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A delayed treatment effect is a commonly observed phenomenon in tumor
immunotherapy clinical trials. It can cause a loss of statistical power and
complicate the interpretation of the analytical findings. This phenomenon also
poses challenges for interim analysis in the context of phase II/III seamless design
or group sequential design. It shows potential to lead researchers to make
incorrect go/no-go decisions. Despite its significance, rare research has
explored the impact of delayed treatment effects on the decision success rate
of the interim analysis and the methods to compensate for this loss. In this study,
we propose an analysis procedure based on change points for improving the
decision success rate at the interim analysis in the presence of delayed treatment
effects. This procedure primarily involves three steps: I. detecting and testing the
number and locations of change points; II. estimating treatment efficacy; and III.
making go/no-go decisions. Simulation results demonstrate that when there is a
delayed treatment effect with a single change point, using the proposed analysis
procedure significantly improves the decision success rate while controlling the
type I error rate. Moreover, the proposed method exhibits very little disparity
compared to the unadjusted method when the proportional hazards assumption
holds. Therefore, the proposed analysis procedure provides a feasible approach
for decision-making at the interim analysis when delayed treatment effects are
present.
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1 Introduction

Tumor immunotherapy research has emerged as a prominent focus in clinical drug
development (Melero et al., 2015; Farkona et al., 2016) and is one of the most promising areas
in the current anti-cancer drug research and development pipeline. Themechanism of action
of tumor immunotherapy involves the following key steps (Freeman et al., 2000; Ribas and
Wolchok, 2018): i) inhibiting the activity of immune checkpoints; ii) releasing the immune
“brake” in the tumor microenvironment; and iii) activating anti-cancer immune responses.
Consequently, immunotherapy needs time to activate immune responses, which results in a
typical issue when designing a tumor immunotherapy trial, namely, delayed treatment
effects (Hodi et al., 2010; Chen, 2013; Larkin et al., 2015; Mick and Chen, 2015; Kudo, 2019;
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Finn et al., 2020). As shown in Panel B of Figure 1, the delayed
treatment effect can lead to an accelerated failure phenomenon at
the early stage of the survival curve, which violates the proportional
hazards assumption for statistical analysis. This phenomenon can
diminish treatment efficacy, reduce the power of the study, and
make it challenging to interpret the final results (Reck et al., 2016). In
other words, studies may ultimately fail if this issue is not adequately
and thoroughly taken into account at the study design stage (Ren
et al., 2023). Particularly in an adaptive phase II/III seamless design
or a group sequential design, delayed treatment effects can lead to
wrong go/no-go decisions at the interim analysis. This is attributed
to a substantial proportion of events occurring in the accelerated
failure stage due to the limitations imposed by the observation
period. The following two situations may occur if left unaddressed:
first, early termination of an effective treatment due to a low
predictive success rate in the final analysis with a fixed sample
size; and second, re-estimating an overpowered sample size when
adjustments based on interim analysis results are permitted. Similar
situations can arise in phase II/III seamless designs. Figure 2
demonstrates the simulated impact of delayed treatment effects
on the conditional and predictive power at the interim analysis
of group sequential designs. It is evident that increasing delay time
results in decreased conditional and predictive power. Another point
worth noting in Figure 2 is that solely increasing the number of
interim analysis events has limited efficacy in compensating for the
loss caused by the delayed treatment effect. Thus, this action is
insufficient to address the issue. In light of the aforementioned
considerations, the primary objective of this paper is to find targeted
methods that improve the decision success rate of the interim
analysis in the presence of delayed treatment effects in phase II/
III seamless designs or group sequential designs.

In contrast to the existing body of research on delayed treatment
effects that predominantly focuses on fixed designs and final
analysis, there is a notable dearth of methods specifically tailored
for interim analysis. Moreover, the majority of existing methods rely
on the weighted log-rank test statistic and its extension methods
(Hasegawa, 2016; Yang, 2019; Prior, 2020). Despite disregarding the
complex calculation and poor interpretability associated with the
weighted log-rank test statistic, there is still a deficiency in its
application. Specifically, in phase III confirmatory tumor clinical
trials, the log-rank test serves as the primary method for analyzing
time-to-event endpoints, regardless of whether the proportional
hazard assumption is satisfied, while the weighted log-rank test
statistic is often only used as a sensitivity analysis. Consequently, we
shift our research direction toward improving the go/no-go decision
success rate of the interim analysis. To address this research issue, we
propose a comprehensive set of methods and procedures. We first
detect the number and locations of change points in the survival
curve, estimate the hazard function values for each segment of the
survival curve based on these change points, then estimate the
treatment effect size, and finally apply it to go/no-go decision
indicators such as conditional power, predictive power, or the
probability of success.

