNOS↓, MMP-1↓, MMP-
3↓, MMP-13↓, collagen II↑, aggrecan↑

Inhibits inflammation and ECM degradation by
activating the NRF2/ARE signaling

Liu et al.
(2019)

Myricetin IL-1β-treated human
chondrocytes/5, 10, and
15 μM

NRF2↑, HO-1↑, p65↓, IL-6↓, TNFα↓, COX-2↓,
PGE2↓, iNOS↓, NO↓, MMP-13↓, ADAMTS5↓,
collagen II↑, aggrecan↑

Inhibits inflammation and ECM degradation by
activating the NRF2/ARE signaling

Pan et al.
(2019)

Morin IL-1β-treated human OA
chondrocytes/2.5, 5, and
10 μM

PGE2↓, NO↓, p65↓, NRF2↑, HO-1↑, MMP-1↓,
MMP-3↓, MMP-13↓

Inhibits inflammation and ECM degradation by
activating the NRF2/ARE signaling

Qu et al.
(2018)

Wogonin IL-1β-treated human OA
chondrocytes/10, 25, and
50 μM

IL-6↓, TNFα↓, COX-2↓, PGE2↓, iNOS↓, NO↓,
MMP-3↓, MMP-9↓, MMP-13↓, ADAMTS5↓,
collagen II↑, ACAN↑, NRF2↑, HO-1↑, NQO-1↑,
p-ERK1/2↑

Inhibits inflammation and ECM degradation by
activating the NRF2/ARE signaling

Khan et al.
(2017)

Polydatin IL-1β-treated human
chondrocytes/25, 50, and
100 μg/mL

NRF2↑, HO-1↑, IL-6↓, TNFα↓, COX-2↓, PGE2↓,
iNOS↓, NO↓, MMP-13↓

Inhibits inflammation and ECM degradation by
activating the NRF2/ARE signaling

Tang et al.
(2018)

Curcumin IL-1β-treated human
chondrocytes/20 and 40 μM

IL-6↓, TNFα↓, COX-2↓, iNOS↓, MMP-1↓, MMP-
3↓, MMP-9↓, MMP-13↓, ADAMTS4↓,
ADAMTS5↓, COL2A1↑, ACAN↑, NRF2↑, HO-1↑,
NQO-1↑, GCLC↑, SOD-2↑

Inhibits inflammation and ECM degradation by
activating the NRF2/ARE signaling

Jiang et al.
(2020a)

Piceatannol IL-1β-treated human
chondrocytes/1, 5, and
10 μM

IL-6↓, TNFα↓, COX-2↓, PGE2↓, iNOS↓, NO↓,
MMP-13↓, ADAMTS5↓, collagen II↑, aggrecan↑,
p65↓, NRF2↑, HO-1

Inhibits inflammation and ECM degradation by
activating the NRF2/ARE signaling

Tang et al.
(2017)

ICA IL-1β-treated HC-A/10−9M ROS↓, GPX↑, SOD↑, MMP-3↓, MMP-9↓, MMP-
13↓, ADAMTS4↓, GAG↑, NRF2↑, NQO-1↑

Inhibits oxidative stress and ECM degradation by
activating the NRF2/ARE signaling

Zuo et al.
(2019)

CA TNFα-treated C28/I2 cells/5,
10, and 20 μM

IL-1β↓, IL-6↓, IL-12↓, COX-2↓, PGE2↓, iNOS↓,
NO↓, MMP-3↓, MMP-9↓, MMP-13↓, ADAMTS5↓,
collagen II↑, aggrecan↑, ROS↓, p-PI3K↓,
p-AKT↓, p65↓

Inhibits inflammation, oxidative stress, and ECM
degradation by activating the NRF2/ARE signaling

Qu et al.
(2022)

Hederagenin IL-1β-treated C28/I2 cells/5,
10, and 20 μM

IL-6↓, TNFα↓, COX-2↓, PGE2↓, iNOS↓, NO↓,
ROS↓, MMP-1↓, MMP-3↓, MMP-9↓, MMP-13↓,
ADAMTS5↓, collagen II↑, aggrecan↑, Bax↓, Bcl-2↑,
cleaved caspase-3↓, p-JAK2↓, p-STAT3↓, MAPK↓,
NRF2↑

Inhibits inflammation, oxidative stress, chondrocyte
apoptosis, and ECM degradation by activating the
NRF2/ARE signaling

Shen et al.
(2022)

SFN H2O2-treated human OA
chondrocytes/7 μM

NRF2↑, NOX4↓, COL2↑, ACAN↑, SOX9↑, IL-6↓,
TNFα↓, MMP-13↓, ADAMTS5↓

Inhibits inflammation, oxidative stress, and ECM
degradation by activating the NRF2/ARE signaling

Yang et al.
(2020a)
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Inhibition of inflammatory responses

