
Preclinical evidence of probiotics
in ulcerative colitis: a systematic
review and network meta-analysis

Wenqin Jin1,2, Huangping Ai1,2, Qingqing Huang1,2, Chuncai Li1,2,
Xiang He1,2, Zhao Jin1* and Yuling Zuo1,2*
1Chengdu University of Traditional ChineseMedicine, Chengdu, China, 2Hospital of ChengduUniversity of
Traditional Chinese Medicine, Chengdu, China

The imbalance of gastrointestinal microbial composition has been identified as the
main factor of chronic inflammatory diseases. At present, probiotics have a
beneficial effect on the microbial composition of the human gastrointestinal
tract, but it is still controversial and the specific mechanism is unknown. The
purpose of this network meta-analysis is to compare the mechanism of different
probiotics on ulcerative colitis. PubMed, Embase, and Web of Science were
searched till 16 November 2022. The SYRCLE risk bias assessment tool was
used to assess the quality of the research studies. A total of 42 studies,
839 ulcerative colitis models, and 24 kinds of probiotics were finally included.
The results showed that L. rhamnosus has the best effect in relieving weight loss
and improving the Shannon index in the ulcerative colitis model. E. faecium has
the best effect in reducing colon injury; L. reuteri has the best effect in reducing
the DAI; L. acidophilus has the best effect in reducing the HIS index and increasing
the expression of tight junction protein ZO-1; and L. coryniformis has the best
effect in reducing the content of serum pro-inflammatory factor TNF-α. It
indicated that probiotics can improve ulcerative colitis by improving
histopathological manifestations, reducing inflammatory reaction, and repairing
the mucosal barrier, and different probiotics showed different effects. However,
considering the limitations of this study, preclinical studies that require more large
samples and high-quality and more reliable and rigorous experimental designs
and reports need to be conducted in the future.

Systematic Review Registration: https://www.crd.york.ac.uk/prospero/#record
details, identifier CRD42022383383.
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1 Introduction

Ulcerative colitis (UC) is a chronic non-specific intestinal inflammatory disease
characterized by inflammatory changes of colorectal mucosa. Its etiology is not clear,
and it is difficult to cure and easy to become cancerous (Ungaro et al., 2017).
Epidemiological research showed that the incidence of UC is rising all over the world
(Charles et al., 2010). It is generally believed that the pathogenesis of UC is the result of the
interaction of heredity, immunity, microorganism, and environment. At present, the
traditional treatments for UC are mainly sulfasalazine, 5-aminosalicylic acid ester,
glucocorticoid, and immunosuppressants (Travis et al., 2008; Kornbluth and Sachar,
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2010), but their curative effects are limited, and there are many
adverse reactions such as headache, nausea, and abdominal pain,
and it is expensive that most patients cannot afford it. Therefore, it is
a new trend to seek a safer and more effective adjuvant therapy or
alternative therapy for UC.

Intestinal flora maintains the survival and metabolism of the
body by ingesting nutrients in the body, which plays an important
role in regulating the nutrition, metabolism, immunity, and
pathogen defense of the host, and it is an important barrier to
maintain the internal environment of the body. There are
100 trillion kinds of different microorganisms in the human
intestine, including bacteria, fungi, viruses, and protozoa, which
constitute the intestinal microflora (Zhang et al., 2020). Intestinal
flora is considered to be one of the important organs symbiotic with
the body, which is important to the occurrence and development of
diseases. Intestinal flora imbalance can cause systemic inflammatory
response. Probiotics are a vital component of intestinal flora,
including Bacteroides, Lactobacillus, and Bifidobacterium.
Supplementation of probiotics can improve the intestinal
environment, including regulating the composition of intestinal
flora, preventing colonization of pathogenic bacteria, affecting
bacterial metabolism, and regulating immune response (Zhao
et al., 2020).

There is significant imbalance of intestinal flora in UC patients,
which is characterized by the decrease of the types and universality
of intestinal microorganisms and the difference of their spatial
distribution. A series of metabolites produced by intestinal flora
also affect the occurrence and development of UC (Franzosa et al.,
2019). A large number of animal and clinical studies have shown
that probiotics can effectively alleviate the clinical symptoms and
pathological damage of UC, improve the inflammatory reaction, and
restore the balance of intestinal flora (Srutkova et al., 2015; Boruel
et al., 2002), and have been widely used in the treatment of
gastrointestinal diseases, but probiotics do not always provide
benefits to patients, the effects of different strains are quite
different, and the mechanism of action is also different, which is
closely related to the type and stage of the disease, the strains and
doses of probiotics used. However, at present, the functions and
mechanisms of different probiotics have not been discussed. In this
study, the effects of 24 probiotics on the DSS-induced UC mouse
model were compared, and the advantages and disadvantages of
different probiotics in the treatment of ulcerative colitis were
summarized, which provided evidence for the selection of clinical
probiotic strains.

2 Methods

The protocol of this network meta-analysis was registered on the
International Prospective Register of Systematic Reviews
(PROSPERO) (Registration ID: CRD 42022383383). The whole
process is based on PRISMA guidelines (Moher et al., 2015).

2.1 Search strategy

We searched PubMed, Embase, and Web of Science for animal
experiments on the treatment of ulcerative colitis with probiotics

before 16 November 2022. The search keywords included
“Probiotics,” “Ulcerative colitis,” and “Animals.” The search was
limited to the English language. The specific search strategies can be
obtained in Supplementary Table S1.

2.2 Eligibility criteria

Inclusion criteria: population (P): animal model of ulcerative
colitis induced by DSS; intervention (I): the intervention of the
experimental group was administration of a single probiotic, by
gavage or intragastric, with no restrictions on the intervention dose
and intervention period; comparison (C): the control group did not
intervene or placebo intervened; outcomes (O): the main outcome
indicators include weight change (WC), colon length (CL), disease
activity index (DAI), and historical score (HIS).

Exclusion criteria: 1) vitro studies; 2) vivo studies with humans;
3) congresses, editorials, letters, case reports, and review works; 4)
papers published in a language other than English; and 5) duplicate,
abstracts, unpublished reports, or incomplete data and characteristic
have been disregarded.