A change point is defined as a specific juncture at which the
probability density function of random variables changes
(Hinkley, 1970). The survival curve typically has one or more
change points when the proportional hazards assumption is
violated. Panel B in Figure 1 illustrates an example where the

two survival curves overlap in the first 5 months due to a delayed
treatment effect. Notably, a distinct change point can be observed
in the red dashed survival curve, as indicated by the circle in the
figure. Various statistical methods have been proposed for change
point detection and hazard function estimation. Matthews and
Farewell (1982) used the maximum likelihood function to find a
single change point in the survival curve at an unknown time.
Goodman et al. (2011) proposed using the maximum profile
likelihood function to detect multiple change points and hazard
functions in a piecewise exponential model. They also applied the
Wald-type statistic for sequential testing of the statistical
significance of these change points. The sequential testing
means testing the kth change point only when the kth-1 change
point is significant. Moreover, they used a decreasing alpha
spending function to control the type I error rate, which is
similar to the approach proposed by Lan and DeMets (1983) in
group sequential design. Matthews et al. (1985) suggested using the
score statistic to test the significance of change points. He et al.
(2013) proposed a sequential testing procedure using the
likelihood ratio statistic to identify multiple change points. In
addition to frequentist methods, Bayesian methods have also been
used, with Raftery and Akman (1986) first introducing a Bayesian
framework that focuses on the Poisson process with a single
change point. Arjas and Gasbarra (1994) used a Gibbs sampler
to identify multiple change points. Chapple et al. (2020) applied
the Markov Chain Monte Carlo (MCMC) method and a reversible
jump algorithm to determine the number and location of change
points. Additionally, a non-parametric approach was proposed by
Müller and Wang (1994), who used a non-parametric smoothing
technique to detect change points. Although the aforementioned
methods can be used for change point detection and hazard
function estimation, none of them mentioned clinical phase II/
III seamless design or group sequential design, and there are few
methods related to clinical trial practice. Therefore, we modify
some frequentist and Bayesian methods, and provide
recommendations on the order of searching for multiple change
points to ensure their suitability for our research purposes.
Furthermore, we propose two non-parametric methods based
on the Kaplan–Meier estimator and the area under the survival
curve, respectively. These two non-parametric methods
demonstrate comparable performance to the parametric
methods under certain simulation scenarios while reducing the
complexity of change point detection. Next, while the
aforementioned methods allow for testing the statistical
significance of the detected change points, most of them are
based on the hazard ratio (HR) and are recommended to be
used in the unblinded analysis. However, in real clinical trials,
interim analysis may need to be conducted without unblinding.
Therefore, we propose a sequential testing approach based on the
ratio of the log-likelihood function, which differs from the method
proposed by He et al. (2013) and can be applied to test change
points in both blinded and unblinded analyses. Finally, by
calculating the average hazard ratio (AHR), we can apply the
change points and hazard functions to the efficacy estimation. The
AHR is then incorporated into go/no-go decision indicators to
assist us in making decisions. In addition to the traditional AHR
(Kalbfleisch and Prentice, 1981), we also propose a new AHR
calculation method whose weighting considers both the influence
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of time and the number of events. Our proposed analysis
procedure involves both blinded and unblinded interim
analyses. The main distinction is that unblinded analysis allows
for an additional test for the proportional hazards assumption
prior to commencing the analysis procedure. If the test result is
statistically significant, it indicates that the proportional hazards
assumption may not hold. We proceed to detect change points and
estimate hazard functions. Otherwise, the interim analysis is
conducted directly without using the proposed analysis
procedure. Since existing methods for testing the proportional
hazards assumption are primarily based on the HR (Moore, 2016),
estimating it under the blind condition is complex and requires
some strong assumptions. As a result, we skip this step and directly
detect change points in the blinded analysis. Moreover, since
determining an appropriate time for interim analysis when the
proportional hazards assumption does not hold is a topic worth
discussing, we propose a maximum interim information design.
This flexible and simple-to-implement method considers both
event-driven and calendar-driven factors when selecting the
interim analysis time.