Genistein 1) acts as a selective estrogen receptor modulator
(SERM) due to its structural similarity to estrogen. It has been
reported that genistein (10 μM) decreases the expression of COX-2,
NOS2, and NO in IL-1β-treated chondrocytes by activating the
NRF2 signaling (Liu et al., 2019). Myricetin 2), extracted from Garlic
(Allium ampeloprasum L., Amaryllidaceae) with the availability of
693 mg/kg (Agraharam et al., 2022), at the dose of 15 μM has been
reported to decrease the expression of IL-6, TNFα, COX-2, PGE2,
iNOS, and NO and inhibit the NF-κB signaling in IL-1β-treated
chondrocytes by activating the NRF2 signaling (Pan et al., 2019). In
addition, Moracin (3, isolated fromCortexMori.Radicis,Moraceae),
Isovitexin (4, isolated from the passion flower (Passiflora edulis
Sims, Passifloraceae), Cannabis (Cannabis sativa L.,Moraceae), and
palm (Elaeis guineensis Jacq., Arecaceae)), Eriodictyol (5, isolated
from citrus fruits (Citrus reticulata Blanco, Rutaceae)), Licochalcone
A (Lico A, 6, isolated from the licorice root (Glycyrrhiza uralensis
Fisch., Leguminosae)), and Epigallocatechin-3-O-gallate (EGCG, 7,
isolated from tea leaves) exhibit similar effects against inflammatory
responses by activating the NRF2 signaling in OA chondrocytes (Jia
et al., 2017; Wang Y. et al., 2018; Zhou et al., 2020; Hu et al., 2021;
Zhu et al., 2022a) (Tables 1, 2). In addition, EGCG (100 μM) also
suppresses the JNK/MAPK signaling and inhibits inflammatory
responses in IL-1β-treated human chondrocytes (Akhtar and
Haqqi, 2011).

Puerarin (8), separated from the root of Pueraria lobata var.
Lobata (Willd.) Ohwi (Leguminosae), at the doses of 100 mg/kg/day
and 200 mg/kg/day for 14 days by gavage ameliorates the
pathological changes of OA cartilage by activating AMPK and
NRF2 signaling pathways in MIA-induced rat OA models (Wang
L. et al., 2018). Additionally, puerarin (10, 25, and 50 μM) decreases
the production of IL-6, TNFα, COX-2, PGE2, iNOS, and NO and
inhibits the NF-κB signaling IL-1β-treated mouse chondrocytes
(Chen X. et al., 2021). Morin (9, isolated from the Chinese
botanical drugs Ficus religiosa L.) of the Moraceae family)
decreases IL-1β-induced enhancement of NO and PGE2
production and activation of the NF-κB signaling in human
chondrocytes. NRF2 siRNA transfection may abolish the
suppressive activity of Morin against inflammatory responses (Qu
et al., 2018) (Table 3). Hyperoside (10, isolated from Epimedium
brevicornu Maxim (Berberidaceae), Hypericum attenuatum Fisch.
(Guttiferae), and Hypericum perforatum L. (Guttiferae)) and
Cardamonin (11, isolated from Alpinia katsumadai Hayata,
Zingiberaceae) consistently protect mouse chondrocytes against
IL-1β-induced COX-2 and iNOS expression by suppressing
PI3K/AKT/NF-κB and MAPK signaling pathways via activating
the NRF2 signaling (Peng et al., 2021; Sun et al., 2021) (Table 2).
Luteolin (12) and 7,8-dihydroxyflavone (7,8-DHF, 13) inhibit
H2O2-induced inflammatory responses in mouse chondrocytes by
inhibiting the MAPK pathway and activating the NRF2 signaling
(Cai et al., 2019a; Zhou et al., 2022) (Tables 1, 2). Wogonin (5,7-
dihydroxy-8-methoxyflavone, 14), isolated from Scutellaria
baicalensis Georgi (Lamiaceae), at the doses of 10, 25, and 50 μM
has been reported the anti-inflammatory effects, which are not
associated with the inhibition of NF-κB and MAPK signaling
pathways in IL-1β-treated human chondrocytes (Khan et al.,
2017) (Table 3).

Resveratrol (15), firstly extracted from the root of Veratrum
grandiflorum O. Loes (Liliaceae), has been demonstrated to be
an activator of Sirt1, which may mediate Wnt/β-catenin and
Foxo1 signaling pathways in OA chondrocytes (Liang et al.,
2023). Resveratrol at the dose of 50 mg/kg/3 days for 8 weeks
can inhibit oxidative stress and suppress inflammatory
responses in MIA-induced rat OA models by triggering the
NRF2/HO-1 signaling and inhibiting the NF-κB pathway (Wei
et al., 2018). TLR4/NF-κB/STAT3 and JAK2/STAT3 signaling
pathways are also implicated in OA development, and they can
be inhibited by Resveratrol (Limagne et al., 2016; Jiang M. et al.,
2020). Ellagic acid (EA, 16), a natural polyphenol from fruits
and nuts, has anti-inflammatory and anti-oxidative activities.
EA (10 and 25 μM) has been demonstrated to inhibit IL-1β-
induced oxidative stress by activating the NRF2/HO-1-NQO-
1 signaling pathway in C28/I2 chondrocytes (Zhu et al., 2022b).
6-Gingerol (17) at the doses of 2, 5 and 10 μM exhibits
protective activity against 4-hydroxynonenal-induced
chondrocyte cell death by activating the NRF2 signaling
pathway. In addition, 6-gingerol suppresses inflammatory
responses and oxidative stress. However, IL-1β-induced
activation of MAPK and NF-κB is not mediated by 6-
gingerol (Abusarah et al., 2017). Other polyphenols, such as
Polydatin (18, extracted from the roots of Polygonum
cuspidatum Sieb. Et Zucc, Polygonaceae), Pterostilbene (19,
derived from berries), Curcumin (20, a major turmeric
component), piceatannol (21, derived from the seeds of
Euphorbia lagascae Spreng, Euphorbiaceae), and Caffeic acid
phenethyl ester (CAPE, 22, one of the major bioactive
ingredients of propolis), also exhibit inhibitory activities
against inflammatory responses by activating the
NRF2 signaling pathway in IL-1β-treated chondrocytes (Tang
et al., 2017; Xue et al., 2017; Tang et al., 2018; Jiang C. et al.,
2020; Sun et al., 2022).