2.3 Data extraction and quality assessment

The two authors screened the literature according to the
inclusion and exclusion standard independently, and then, they
extracted the following information: author, publication year,
animal species (sex, n, weight), UC model induction method,
study design (probiotics, administration, dose, and duration), and
outcome indicators. If there were different doses of the same
probiotic, the dose with the best effect was selected. When there
was only SEM but no SD in the text, we converted it by the formula
SD = SEM*√n (Lee et al., 2015). We used WebPlotDigitizer
4.5 software (https://automeris.io/WebPlotDigitizer) to quantify
the data of that only have pictures in the text. We had tried to
contact the original author when the data were unavailable. We used
the SYRCLE Risk Bias Tool to evaluate the risk of bias (Hooijmans
et al., 2014), including sequence generation, baseline characteristics,
allocation concealment, random housing, blinding of outcome
assessors, random outcome assessment, blinding of
experimentalist, incomplete outcome data, selective outcome
reporting, and other sources of bias, every aspect classified as
high risk of bias and low risk of bias or unclear. In case of any
doubt in the aforementioned process, a third author was involved.

2.4 Outcomes

The primary outcomes were WC, CL, DAI, and HIS. The
secondary outcomes were tumor necrosis factor-α (TNF-α),
zonula occlusion ns-1 (ZO-1), and Shannon.

2.5 Data synthesis and statistical analysis

We used R 4.2.2 to analyze the data, and Stata16 was used to
make a network evidence diagram and comparison-correction
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funnel diagram. Mean difference (MD) and 95% credible intervals
(CrIs) were used to assess continuous outcomes, except TNF-α which
used standard mean difference (SMD) and 95% credible intervals
(CrIs). The network meta-analysis was carried out based on the
Markov chain-Monte Carlo method in the Bayesian framework, and
4 Markov chains, 1 thinning interval, 20,000 burn-in, and
50,000 iterations were set. The convergence degree of the model is
satisfactory when the potential scale reduction factor (PSRF) tends to
1(Supplementary Figure S1). When there was a closed loop, the node
analysis model was used to test the inconsistency.

3 Results

3.1 Study selection

A total of 2,707 studies were obtained, 291 studies duplicates
were removed, 2,273 studies were excluded after reading the title/
abstract, and 65 studies were retained after reading the full text
according to the PICO inclusion criteria, and then, through further
screening, 1 study was repeatedly published, we were unable to
obtain the full text from 12 studies, and 10 studies had incomplete
data. Finally, 42 studies were included in the network meta-analysis
(Liu et al., 2011; Zakostelska et al., 2011; Chen et al., 2012; Chen
et al., 2013; Pan et al., 2014; Elian et al., 2015; Lee et al., 2015; Cui
et al., 2016; Kanda et al., 2016; Liu et al., 2016; Chae et al., 2018; Sun
et al., 2018; Wang et al., 2018; Bian et al., 2019; Chae et al., 2019;
Chen et al., 2019; Choi et al., 2019; Din et al., 2020; He et al., 2020;
Hu et al., 2020; Sun et al., 2020; Yeo et al., 2020; Yu et al., 2020; Chen
et al., 2021; Gao et al., 2021; Hu et al., 2021; Huang et al., 2021; Qu
et al., 2021; Tong et al., 2021; Wang et al., 2021; Dong et al., 2022;
Huang et al., 2022; Islam et al., 2022; Khan et al., 2022; Lee et al.,
2022; Li et al., 2022; Lu et al., 2022; Ma et al., 2022; Qin et al., 2022;
Shang et al., 2022; Wan et al., 2022; Wu et al., 2022). The specific
selection flow chart was shown in Figure 1.

3.2 Study characteristics

A total of 42 articles were included, and the publication time was
concentrated between 2011 and 2022. There were 839 ulcerative
colitis animal models, including 460 in the intervention group and
379 in the control group. There were four different kinds of mice,
and 14 studies used the BALB/c mice (Lee et al., 2022; Chen et al.,
2013; Liu et al., 2016; Pan et al., 2014; Liu et al., 2011; Kanda et al.,
2016; Cui et al., 2016; Chen et al., 2019; Zakostelska et al., 2011; Elian
et al., 2015; Sun et al., 2018; Yu et al., 2020; Wang et al., 2018; Lee
et al., 2015), with a total of 306 mice, 24 studies used the C57BL/
6 mice (Chen et al., 2012; Chae et al., 2018; Bian et al., 2019; Chae
et al., 2019; Din et al., 2020; He et al., 2020; Hu et al., 2020; Yeo et al.,
2020; Chen et al., 2021; Gao et al., 2021; Hu et al., 2021; Huang et al.,
2021; Qu et al., 2021; Tong et al., 2021; Dong et al., 2022; Huang
et al., 2022; Islam et al., 2022; Khan et al., 2022; Lu et al., 2022; Ma
et al., 2022; Qin et al., 2022; Shang et al., 2022; Wan et al., 2022; Wu
et al., 2022), with a total of 436 mice, 2 studies used the ICR mice
(Sun et al., 2018; Choi et al., 2019), with a total of 32 mice, 1 study
used the Kunming mice (Wang et al., 2021), with 35 mice in total,
and 1 study used the Sprague Dawley (SD) mice (Li et al., 2022), with