Attenuation of ECM degradation

Myricetin (2), Moracin (3), and Puerarin (8) can protect against
IL-1β-induced upregulation of MMP-13 and ADAMTS5 expression
and downregulation of collagen II and aggrecan expression.
Knockdown of NRF2 ameliorates the inhibitory effects of
myricetin, moracin, and Puerarin on IL-1β-induced ECM
degradation, respectively (Pan et al., 2019; Zhou et al., 2020;
Chen X. et al., 2021) (Table 1). Hyperoside (10) and EGCG (7)
inhibit IL-1β-induced ECM degradation by up-regulating
collagen II, aggrecan, and SOX9 expression and down-
regulating MMP-3, MMP-13, and ADAMTS5 expression via
the activation of NRF2 signaling in mouse chondrocytes (Sun
et al., 2021; Zhu et al., 2022a) (Table 2). Icariin (ICA, 23,
isolated from herba epimedium L. (Berberidaceae)) and
Wogonin (14, derived from the root extract of Scutellaria
baicalensis Georgi, Lamiaceae) may alleviate ECM
degradation by activating the NRF2 signaling in IL-1β-
treated human chondrocytes, as shown by decreased
generation of ROS, downregulated expression of MMP-3,
MMP-9, MMP-13, and ADAMTS-4, and increased expression
of GAG (Zuo et al., 2019). Curcumin (20) promotes the
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expression of Col2α, aggrecan, and SOX9, suppresses ECM
degradation, and increases chondrocyte viability by
inhibiting the NF-κB/HIF-2α signaling (Wang P. et al., 2021).

Similarly, Lico A (6) suppresses the expression of MMP-1,
MMP-13, and ADAMTS4/5 and enhances the expression of
collagen II by inhibiting NF-κB and Wnt/β-catenin signaling
pathways in rat chondrocytes (Chen et al., 2017). Isovitexin (4)
at the doses of 25 and 50 μg/mL inhibits MMP-3, MMP-13, and
ADAMTS5 expression and increases collagen II and aggrecan
expression by activating the NFR2 signaling in IL-1β-treated
mouse chondrocytes (Hu et al., 2021). Pterostilbene (19) at the
doses of 10 and 20 μM also inhibits IL-1β-induced ECM
degradation and chondrocyte senescence by suppressing the
PI3K/AKT/NF-κB signaling pathway and reducing senop-
associated secretory phenotype (SASP) expression (Wang Y.
et al., 2022). In addition, pterostilbene (20 mg/kg/3 days for
5 weeks by intraperitoneal injection) protects against
cartilage degradation in ACLT + DMM-induced OA rat
models (Wang Y. et al., 2022). Luteolin (12) at the doses of
10 and 20 μM may suppress MMP-13 and ADAMTS5
expression and stimulate collagen II and aggrecan expression
in H2O2-treated mouse chondrocytes (Zhou et al., 2022). 7,8-
dihydroflavone (7,8-DHF, 13) also suppresses the expression of
MMP-1, MMP-3, and MMP-13 by activating the
NFR2 signaling in H2O2-treated mouse chondrocytes (Cai
et al., 2019a) (Tables 1, 2). Pre-treatment with engeletin
(dihydrokaempferol 3-rhamnoside, 24) may ameliorate
TNFα-induced upregulation of MMP-3/-9 expression and
downregulation of collagen II and aggrecan expression in rat
chondrocytes (Wang H. et al., 2021) (Tables 1, 2). In ACLT-
induced rat OA models, intraarticular injection of engeletin
(50 μg/week for 5 weeks) effectively protects against
histopathological changes (Wang H. et al., 2021). Iron is an
essential trace element in the human body. Iron overload may
induce chondrocyte apoptosis and ECM degradation,
exacerbating the progression of OA. It has been reported
that naringenin (25) at the doses of 10 and 20 μM exhibits
protective effects against iron overload-induced cartilage
damage by activating the NRF2/HO-1 signaling pathway in
IL-1β-treated human chondrocytes (Pan et al., 2022).