a total of 20 mice. All studies adopted animal models of ulcerative
colitis induced by dextran sulfate sodium (DSS), and the
administration duration ranged from 7 days to 35 days. There
were 24 kinds of probiotics in total, and seven studies used
Bifidobacterium (B. bifidum) (Elian et al., 2015; Chae et al., 2018;
Wang et al., 2018; Din et al., 2020; Dong et al., 2022; Lee et al., 2022;
Shang et al., 2022), thirteen studies used Lactobacillus plantarum (L.
plantarum) (Liu et al., 2011; Lee et al., 2015; Cui et al., 2016; Chae
et al., 2019; Choi et al., 2019; Sun et al., 2020; Yu et al., 2020; Hu et al.,
2021; Huang et al., 2021; Wang et al., 2021; Khan et al., 2022; Qin
et al., 2022; Wu et al., 2022), two studies used Akkermansia
muciniphila (AKK) (Bian et al., 2019; Qu et al., 2021), two
studies used Lactobacillus fermentum (L. fermentum) (Cui et al.,
2016; Chen et al., 2021), four studies used Lactobacillus rhamnosus
(L. rhamnosus) (Yeo et al., 2020; Tong et al., 2021; Wang et al., 2021;
Wan et al., 2022), three studies used Lactobacillus bulgaricus (L.
bulgaricus) (Hu et al., 2020; Chen et al., 2021; Hu et al., 2021), and
two studies used Lactobacillus paracasei (L. paracasei) (Pan et al.,
2014; Huang et al., 2021). There was one study using Saccharomyces
boulardii (S. boulardii) (Gao et al., 2021), Clostridium butyricum (C.
butyricum) (Ma et al., 2022), Lactobacillus brevis (L. brevis) (Liu
et al., 2016), Lactobacillus crispatus (L. crispatus) (Cui et al., 2016),
Lactobacillus reuteri (L. reuteri) (Sun et al., 2018), Lactobacillus
neoformans Lb-9 (LB-9) (Chae et al., 2019), Lactobacillus casei (L.
casei) (Zakostelska et al., 2011), Lactobacillus kefiranofaciensM1 (L.
kefiranofaciens M1) (Chen et al., 2012), Eurotium cristatum (E.
cristatum) (Lu et al., 2022), Lactobacillus acidophilus (L. acidophilus)
(Hu et al., 2020), Enterococcus durans (E. durans) (Kanda et al.,
2016), Streptococcus thermophilus (S. thermophilus) (Chen et al.,
2019), Tetragenococcus halophilus (T. halophilus) (Islam et al.,
2022), Enterococcus faecalis (E. faecium) (Wang et al., 2021),
Lactobacillus crustorum (L. crustorum), and Lactobacillus
coryniformis (L. coryniformis) (Wang et al., 2021). A total of
seven outcome indicators were analyzed, including WC, Cl, DAI,
HIS, TNF-α, ZO-1, and Shannon. The specific information is
presented in Table 1.

3.3 Risk of bias assessment

The ROB assessment processes and details of 10 projects in
42 studies are shown in Supplementary Table S2 and Figure 2.
Randomization was used in 31 studies, and nine studies did not
mention the use of random method, and two studies did not use
randomization; all studies did not mention the hidden distribution
sequence, so we considered it was unclear risk; all studies mentioned
Random housing, so it was considered as low risk; and two studies
mentioned the blind use of outcome assessment.

3.4 Outcomes

The primary outcomes were WC, CL, DAI, and HIS. The
secondary outcomes were TNF-α, ZO-1, and Shannon.

3.4.1 Weight change
Fourteen research studies reported the outcome indicators of

WC, a total of 304 UCmodels, involving 11 probiotics. The network
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TABLE 1 Basic characteristics of the included study.

Study
(year)

Species (sex, n =
C/E, weight)

UC model
induction
method

Control
(administration, drug,

dose)

Experiment (administration,
drug, dose)

Duration Outcomes

Lee et al. (2022) BALB/c mice 2.5% DSS, 5 days Gavage, PBS 200 μL Gavage, B. bifidum 15 days ①②④

(female, 12/12) 109 CFU/mouse/day

Chen et al.
(2013)

BALB/c mice (female, 8/
8, 20.0 ± 2.0 g)

5% DSS, 7 days Gavage, normal saline Gavage, L. acidophilus, 106 CFU/10 g 7 days ②③④

Gao et al.
(2021)

C57BL/6 mice (female,
20/20, 20–24 g)

2.5% DSS, 7 days Gavage, distilled water Gavage, S. boulardii, 107 CFU/mL 28 days ①

Ma et al. (2022) C57BL/6 mice (male,
8/8)

3% DSS, 7 days Gavage, normal saline Gavage, C. butyricum, 108 CFU 28 days ①②③

④⑤⑥

Liu et al. (2016) BALB/c mice (female,
8/8)

5% DSS, 7 days Gavage, 0.2 mL PBS Gavage, L. brevis, 109 CFU 14 days ①②

Chen et al.
(2021)

C57BL/6J mice (male,
10/10/10)

3% DSS, 14 days Gavage, normal saline Gavage 35 days ②⑤

L. fermentum, L. bulgaricus

109 CFU/kg

Huang et al.
(2021)

C57BL/6 mice (6/6) 3% DSS, 7 days Gavage, distilled water Gavage, L. paracasei, 109 CFU/mL 14 days ②

Li et al. (2022) Sprague Dawley rats
(male, 10/10)

5% DSS, 8 days Intragastric, sterilized water Intragastric 7 days ③④⑤

L. acidophilus, 108 CFU

Chae et al.
(2018)

C57BL/6 mice 3% DSS, 6 days Gavage, drinking water Gavage, B. bifidum, 1.2 × 1010 CFU 7 days ②③

(male, 7/7)

Pan et al.
(2014)

BALB/c mice (male, 10/
10, 22.0 ± 2.0 g)

2.5% DSS, 7 days Gavage, normal saline Gavage, L. paracasei, 1010 CFU/mL 14 days ②③④

Liu et al. (2011) BALB/c mice
(female,8/8)

5% DSS, 7 days Gavage, 0.2 mL PBS Gavage, L. plantarum, 109 CFU in
0.2 mL PBS

14 days ①②③④

Din et al.
(2020)

C57BL/6 mice (male,
7/7)

3% DSS, 7 days Gavage, PBS Gavage, B. bifidum, 109 CFU/mL 27 days ②③④⑤⑥

Shang et al.
(2022)

C57BL/6 mice (male, 8/
8, 22 ± 2.0 g)

2.5% DSS, 7 days Gavage, normal saline Gavage, B. bifidum, 109 CFU/d 14 days ②

Sun et al.
(2018)

ICR mice (female, 8/8,
24–28 g)

3.5% DSS, 7 days Gavage, distilled water Gavage 17 days ②③④

L. reuteri, 1011 CFU/mL

Qin et al.
(2022)