Suppression of cell death in OA
chondrocytes

Hyperoside (10) can decrease ROS production, inhibit Bax,
cytochrome c, cleaved caspase-9, and cleaved caspase-3
expression, and increase Bcl-xl expression in IL-1β-treated mouse
chondrocytes by activating the NRF2 signaling (Sun et al., 2021). 6-
Gingerol (17) upregulates the expression of ubiquitin-specific
peptidase 49 (USP49), promotes the deubiquitination of Axin,
and increases the degradation of β-catenin, resulting in the
inhibition of Wnt/β-catenin signaling and the attenuation of
apoptosis in IL-1β-treated rat chondrocytes (Yang L. et al., 2020).
Polydatin (18) (25, 50, and 100 μg/mL) may promote chondrocyte
survival by improving mitochondrial homeostasis via increasing the
expression of Parkin and NRF2 in H2O2-treated chondrocytes
(Kang et al., 2020). Procyanidin B2 (PCB2, 26) at the doses of

20 and 40 μM can suppress IL-1β-induced apoptosis by mediating
the NRF2/Bax/Bcl-2 signaling pathway in rat chondrocytes (Cai
et al., 2022). Similarly, Luteolin (12) can suppress H2O2-induced
ROS production and cell apoptosis in mouse chondrocytes by
activating the NRF2 signaling, as detected by decreased caspase-3
and ssDNA expression (Zhou et al., 2022).

Engeletin (24, widely distributed in vegetables and fruits) may
suppress ROS generation, maintain mitochondrial membrane
potential, decrease Bax and cleaved caspase-3 expression, and
increase Bcl-2 expression in TNFα-treated rat chondrocytes
(Wang H. et al., 2021). Iron overload can induce mitochondrial
dysfunctions, trigger oxidative stress, and promote chondrocyte
apoptosis. However, naringenin (25, a naturally occurring
flavanone in citrus fruits) inhibits iron overload-induced
chondrocyte apoptosis (Pan et al., 2022). Similarly, Biochanin A
(4′-methoxy-5,7-dihydroxy isoflavone, BCA, 27, extracted from
Astragali Radix (Astragalus membranaceus (Fisch.) Bunge,
Leguminosae) can regulate iron homeostasis, suppress oxidative
stress, and inhibit iron overload-induced mitochondrial
dysfunction by up-regulating the NRF2/system xc-/
GPX4 signaling pathway in mouse chondrocytes (He et al., 2022)
(Table 2). Delphinidin (28, a flavonoid present in red wine and
berries) at the dose of 40 μM exhibits protective activity against OA
development by suppressing oxidative stress, inhibiting apoptosis,
and stimulating autophagy. The possible mechanism might be
associated with upregulation of the NRF2/ARE signaling and
downregulation of the NF-κB pathway in C28/I2 chondrocytes
(Lee et al., 2020). Puerarin 8) also protects chondrocytes by
promoting Beclin-1-dependent autophagy and maintaining
homeostasis (Li et al., 2021). Curcumin (20) maintains
mitochondrial homeostasis, induces mitophagy, and protects
chondrocytes by mediating the AMPK/PINK1/Parkin signaling
pathway (Jin et al., 2022). Curcumin (20) also promotes
autophagy and reduces apoptosis by inhibiting the PI3K/AKT/
mTOR pathway in TNFα-treated chondrocytes (Han et al., 2021).

Licochalcone A (Lico A, 6) may protect mouse chondrocytes
against LPS-induced pyroptosis by down-regulating the
NRF2 signaling, as shown by decreased expression of caspase-1,
IL-1β, IL-18, and NLRP3 inflammasome (Yan et al., 2020).
Consistently, cardamonin (11) suppresses IL-1β-induced
chondrocyte apoptosis by inhibiting the activity of
NLRP3 inflammasome via activating the NRF2 signaling (Jiang
and Cai, 2021). Chlorogenic acid (CGA, 29), a polyphenolic
compound, has anti-oxidative activity. It has been demonstrated
that CGA (250 μM) can inhibit the expression of pro-apoptotic
markers, such as cleaved caspase-3 and PARP, and stimulate the
expression of Bcl-xL by attenuating the NF-κB pathway and
enhancing the NRF2/ARE signaling, leading to the amelioration
of apoptosis in human C28/I2 cells (Zada et al., 2021). Chicoric acid
(CA, 30), extracted from Taraxacum mongolicum Hand
(Composite), can suppress the expression of pro-inflammatory
cytokines, such as IL-6, IL-12, TNFα, COX-2, PGE2, iNOS, NO,
and ECM catabolic factors, such as MMP-13 and ADAMTS-5,
and increase the production of collagen II and aggrecan by
activating the NRF2/HO-1 signaling and inhibiting the PI3K/
AKT and NF-κB pathways in C28/I2 cells (Qu et al., 2022).
Pinitol (31), an ethanolic ingredient from Pinaceae,
Leguminosae, and Argyrolobium family, has shown insulin-like
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effects. It has been reported that pinitol (5 and 10 μM) can
ameliorate TNFα-induced chondrocyte senescence and cell
cycle arrest by rescuing the NRF2 signaling pathway in C28/
I2 cells (Lou et al., 2020).