C57BL/6 mice (male,
10/10)

3% DSS, 7 days Gavage, normal saline Gavage, L. plantarum 7 days ②③④

5 × 108 CFU/10 g

Kanda et al.
(2016)

BALB/c mice (females,
10/10)

4% DSS, 5 days Gavage, PBS Gavage, E. durans, 10 mg/day in
0.3 mL PBS

12 days ③④⑦

Qu et al. (2021) C57BL/6 mice (male,
5/5)

3% DSS, 8 days Gavage, 300 mL PBS Gavage, AKK, 109 CFU in 300 mL PBS 15 days ④

Wang et al.
(2021)

Kunming mice (male, 7/
7/7/7/7)

2% DSS, 7 days Gavage, 200 μL PBS Gavage, L. rhamnosus 14 days ⑤⑥

L. plantarum, L. crustorum

L. coryniformis, 5 × 109 CFU/mL

Cui et al. (2016) BALB/c mice
(female,20.0 ± 2.0g, 10/

10/10/10)

5% DSS, 7 days Gavage, drink water Gavage, L. fermentum, L. crispatus, L.
plantarum, 0.4 mL of 3.0 ×

108 CFU/mL

9 days ①②③

Bian et al.
(2019)

C57BL/6 mice (male,
8/8)

2% DSS, 7 days Gavage, PBS Gavage, AKK, 3 × 109 CFU 14 days ①②③④⑤

(Continued on following page)
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TABLE 1 (Continued) Basic characteristics of the included study.

Study
(year)

Species (sex, n =
C/E, weight)

UC model
induction
method

Control
(administration, drug,

dose)

Experiment (administration,
drug, dose)

Duration Outcomes

He et al. (2020) C57BL/6 mice (Male,
16/16, 22–24 g)

3% DSS, 7 days Gavage, PBS Gavage, E. faecium, 109 CFU/day 14 days ①②⑤

Chen et al.
(2019)

BALB/c mice (male,
10/10)

2.5% DSS, 7 days Gavage, distilled water Gavage, E. durans, 200 mg/kg 14 days ②③④

Hu et al. (2020) C57BL/6 mice (male,
10/10/10)

3% DSS, 7 days Intragastric, normal saline Intragastric, L. acidophilus 21 days ②⑤⑥

L. bulgaricus, 109 CFU/mL

Islam et al.
(2022)

C57BL/6 mice (4/4) 4% DSS, 7 days Gavage, drink water Gavage, T. halophilus, 4.8 × 108 CFU/
mouse/day

10 days ②③⑦

Tong et al.
(2021)

C57BL/6J mice (male,
7/7)

3.5% DSS, 7 days Gavage, drinking water Gavage, L. rhamnosus, 1.2 mg/kg 14 days ①②⑦

Yeo et al.
(2020)

C57BL/6J mice (female,
4/4)

1.5% DSS, 6 days Gavage, PBS Gavage, L. rhamnosus, 109 CFU/day 26 days ②⑥

Wan et al.
(2022)

C57BL/6 mice (female,
10/10)

2.5% DSS, 7 days Gavage, drinking water Gavage, L. rhamnosus, 600 mg kg−1

day−1
15 days ②③

Dong et al.
(2022)

C57BL/6 mice (male,
10/10)

2.5% DSS, 7 days Gavage, normal saline Gavage, B. bifidum, 109 CFU 12 days ①③

Chae et al.
(2019)

C57BL/6 mice 3% DSS, 6 days Gavage, drinking water Gavage, LB-9, 1.2 × 1010 CFU 7 days ②③

(male, 7/7)

Zakostelska
et al. (2011)

BALB/c mice (female,
5/5)

3% DSS, 7 days No mention Gavage, L. casei, 1.5 mg of Lc in 50 mL
of sterile PBS

21 days ②③④

Elian et al.
(2015)

BALB/c mice (female,
12/12)

3.5% DSS, 7 days Gavage, 0.1 mL PBS Gavage, B. bifidum, 0.1 mL 10 days ③

Sun et al.
(2020)

BALB/c mice (male, 15/
15, 18 g–20 g)

5% DSS, 7 days Gavage, normal saline Gavage, L. plantarum, 109 CFU/mL 10 days ①②⑤⑦

Choi et al.
(2019)

ICR mice (male, 8/8) 1.5% DSS Gavage, 0.2 mL of PBS Gavage, L. plantarum, 0.2 mL 21 days ②

Huang et al.
(2021)

C57BL/6 mice (male,
8/8)

4% DSS, 7 days Gavage, distilled water Gavage, L. plantarum, 0.2 mL/10 g 7 days ②③⑤⑦

Wu et al. (2022) C57BL/6 mice (male, 6/
6, 20–22 g)

3.5% DSS, 7 days Gavage, 200 μL PBS Gavage, L. plantarum, 200 μL
109 CFU mL−1

7 days ①②③

Yu et al. (2020) BALB/c mice (10/10) 3.5% DSS, 7 days Gavage, normal saline Gavage, L. plantarum, 1010 CFU/mL 28 days ②③

Hu et al. (2020) C57BL/6 mice (male,
10/10/10, 25 ± 2 g)

2% and 4% DSS,
weeks 3 and 5

Gavage, drinking water Gavage, L. plantarum, L. bulgaricus,
0.2 mL of 109 CFU/mL

35 days ②③

Wang et al.
(2018)

BALB/c mice (female,
10/10/10, 16–18 g)

3% DSS, 7 days Gavage, drinking water Gavage, L. plantarum, B. bifidum,
300 µL 109 CFU/mL

7 days ③

Khan et al.
(2022)

C57BL/6 mice (female,
4/4, 18 ± 2 g)

2.5% DSS, 7 days Intragastric, distilled water Intragastric, L. plantarum,
1010 CFU/mL

21 days ①②④⑦

Chen et al.
(2012)

C57BL/6 mice (female,
8/8)

2% DSS, 7 days Intragastric, PBS Intragastric, L. kefiranofaciens M1,
108 CFU

14 days ②

Lu et al. (2022) C57BL/6 mice 1.5% DSS, 7 days Gavage, normal saline Gavage, E. cristatum, 50 mg/mL 7 days ②③