Potential mechanisms of flavonoids in
activating NRF2 signaling

Myricetin 2) may promote NRF2 nuclear translocation and
activate the NRF2 signaling in IL-1β-treated human
chondrocytes. Ly294002, a PI3K/AKT inhibitor, can block the
stimulatory effects of myricetin on the activation of
NRF2 signaling (Pan et al., 2019). Icariin (ICA, 23) and EGCG
7) may downregulate Keap1 expression, upregulate
NRF2 expression, and promote the dissociation of Keap1 from
NRF2, exhibiting anti-oxidative and chondroprotective activity
(Zuo et al., 2019; Zhu et al., 2022a). Similarly, luteolin (12) can
interrupt the interaction between Keap1 and NRF2, increase the
stability of NRF2, and promote NRF2 nuclear translocation by
activating AMPKα1 expression in H2O2-treated mouse
chondrocytes (Zhou et al., 2022). Wogonin (14) can directly
interact with the Kelch domain of Keap1 protein and interrupt
the association of Keap1 with NRF2, leading to the stability of NRF2
(Khan et al., 2017). Isovitexin (4) has been reported to interact with
NRF2 and promote its nuclear translocation (Hu et al., 2021).
Another study reports that Procyanidin B2 (PCB2, 26) can
directly bind to the cavity of NRF2 by forming hydrogen bonds,
salt bridge, alkyl, and van der Waals, promoting the stability and
nuclear translocation of NRF2 in IL-1β-treated rat chondrocytes
(Cai et al., 2022).

Terpenes and terpenoids activate the
NRF2 signaling

Terpenoids are a class of natural compounds made up of molecules
with the formula (C5H8)n. The structure of terpenes is constructed by
the linkage of isoprene units (C5H8)n. Various terpene compounds can
be generated by head-to-tail condensation of C5 building blocks.
Regarding the number of linked isoprene units, terpenoids can be
divided into hemi-, mono-, sesqui-, di-, sester-, tri-, tetra-, and
polyterpenes (Arnesen and Borodina, 2022). Terpenoids are
excellent candidates for new drug development, due to their
multiple pharmacological properties (Atriya et al., 2022). For
example, andrographolide (32) is a diterpene from Andrographis
paniculata Burm. f. (Acanthaceae) and has been reported to increase
the expression of the NRF2/ARE signaling and decrease the NF-κB,
MAPK, and JAK/STAT pathways (Burgos et al., 2020). Recently,
terpenoids have been the research focus for the therapeutic
management of OA.

Monoterpenes Linalool (33), an acyclic monoterpene alcohol from
comfrey (Symphytum officinale L., Boraginaceae) and cruciferous family,
has been demonstrated to suppress IL-1β-induced expression of COX-
2/PGE2, iNOS/NO, TNFα, IL-6, MMP-13, and ADAMTS5 and
increase the production of collagen II and aggrecan in mouse
chondrocytes by activating the NRF2/HO-1 pathway and
suppressing the NF-κB pathway (Miao et al., 2022).

Sesquiterpenoids Bilobalide (34), a sesquiterpenoid isolated
from Ginkgo biloba L. (Ginkgoaceae), has shown various
pharmacological activities, such as anti-inflammatory, anti-
oxidative, and anti-apoptosis. In a papain intra-articular rabbit
OA model, bilobalide (40 mg/kg and 80 mg/kg by gavage
administration) has been shown to decrease the expression of
MMP-3 and MMP-13 and improve the biomechanical properties
by activating the NRF2/HO-1 signaling pathway (Ma et al., 2022a).
In addition, bilobalide may induce autophagy and suppress
apoptosis in ATDC5 chondrocytes by activating the AMPK/Sirt1/
mTOR signaling (Ma et al., 2022c). Patchouli alcohol (PA, 35) is also
a sesquiterpene from Pogostemon cablin (Blanco) Benth.
(Lamiaceae). It has been reported that PA may ameliorate ECM
degradation in D-galactose-induced senescent chondrocytes by
stimulating the NRF2/HO-1 signaling pathway in mouse
chondrocytes (Chen M. et al., 2022).

Diterpenoids Andrographolide (AP, 32), a natural antioxidant,
has been clinically used for treating inflammatory and cancer
diseases. In H2O2-treated rat chondrocytes, AP may suppress
oxidative stress by activating the NRF2/ARE signaling pathway.
Specifically, AP can inhibit H2O2-induced expression of MMP-13
and IL-6 and improve chondrocyte apoptosis (Li et al., 2018).
Ginkgolide C (36), derived from Ginkgo biloba L. (Ginkgoaceae),
has been demonstrated to inhibit H2O2-induced apoptosis, oxidative
stress, and ECM degradation by activating the NRF2/HO-1 pathway
and suppressing the NF-κB pathway in rat chondrocytes (Ma et al.,
2022b).

Triterpenoids Nomilin (NOM, 37) is a triterpenoid isolated
from some edible citrus fruits and has demonstrated inflammation-
modulatory properties. NOM may alleviate the development of OA
by decreasing the expression of pro-inflammatory cytokines, such as
COX-2/PGE2, iNOS/NO, TNFα, and IL-6, and suppressing ECM
degradation by mediating the NRF2 and NF-κB signaling pathways
in mouse chondrocytes (Xue et al., 2020). Limonin (LIM, 38),
isolated from lemons and other citrus fruits, has been
demonstrated to inhibit IL-1β-induced generation of pro-
inflammatory cytokines, such as COX-2/PGE2, iNOS/NO, TNFα,
and IL-6, and the expression of MMP-13 and ADAMTS5 in mouse
chondrocytes by mediating the NRF2/HO-1/NF-κB signaling
pathway (Jin et al., 2021).

Betulin (39), isolated from birch bark, is often used for anti-
inflammation treatment. Botulin can decrease IL-1β-induced
expression of pro-inflammatory cytokines, such as IL-6, TNFα,
COX-2, PGE2, iNOS, and NO, and ECM catabolic factors, such
as MMP-13 and ADAMTS-5, by activating the AKT/NRF2 pathway
and inhibiting the NF-κB pathway in mouse chondrocytes (Ren
et al., 2021). Asiaticoside (ASI, 40), a triterpenoid saponin isolated
from Centella Asiatica L. (Apiaceae), may ameliorate TBHP-induced
chondrocyte apoptosis by stimulating the NRF2/HO-1 signaling
pathway. Additionally, ASI enhances the production of aggrecan
and collagen II and suppresses the expression of MMP-13 and
ADAMTS5, improving the degradation of ECM and the progression
of OA (Luo et al., 2022). Hederagenin (41), a pentacyclic
triterpenoid saponin, has been reported anti-inflammatory and
anti-oxidative activities by inhibiting the JAK2/STAT3/MAPK
signaling pathway and activating the Keap1-NRF2/HO-1/ROS/
Bax/Bcl-2 axis, leading to the suppression of ECM degradation
and upregulation of collagen II and aggrecan expression in IL-
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1β-treated C28/I2 cells (Shen et al., 2022) (Table 3). 18β-
Glycyrrhetinic acid (18β-GA, 42), one of the effective metabolites
fromGlycyrrhiza glabra L. (Leguminosae), is widely used for treating
inflammatory diseases. 18β-GA may suppress IL-1β-induced
expression of pro-inflammatory cytokines, such as IL-6, TNFα,
COX-2, PGE2, iNOS, and NO, and ECM catabolic factors, such
as MMP-13 and ADAMTS-5, by activating the activity of the NRF2/
HO-1 pathway in mouse chondrocytes (Chen B. et al., 2021) (Tables
1, 2). In addition, 18β-GA acts as an inhibitor of connexin 43 (Cx43),
which plays a role in mechanotransduction. The fluid flow shear
stress (FFSS) can upregulate the expression of Cx43 and PGE2, and
18β-GA may abolish FFSS-induced PGE2 expression (Zhang et al.,
2014). Akebia saponin D (ASD, 43), an effective triterpenoid from
Rhizome of Dipsacus asper Wall (Caprifoliaceae), can suppress
inflammatory actions by stimulating the NRF2/HO-1 pathway
and inhibiting the NF-κB pathway in mouse chondrocytes,
protecting against OA development (Gu et al., 2020) (Table 1).

Tetraterpenoids Lycopene (44) is often found in vegetables and
fruits and has been demonstrated anti-inflammatory activity against
OA development by activating the NRF2/HO-1 pathway and reversing
the NF-κB/STAT3 pathway, leading to the decreased degradation of
ECM in mouse chondrocytes (Zhan et al., 2021). Lycopene also
promotes chondrocyte autophagy and suppresses apoptosis by
inhibiting MAPK and PI3K/AKT/NF-κB signaling pathways (Wu
et al., 2021). Astaxanthin (AST, 45), also named marine carotenoid,
exhibits remarkable anti-oxidative activity by activating the NRF2/ARE
signaling. AST has been demonstrated to suppress IL-1β-induced
inflammatory responses, cell apoptosis, and ECM degradation by
inhibiting the MAPK/NF-κB signaling and stimulating the
NRF2 pathway in mouse chondrocytes (Sun et al., 2019) (Table 1).

Alkaloids activate the NRF2 signaling

Corynoline (COR, 46), an alkaloid from Corydalis bungeana
Turcz. (Papaveraceae Juss.), has been reported to inhibit

inflammatory responses and suppress the NF-κB signaling. COR
may suppress IL-1β-induced expression of pro-inflammatory
cytokines and ECM degradation by binding and activating
NRF2 activity in mouse chondrocytes (Li et al., 2022) (Table 1).
Sinomenine (SIN, 47), isolated from Sinomenium acutum Thunb.
(Menispermaceae), has demonstrated anti-inflammatory effects. It
has been reported that SIN reduces the expression of COX-2, PGE2,
iNOS, NO, IL-6, and TNFα, inhibits the production of MMPs and
ADAMTS5, and suppresses the degradation of collagen II and
aggrecan in mouse chondrocytes by activating the NRF2/HO-
1 signaling pathway (Wu et al., 2019). Another study reports that
SIN can suppress IL-1β-induced MMPs expression by interrupting
the interaction between TRAF6 and TAK1, inhibiting JAK2/
STAT3 signaling, and increasing SOCS3 expression in
SW1353 cells (Qi et al., 2020). Peiminine (PM, 48) is a bioactive
metabolite from Fritillaria thunbergii Miq. (Liliaceae), which is
widely used to treat various diseases. PM has been shown to
decrease the production of COX-2, PGE2, iNOS, NO, IL-6, and
TNFα in mouse chondrocytes. In addition, PM can decrease the
expression of MMP-13 and ADAMTS5 and increase the production
of collagen II and aggrecan by stimulating the NRF2/HO-1 signaling
and inhibiting the AKT/NF-κB pathway (Luo et al., 2019).