(male, 10/10)

Lee and Lee
(2015)

BALB/c mice (male, 10/
10, 18–20 g)

2% DSS, 7 days Gavage, 0.2 mL PBS Gavage, L. plantarum 2.0 ×
1011 CFU/kg

14 days ①②⑤

①WC, ②CL, ③DAI, ④HIS, ⑤TNF-α, ⑥ZO-1, ⑦Shannon.
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evidence diagram is shown in Figure 3. Compared with the DSS group,
the weight loss of 11 probiotics decreased, among which L. rhamnosus
(MD = 2.87, 95% CrI (1.02, 4.73)), L. bulgaricus (MD = 1.89, 95% CrI
(0.88, 2.88)), L. coryniformis (MD = 2.68, 95% CrI (0.88, 4.48)), L.
plantarum (MD = 1.03,95% CrI (0.41, 1.70)), and L. fermentum (MD =
1.67,95% CrI (0.34, 2.97)) had statistical significance. Meanwhile, L.
rhamnosus (MD= −2.64,95%CrI (−4.94, −0.38)) (MD= −2.82,95%CrI
(−5.18, −0.46)), L. bulgaricus (MD = −1.66, 95% CrI (−3.04, −0.28))
(MD = −1.84, 95% CrI (−3.60, −0.05)), and L. coryniformis
(MD = −2.45, 95% CrI (−4.70, −0.23)) (MD = −2.63, 95% CrI
(−4.95, −0.33)) were obviously superior to L. crispatus and AKK in
weight reduction, and there was no statistical difference compared with
other probiotics. The specific data are shown in Table 2. According to
the SUCRA probability results (Figure 4), L. rhamnosus (91.05%) > L.

coryniformis (88.66%) > L. bulgaricus (77%) > L. fermentum (9.80%) >
L. plantarum (49.73%) > C. butyricum (49.91%) > L. brevis (43.14%) >
S. boulardii (32.44%) > L. crispatus (21.99%) > AKK (17.57%) > DSS
(12.36%), suggesting that L. rhamnosuswas the best strain to reduce the
weight loss of UC.

3.4.2 Colon length
Thirty-four studies reported the CL, including 630 ulcerative

colitis models, involving 20 kinds of probiotics. The network
evidence diagram is shown in Figure 3. Compared with DSS,
19 kinds of probiotics could improve colon injury, among which
are L. rhamnosus (MD = −1.22, 95% CrI (−2.21, −0.21)), T.
halophilus (MD = −2.70, 95% CrI (−4.74, −0.67). −1.05)), L.
plantaru (MD = −1.73, 95% CrI (−2.27, −1.20)), and L. fermentam.

FIGURE 1
PRISMA flow chart for the study selection process.
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(MD = −2.37, 95% CrI (−3.65, −1.11)) were statistically
significant. L. bulgaricus (MD = 2.09, 95% CrI (0.13, 4.04)), L.
paracasei (MD = 2.08, 95% CrI (0.10, 4.04)), L. reuteri (MD = 2.88,
95% CrI (0.44, 5.33)), E. cristatum (MD= 2.36, 95%CrI (0.29, 4.42)),
B. bifidum (MD = 2.13, 95% CrI (0.21, 4.07)), S. thermophilus (MD =
2.50, 95% CrI (0.08, 4.91)), T. halophilus (MD = 4.03, 95% CrI (1.37,
6.70)), E. faecium (MD = 4.09, 95% CrI (1.68, 6.49)), S. boulardii
(MD = 2.64, 95% CrI (0.18, 5.09)), L. plantarum (MD = 3.07, 95%
CrI (1.37, 4.77)), and AKK (MD = −2.72, 95% CrI (−5.44, −0.01)),
and L. fermentum (MD = −3.70, 95% CrI (−5.58,−1.84)) was
obviously superior to L. crispatus and E. faecium is obviously
superior to L. paracasei (MD = −2.02, 95% CrI (−3.99, −0.04)),
LB-9 (MD = −2.50, 95% CrI (−4.89, −0.11)), and B. bifidum
(MD = −1.96, 95% CrI (−3.89,−0.02)). In addition, L. fermentum
was significantly better than L. bulgaricus (MD = −1.61, 95% CrI
(−3.03, −0.22)), L. paracasei (MD = −1.63, 95% CrI (−3.25, −0.03)),
B. bifidum (MD = −1.57, 95% CrI (−3.14,−0.01)), and L. crispatus
(MD = -3.70, 95% CrI (−5.58, −1.84)). The specific data are shown in
Supplementary Table S3. According to the SUCRA probability
results (Figure 4), E. faecium (89.9%)>T. halophilus (87.16%)>L.
fermentum (85.88%)>L. plantarum (73.45%)>L. reuteri (63.66%)
>AKK (58.13%)>S. boulardii (56.68%)>L. rhamnosus (54.9%)>S.
thermophilus (52.53%)>E. cristatum (48.27%)>L. kefiranofaciens
M1 (44%)>C. butyricum (43.44%)>L. brevis (42.86%)>L. casei
(41.16%)>B. bifidum (40.02%) > L. bulgaricus (38.64%) > L.
paracasei (38.03%) > LB-9 (25.62%) > DSS (13.22%) > L.
crispatus (48.27%), suggesting that E. faecium was the best strain
to alleviate the colon injury of UC.

3.4.3 Disease activity index
Twenty-five studies reported DAI, a total of 472 UC models,

involving 17 probiotics. The network evidence diagram is shown in
Figure 3. The DAI of seven probiotics was better than that of DSS,
among which L. reuteri (MD = 6.18, 95% CrI (2.08, 10.22)), L.
acidophilus (MD = 2.97, 95% CrI (0.15, 5.83)), B. bifidum (MD =
2.87, 95% CrI (0.91, 4.95)), L. plantarum (MD = 2.53, 95% CrI (1.08,

3.95)), and AKK (MD = 4.96, 95% CrI (0.04, 9.87)) had statistical
significance. Specific data are shown in Supplementary Table S4.
According to the SUCRA probability results (Figure 4), L. reuteri
(90.18%)>AKK(78.45%)>L. paracasei (71.39%)>L. rhamnosus
(69.5%)> E. durans (61.46%)>L. acidophilus (58.73%)>B. bifidum
(57.84%)>E. cristatum (55.96%) >L. plantarum (51.9%)>L.
bulgaricus (49.89%)>T. halophilus (44.43%)>L. fermentum
(40.67%)>C. butyricum (35.78%)> S. thermophilus (34.08%)>L.
casei (31.96%) > L. crispatus (28.15%) > LB-9 (27.47%) > DSS
(12.18%), suggesting that L. reuteri was the best strain to reduce the
DAI index of UC.