Miscellaneous types

Coniferaldehyde (49), a food flavoring, is a potential NRF2 activator.
Coniferaldehydemay ameliorate H2O2-induced IL-1, IL-6, MMP-1, and
MMP-13 expression by activating the NRF2/HO-1 signaling pathway in
mouse chondrocytes (Cai et al., 2021a). Ergosterol (50) is isolated from
the fungusAgaricus campestris. Ergosterol has shown chondroprotective
activity by activating the NRF2/HO-1 signaling pathway in mouse
chondrocytes (Cai et al., 2021b). Maltol (51), an aromatic natural
metabolite isolated from red ginseng, has shown various biological
effects, including anti-inflammation and anti-oxidative stress. It has
been reported that maltol exhibits chondroprotective activity in vivo and

FIGURE 2
Natural compounds activate the NRF2/ARE signaling to protect against OA development, which is characterized by inflammation, oxidative stress,
ECM degradation, and chondrocyte apoptosis.
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in vitro. Specifically, maltol suppresses the production of pro-
inflammatory cytokines and the expression of MMP-13 and
ADAMTS5 and increases the expression of collagen II and aggrecan
by modulating the NRF2 and NF-κB signaling pathways in mouse
chondrocytes (Zhu et al., 2021). Monascin (52), an azaphilonoid
pigment isolated from Monascus purpureus-fermented rice, has
demonstrated protectiveness in the development of OA. Specifically,
monascin can reduce inflammatory responses and suppress ECM
degradation by activating the NRF2 signaling and inhibiting the NF-
κB pathway in mouse chondrocytes (Zheng et al., 2018). Plumbagin (4-
aphthoquinone, 53) can be found in Plumbaginaceae, Droseraceae, and
Ebenceae family. It has been demonstrated that plumbagin exhibits anti-
oxidative stress in H2O2-treated human chondrocytes by activating the
NRF2 signaling and inhibiting the NF-κB pathway (Guo et al., 2017).

Pharmacological applications of
NRF2 activators against OA development

Sulforaphane (SFN, 54), an isothiocyanate widely found in the
Brassicaceae family and most abundant in broccoli and 3-day-old
broccoli sprout extracts (Yagishita et al., 2019), has demonstrated
pharmacological effects, such as anti-inflammation and anti-
oxidation. Particularly, the anti-oxidative capacity of SFN is
associated with the activation of NRF2/ARE signaling pathway
(Lu et al., 2023). SFN (50 μM) can significantly decrease H2O2-
induced chondrocyte apoptosis and cartilage degradation by
enhancing the expression of Sirt1 (Chen M. et al., 2021). Further
study shows that SFN protects human OA chondrocytes against
H2O2-induced oxidative stress, matrix degradation, and
hypertrophic differentiation by activating the Keap1/
NRF2 signaling pathways (Yang J. et al., 2020) (Table 3).
However, SFN (10 μM) may effectively suppress the expression of
MMP-1, MMP-13, ADAMTS4, and ADAMTS5 in a NRF2-
independent manner in human chondrocytes and SW1353 cells
(Davidson et al., 2013). Another study reports that Sulforadex (SFX-
01, 100 mg/kg/day for 3 months by oral administration), a stable
synthetic form of SFN, can improve the microarchitecture of mouse
bone and the symmetry of gait, without producing significant effects
on cartilage lesion severity in STR/Ort OA mice (Javaheri et al.,
2017). The effective biological effects of SFN against OA have been
demonstrated. To achieve a prolonged and sustained activity, an
intra-articular injectable SFN-FLGA microsphere system has been
designed. SFN-FLGA may significantly decrease inflammatory
responses, as indicated by decreased expression of COX-2, MMP-
2, and ADAMTS5 in human OA chondrocytes (Ko et al., 2013). Two
preparations for SFN have been developed as Sulforadex (SFX-01,
300 mg twice/day for 28 days) and Prostaphane (200 μM once/day
for 30 days), which are employed in clinical trials in subarachnoid
haemorrhage and prostate cancer patients, respectively (Zolnourian
et al., 2020; Dinkova-Kostova and Copple, 2023).

A series of synthetic oleanane triterpenoids has been explored
due to their broad applications in preventing and treating chronic
diseases. Several potential signaling pathways, such as Keap1/NRF2,
PPARγ, JAK/STAT, and PI3K/AKT, have been implicated in the
molecular mechanisms of oleanane triterpenoids in mediating their
biological actions (Liby and Sporn, 2012). For example, synthetic
triterpenoid 2-cyano-3,12-dioxooleanna-1,9 (11)-dien-28-oic acid

(CDDO) has been reported to directly interact with the thiol groups
of Keap1 and activate the NRF2/ARE signaling pathway (Dinkova-
Kostova et al., 2005). Omaveloxolone (RTA408, 55) is a
semisynthetic triterpenoid derived from oleanolic acid and has
been considered one of the most potent activators of the NRF2/
ARE signaling pathway. RTA408 has been demonstrated to inhibit
radiation-induced oxidative stress by disrupting the interaction
between Keap1 and NRF2 (Goldman et al., 2015). RTA408 is
also effective against inflammation by suppressing the NF-κB
signaling pathway (Zhang et al., 2021). RTA408 has been
reported to promote chondrocyte proliferation, suppress
inflammation and oxidative stress, inhibit chondrocyte apoptosis,
and ameliorate ECM degradation by activating the NRF2/ARE
signaling and inhibiting the NF-κB pathway in IL-1β-treated
chondrocytes. In addition, RTA408 significantly enhances the
levels of collagen II and aggrecan, decreases the scores of
Osteoarthritis Research Society International (OARSI) and
modified Mankin, and improves the microarchitecture of
subchondral bone. In addition, RTA408 at doses of 200 μg/kg
and 500 μg/kg has been proven to be safe after 8 weeks of
treatment in rats (Jiang et al., 2022). The safety of RTA408
(2.5 mg once/day for 28 days/cycle, up to 12 cycles) has been
reported in a phase-I clinical trial in patients with metastatic
non-small-cell lung cancer or melanoma, and similar assays of
RTA408 (150 mg once/day for 48 weeks) in a phase-Ⅱ clinical
trial in Friedreich ataxia (Lynch et al., 2019; Madsen et al., 2020).