3.4.4 Historical score
Fifteen studies reported HIS, a total of 246 UCmodels, involving

10 kinds of probiotics. The network evidence diagram is shown in
Figure 3. The HIS of 10 kinds of probiotics was better than that of
DSS, among which the HIS of L. reuteri (MD = 6.61, 95% CrI (2.00,
11.21)), L. acidophilus (MD = 7.56, 95% CrI (4.24, 10.79)), L.
plantarum (MD = 3.58, 95% CrI (0.95, 6.33)), and L. acidophilus
was significantly better than that of L. paracasei (MD = 5.75, 95%
CrI (0.05, 11.29)). 12.73)), E. durans (MD = −6.43, 95% CrI
(−11.99,−0.77)), and AKK (MD = −5.54, 95% CrI
(−10.10,−0.86)). Supplementary Table S5 shows the specific data.
According to the SUCRA probability results (Figure 4), L.
acidophilus (94.42%)>L. reuteri (87.87%)>L. plantarum (65.1%)
>B. bifidum (57.5%)>S. thermophilus (54.14%) > AKK(43.08%)
>C. butyricum (42.56%)>L. paracasei (40.29%) > E. durans
(31.04%) > L. casei (21.79%) > DSS (12.2%), suggesting that L.
acidophilus was the best strain to reduce the HIS index of UC.

3.4.5 Tumor necrosis factor-α
Twelve studies reported serum TNF-α, including 279 UC

models, involving 11 kinds of probiotics. Figure 3 shows the
network evidence diagram. Compared with DSS, 11 kinds of
probiotics could reduce the content of TNF-α in serum, among
which L. rhamnosus (SMD = 5.92, 95% CrI (1.11, 10.73)), L.

FIGURE 2
Risk of bias graph and evaluators; none of the studies mentioned the use of blind method; no research reported incomplete data, selective report
bias, and other bias, so they were considered as low risk.
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plantarum (SMD = 4.10, 95% CrI (1.47, 6.72)), L. crustorum (SMD =
6.42, 95% CrI (1.55, 11.28)), and L. coryniformis (SMD = 7.59, 95%
CrI (2.58, 12.60)) had a statistically significant difference, L.
bulgaricus (SMD = −6.38, 95% CrI (−12.45,−0.31)) and AKK
(SMD = −7.12, 95% CrI (−14.22,−0.02)) were obviously superior
to L. coryniformis, and the sspecific data are shown in
Supplementary Table S6. According to the SUCRA probability
results (Figure 4), L. coryniformis (90.4%)>L. crustorum (81.5%)
>L. rhamnosus (77.8)>E. faecium (63.5%) > L. plantarum (63.1%) >
L. acidophilus (45.4%) > L. fermentum (40.1%) > B. bifidum
(36.3%) > C. butyricum (33.6%)>L. bulgaricus (29.8%) > AKK

(24.9%)>DSS (13.4%), suggesting that L. coryniformis was the
best strain to reduce the serum TNF-α content of UC.

3.4.6 Zonula occlusion Ns-1
Five studies reported the expression of colon tight junction

protein ZO-1, including 109 UC models, involving eight kinds of
probiotics. The network evidence diagram is shown in Figure 3.
Compared with DSS, seven probiotics could increase the expression
of tight junction protein ZO-1, but the difference was not statistically
significant. Supplementary Table S7 shows the specific data.
According to the SUCRA probability results (Figure 4), L.
acidophilus (73.68%)>B. bifidum (70.33%)> L. bulgaricus
(59.94%) > L. rhamnosus (49.69%) > C. butyricum (48.73%) > L.
plantarum (46.95%) > L. coryniformis (36.93%) > L. crastorum
(33.21%) > DSS (30.53%), suggesting that L. acidophilus was the
best strain to increase the tight junction protein ZO-1 in UC.

3.4.7 Shannon
Six studies reported the Shannon index, including 96 ulcerative

colitis models, four kinds of probiotics. The network evidence
diagram was shown in Figure 3. Compared with DSS,
4 probiotics can increase the Shannon index of UC, but the
difference is not statistically significant. The specific data are
shown in Supplementary Table S8. According to the probability
results of SUCRA (Figure 4), L. rhamnosus (93.09%) > L. plantarum
(49.99%) > T. halophilus (45.7%) > E. durans (38.07%) > DSS
(23.15%), suggesting that L. rhamnosus was the best flora to improve
the Shannon index of UC.

3.5 Publication bias

The calibration-comparison funnel chart of five outcome
indicators (WC, CL, DAI, HIS, and TNF-α) was tested for
publication bias, and the results showed that there was
asymmetry in scattered points, which indicated that there might
be a certain degree of publication bias and small sample size effect in
this study. The funnel charts of all the results are shown in Figure 5.

3.6 Consistency tests

The inconsistency of WC, CL, DAI, and HIS models was
analyzed by the node split method. The results showed that there
is no statistical inconsistency, which indicated that the results of the
aforementioned outcome indicators are reliable. Supplementary
Figure S2 shows the node split analysis diagram.

4 Discussion

4.1 Research significance

In 2002, probiotics were defined by the World Health
Organization as “appropriate intake of living microorganisms
that are beneficial to the health of the host” (Wang and Dai,
2020), which can be divided into original bacteria, symbiotic
bacteria, and fungi according to the source and mode of action

FIGURE 3
Network plots for different outcomes. 1. DSS; 2. B. bifidum; 3. S.
boulardii; 4.C. butyricum; 5. L. brevis; 6. L. plantarum; 7. L. crispatus; 8.
AKK; 9. L. fermentum; 10. L. rhamnosus; 11. L. bulgaricus; 12. L.
paracasei; 13. L. reuteri; 14. LB-9; 15. L. casei; 16. L.
kefiranofaciens M1; 17. E. cristatum; 18. L. acidophilus; 19. E. durans;
20. S. thermophilus; 21. T. halophilus; 22. E. faecium; 23. L. crustorum;
and 24. L. coryniformis.
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TABLE 2 League table forWC; results of the networkmeta-analysis are presented in the left lower half and results from pairwisemeta-analysis in the upper right half. In the left lower and upper right half, mean differences lower
than 0 favor the column-defining treatment, and bold font indicates significant results. NA: not available.

DSS −2.9
(−4.6, −1.2)

−1.8
(−2.9, −0.85)

−0.95 (−1.9,
0.045)

−2.7
(−4.3, −1.0)

−0.50
(−2.1, 1.1)

−1.1
(−2.8, 0.69)

−0.85
(−2.1, 0.45)

−1.1
(−1.7, −0.51)

0.42
(−1.3, 2.1)

−0.051
(−1.3, 1.2)

−1.0
(−2.6, 0.52)

2.87
(1.02, 4.73)

L. rhamnosus NA NA NA NA NA NA NA NA NA NA

1.89
(0.88, 2.88)

−0.98
(−3.10, 1.12)

L. bulgaricus NA NA NA NA NA 0.96 (−0.17, 1.9) 1.5 (0.20, 2.9) NA 0.11 (−1.2, 1.4)

0.94 (−0.18,
2.045)

−1.93
(−4.11, 0.22)

−0.95
(−2.45, 0.56)

B. bifidum NA NA NA NA NA NA NA NA

2.68
(0.88, 4.48)

−0.19
(−2.76, 2.40)

0.79 (−1.25, 2.87) 1.74 (−0.36, 3.87) L. coryniformis NA NA NA NA NA NA NA

0.50
(−1.29, 2.28)

−2.37
(−4.94, 0.21)

−1.39
(−3.42, 0.65)

−0.44
(−2.53, 1.66)

−2.17
(−4.73, 0.35)

S. boulardii NA NA NA NA NA NA

1.07
(−0.83, 2.96)

−1.81
(−4.48, 0.86)

−0.82
(−2.97, 1.34)

0.12 (−2.07, 2.33) −1.62
(−4.23, 1.00)

0.56
(−2.03, 3.17)

C. butyricum NA NA NA NA NA

0.85
(−0.64, 2.35)

−2.02
(−4.40, 0.36)

−1.04
(−2.81, 0.76)

−0.09
(−1.93, 1.79)

−1.83
(−4.17, 0.51)

0.35
(−1.97, 2.69)

−0.21
(−2.60, 2.19)

L. brevis NA NA NA NA

1.03
(0.41, 1.70)

−1.83
(−3.79, 0.14)

−0.85
(−1.83, 0.19)

0.09 (−1.17, 1.41) −1.64
(−3.55, 0.28)

0.53
(−1.33, 2.45)

−0.02
(−2.04, 2.00)

0.19 (−1.42, 1.82) L. plantarum 0.36 (−1.2, 1.9) NA −1.1 (−2.5, 0.35)

0.23
(−1.11, 1.55)

−2.64
(−4.94, −0.38)

−1.66
(−3.04, −0.28)

−0.71
(−2.45, 1.02)

−2.45
(−4.70, −0.23)

−0.27
(−2.49, 1.94)

−0.83
(−3.17, 1.48)

−0.62
(−2.63, 1.37)

−0.80
(−2.16, 0.50)

L. crispatus NA −1.4 (−2.8,
−0.032)

0.05
(−1.41, 1.52)

−2.82
(−5.18, −0.46)

−1.84
(−3.60, −0.05)

−0.89
(−2.71, 0.95)

−2.63
(−4.95, −0.33)

−0.45
(−2.75, 1.85)

−1.01
(−3.41, 1.39)

−0.80
(−2.89, 1.28)

−0.98
(−2.60, 0.59)

−0.18
(−2.15, 1.81)

AKK NA

1.67
(0.34, 2.97)

−1.20
(−3.49, 1.06)

−0.22
(−1.60, 1.15)

0.73 (−1.00, 2.45) −1.01
(−3.26, 1.20)

1.17
(−1.03, 3.37)

0.61 (−1.73, 2.90) 0.83 (−1.18, 2.79) 0.64 (−0.72, 1.91) 1.44
(−0.07, 2.95)

1.62 (−0.38, 3.57) L. fermentum

The bold value indicate that the difference between the two probiotics is statistically significant.
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of strains (Zheng et al., 2011). After more than 20 years in vivo and
in vitro, clinical and animal studies had proved the positive effect of
probiotics in maintaining the stability of intestinal flora and
regulating immunity. Since it is safer than other conventional
drugs, it has been widely used in many diseases such as
respiratory system, digestive system, and autoimmune diseases,

especially inflammatory bowel disease in the gastrointestinal
system (Bennet, 2016). At present, a large number of studies
have proved that probiotic supplementation can reduce
inflammation and induce intestinal environmental balance
(Srutkova et al., 2015; Boruel et al., 2002). The most commonly
used probiotics include Lactobacillus, Bifidobacterium, and other

FIGURE 4
Surface under the cumulative ranking curve (SUCRA) plots for different outcomes. The vertical axis represents cumulative probabilities and the
horizontal axis represents rank. 1. WC, 2. CL, 3. DAI, 4. HIS, 5. TNF-α, 6. ZO-1, and 7. Shannon.
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probiotics such as Akkermansia muciniphila, Streptococcus
thermophilus, and Escherichia coli.