Dimethyl fumarate (DMF, Tecfidera, 56), a methyl ester of
fumaric acid, is currently the only agent in clinical practice as a
NRF2 activator. Notably, DMF increases the activity of
mitochondrial tricarboxylic acid (TCA) cycle and the production
of ATP. Additionally, DMF and its metabolite monomethyl
fumarate have good bioavailability (Sheikh et al., 2013) and
exhibit beneficial effects against inflammation and oxidative
stress (Kourakis et al., 2020). Mechanically, DMF may stimulate
the NRF2/ARE signaling pathway and interact with the anti-
inflammatory hydroxycarboxylic acid receptor 2 (HCAR2) (Chen
H. et al., 2014). DMF has been approved by FDA as a medication for
the therapeutic management of multiple sclerosis. In TNFα-treated
human primary chondrocytes, DMF the doses of 1, 5, and 10 μM
may inhibit the expression ofMMP-1/-3/-13 by down-regulating the
JAK/STAT3 signaling pathway, ameliorating the degradation of
collagen II, and protecting joint cartilage (Li et al., 2014). ERK1,
but not ERK2, plays a critical role in the expression of collagen II and
aggrecan by mediating the TGFβ1/Smad3/TIMP-3 axis (Zhu et al.,
2017). It has been reported that mice with ERK1 deficiency are
susceptible to age-associated OA, due to decreased activity of NRF2.
DMF exhibits protective effects against OA in ERK1-knockout mice
by stimulating the expression of NRF2 (Chen J. et al., 2022).

Many clinical trials for NRF2 activators, such as plant extracts,
dietary supplements, and pure compounds, have been performed and
can be found on Clinicaltrials.gov. The drug development of
NRF2 activators has been advanced. Upregulation of the NRF2/ARE
signaling pathway may provide beneficial effects in adverse
environments. It should be noted that over-activation of the NRF2/
ARE signaling pathway also has some potential negative effects. Various
challenges, such as target specificity, pharmacodynamic responses,
short-term and long-term safety considerations, and the variation of
NRF2 activity, may adversely affect the expression of NRF2 (Dinkova-
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Kostova and Copple, 2023). For example, protein-protein interaction
(PPI) inhibitors are designed to target Keap1. However, NRF2 is not the
only binding partner of Keap1. Inhibition of Keap1 also induces the
expression of p62, which may further increase the activation of NRF2.
The biological consequences are still needed for detailed investigation
(Saito et al., 2016). In addition, NRF2 may promote the expression of
the multidrug-resistant protein 3 (MRP3), which acts to export various
cytostatic drugs (Slocum and Kensler, 2011; Marchan and Bolt, 2013).
ROS at low concentrations can be healthy, and theNRF2/ARE signaling
should be functioning properly. For example, ROS are essential to
regulate insulin signal transduction and glucose-mediated insulin
secretion in pancreatic β cells. It can be postulated that over-
activation of the NRF2/ARE signaling pathway may be associated
with insulin resistance and dysregulated lipid accumulation. In
addition, some oxidative modifications of proteins are important for
the processes of ubiquitination and protein degradation (Chen J. et al.,
2014; Smith et al., 2016). Insulin may increase the production of
collagen II and proteoglycan and decrease the breakdown of
cartilage (Bradley, 2021). Thus, there is a risk that over-activation of
theNRF2/ARE signaling pathwaymayworsen the pathological changes
of OA. Thus, it should be careful to administer some dietary
supplements, such as green tea extract and purified EGCG, which
may produce over-activation of the NRF2/ARE signaling pathway
(Huang et al., 2015).

Conclusion

In this review article, we comprehensively discuss the
chondroprotective effects of natural compounds by activating the
NRF2/ARE signaling pathway (Figure 2). These effective
compounds mainly involve polyphenols, terpenoids, and
alkaloids, and they inhibit inflammatory responses, ECM
degradation, and chondrocyte apoptosis in OA cartilage.
Activation of the NRF2/ARE signaling shows great potential for
the therapeutic management of OA. However, we did not discuss the
pharmacological properties of these compounds. The information
about how these compounds activate the expression of NRF2 is
relatively limited. The structure-activity relationship of polyphenols

(flavonoids) or terpenoids in activating the NRF2 signaling pathway
should be elucidated. The delivery of natural effective compounds to
the damaged joint cartilage has become a major therapeutic
limitation. In addition, randomized clinical trials of natural
compounds against OA development are still required to fully
elucidate the chondroprotective effects of natural compounds.
These critical limitations should be scientifically addressed in
future research.
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