Ulcerative colitis is a non-specific intestinal inflammatory
disease. Studies had shown that probiotics can improve intestinal
symptoms, and the treatment of UC aims at maintaining, alleviating,
and preventing recurrence (Xue and Huang, 2016). At present,
probiotics play a part in UC mainly from the following aspects:
1) Promoting the balance of intestinal flora: The imbalance of

intestinal flora is an important reason for the occurrence and
development of UC, and probiotics can compete for nutrition
and produce antibacterial compounds by occupying adhesion
sites on mucosa, thus resisting exogenous pathogens. 2)
Maintenance of the intestinal mucosal barrier: A complete
intestinal barrier is the basis for maintaining intestinal
homeostasis and the most important one is the mechanical
barrier. Tight junction proteins are the key components of the

FIGURE 5
Funnel plots for different outcomes. 1. WC, 2. CL, 3. DAI, 4. HIS, and 5. TNF-α.
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mechanical barrier, including occlusal proteins, closing proteins,
and junction adhesion molecules. Probiotics can protect the
intestinal mucosal barrier by regulating tight junction proteins. 3)
Regulating immune function: Inflammation is the basis of UC.
Probiotics can regulate immune response through a variety of
signal pathways, reduce the production of pro-inflammatory
cytokines, promote the secretion of anti-inflammatory cytokines,
and then, reduce inflammatory response. 4) Enhancing the
antioxidant capacity: In the UC state, excessive reactive oxygen
species (ROS) can accelerate the inflammatory reaction, leading to
cell apoptosis or necrosis, etc. Probiotics can reduce the oxidative
stress level of colonic mucosa and protect the colonic mucosal
barrier (Wang and Dai, 2020). However, not all probiotics have a
good curative effect on UC, and the biological effect of probiotics
depends on the strain, dose, severity of colitis, and the immune state
of the host (Liu et al., 2018), so it is of great significance to seek
preclinical evidence for comparing the safety and curative effect of
different strains and doses to select probiotics to treat UC in clinic.

4.2 Principal finding

In this study, WC, CL, DAI, and HIS are the main outcome
indexes because they are the most important and commonly used
pathological indexes to evaluate experimental UC in animals. TNF-α
is a pro-inflammatory factor to evaluate UC, and ZO-1 is an
important protein to evaluate mucosal barrier of UC, and
Shannon is an important indicator to reflect the diversity of
intestinal flora of ulcerative colitis, so this study regards them as
secondary outcome indicators.

This study included 42 studies, including 839 UC models,
24 probiotics. Meta-analysis showed that L. rhamnosus had the
best effect in relieving weight loss and increasing the Shannon index
of UCmodel. E. faecium had the best effect in reducing colon injury;
L. reuteri had the best effect in reducing DAI; L. acidophilus had the
best effect in reducing HIS and increasing the expression of tight
junction protein ZO-1; and L. coryniformis had the best effect in
reducing the TNF-α in serum. However, there was no statistical
difference between L. rhamnosus in increasing the Shannon index
and L. acidophilus in increasing the expression of tight junction
protein ZO-1 compared with the untreated group.

In this study, five outcome indicators were tested for publication
bias, and the results showed that there might be some publication
bias and small sample size effect in this study. The consistency test of
the outcome indicators WC, CL, DAI, and HIS showed that the
direct and indirect research of the four outcome indicators is
consistent and reliable, but there were lack face-to-face studies in
this study.

4.3 Preclinical animal models

At present, rodents (rats or mice) are often used in UC model-
building (Martín et al., 2017), and the most commonly used
induction methods are chemical drugs (Hu et al., 2022), such as
dextran sulfate sodium (DSS) and 2,4,6-trinitrobenzene sulfonic
acid (TNBS). In this study, the UC model is induced by DSS. Since
the UC model induced by DSS has the characteristics of convenient.

The animal colitis reaction can be successfully induced by drinking
DSS solution freely, and the appropriate drug concentration and
administration time can be selected according to the experimental
requirements. The specific mechanism is that DSS can destroy
animal colon epithelial cells, damage epithelial barrier function,
and produce inflammatory substances in intestinal cavity to invade
lamina propria and submucosa, and then inducing abnormal
immune response in animals (Wirtz et al., 2007). Therefore, the
DSS model has advantages in studying the effect of probiotics on UC
(Martín et al., 2017). However, the results of network meta-analysis
in this study may be limited to the animal model of ulcerative colitis,
which is not suitable for use in clinic directly. The difference between
the preclinical ulcerative colitis animal model and clinical ulcerative
colitis makes our research results need to be treated with caution.

4.4 Strengths and limitations of the study

Previous studies and meta-analysis have proved that probiotics
have positive effects in improving clinical symptoms, anti-
inflammation, and enhancing antioxidant capacity of UC patients
(Jia et al., 2018; Kaur et al., 2020; Xie et al., 2022). In this study, the
networkmeta-analysis was used tomake preclinical analysis of different
strains, which can compare the effects of different strains on ulcerative
colitis. Compared with clinical research, it can explore the
histopathological effects of probiotics on UC animal models, and
provide reference for clinical application of probiotics in the
treatment of UC.

In addition, there are still some limitations in this study: 1) The
overall quality of the included studies is medium, some studies do not
describe the random sequence generation method in detail, and most
studies do not mention blind method, distribution concealment, and
registration of animal experiments. 2) Some data in this study were
obtained indirectly through data extraction tools, which might lead to
measurement deviation. 3) By drawing the funnel diagram, it was found
that there was a certain degree of publication bias and small sample size
effect in this study. 4) In order to improve the research quality, only the
English literature was included in this study, which might lead to
language bias. 5) The heterogeneity of this study was high, we tried
doing the sensitivity analysis and the results were stable.We analyze the
heterogeneity might come from animal strains, induction time, disease
severity, and so on. 6) The results of this study might only be applicable
to preclinical animal models of ulcerative colitis, and the differences
between animals and humans make it necessary to be cautious when
applying the results of this study in clinic. 7) This study lacks of face-to-
face comparison between different probiotics.

5 Conclusion

In summary, the results of network meta-analysis showed that
different probiotics have different effects on the ulcerative colitis
model, and some probiotics have definite effects on improving the
histopathological manifestations of UC and reducing inflammatory
reaction. However, considering the limitations of this study,
preclinical studies that need more large samples and high-quality
and more reliable and rigorous experimental designs need to be
conducted in the future.
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