The subsequent sections of this paper are organized as
follows: Section 2 introduces the methods for detecting and
testing change points, estimating the effect size, and choosing
the analysis time for the interim analysis. To depict the
proposed analysis procedure more clearly, we also provide an

analysis flowchart at the end of this section. In Section 3, Section
4, Section 5, we compare the performance of the proposed
methods with the unadjusted traditional method in various
scenarios and a real case. The discussion remarks are
summarized in the last section.

2 Methods

2.1 Change point detection methods

2.1.1 Frequentist approach
The survival time and censoring time of N subjects are denoted

as X � x1, x2 . . .xN{ } and C � c1, c2 . . . cN{ }, respectively. Let T �
t1, t2 . . . tN{ } represent the observed time, where ti � min (xi, ci).
Assuming that the hazard function h(t) in the survival curve has a
total of K change points, with τk denoting the time of the kth change
point, where τk ∈ (0,+∞), we adopt the piecewise exponential
model to describe the distribution of the random variable T,
which is modeled by

p ti|λk, τk( ) �
φ1 λδi1 exp −λ1ti( ) t0 ≤ ti < τ1
..
.

φK+1λ
δi
K+1 exp −λK+1ti( ) τK ≤ ti < tT

⎧⎪⎪⎨⎪⎪⎩ ,

FIGURE 1
Summary of some common proportional and non-proportional hazard examples. Panels (A–F) represent the scenarios described by the captions in
each panel. The location of a change point in the survival curve with delayed treatment effects is indicated by the circle. The red dashed line represents
survival curves with change points, while the solid black line represents those without change points. PH denotes proportional hazards.
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where δi � I(xi ≤ ci). φk is a constant, with φ1 � 1 and φk �
exp[−λ1(τ1 − τ0) − λ2(τ2 − τ1) − . . . − λk−1(τk−1 − τk−2) + λkτk−1]
when k> 1, making ∫∞

0
p(ti|λk, τk)dti � 1. In this model, the hazard

function h(t) for each piece is assumed to be constant and
represented by the hazard rate λk. t0 and tT are two constants.
Typically, t0 is set to 0 and tT is set to the maximum planned follow-
up period. The log-likelihood function is then defined as follows:

lnL λ1, . . . , λK+1, τ1, . . . , τK( ) �
∑K+1

k�1 U τk( ) − U τk−1( )[ ] ln λk −∑K+1
k�1 ∑N

i�1 V τk( ) − V τk−1( )[ ]λk,

where U(t) � ∑N
i�1I(ti ≤ t, δi � 1) and V(t) � ti ∧ t. Estimates of

parameters λk and τk can be obtained using the maximum profile
likelihood function. This process involves first holding τk fixed and
then maximizing λk to obtain

λk � U τk( ) − U τk−1( )
∑N

i�1 V τk( ) − τk−1[ ]I ti > τk−1( ).

The log-likelihood function is changed by substituting the given
equation of λk into

LnL τ1 , . . . , τK( ) � ∑K+1
k�1 U τk( ) − U τk−1( )[ ] ln U τk( ) − U τk−1( )

∑N
i�1 V τk( ) − τk−1[ ]I ti > τk−1( ){ }.

We obtain τk by maximizing LnL(τ1, . . . , τK) and then
substituting it into the equation to obtain λk. When the survival
curve has only one change point, there are two approaches to
determine τk: either by considering a list of several possible
combinations of τk and choosing the one that maximizes the log-
likelihood function or by directly solving for τk using numerical
optimization techniques. However, in situations where there are
multiple change points or the number of change points is unknown,
we recommend following the following steps outlined to detect the
number of change points. For example, if there is at least one change
point in the first 10 months and the change point observed in the 4th

month is both the maximum of the log-likelihood function and
statistically significant, we proceed to detect the most likely second
change point within the intervals of the 1st to the 4th and the 4th to
the 10th month. Assume that it is in the 6th month. We then test the
statistical significance of this second change point. If the result is
significant, we continue to detect the third change point within the
intervals of the 1st to the 4th, the 4th to the 6th, and the 6th to the
10th month. On the other hand, if the statistical significance of the
second change point is not achieved, we consider the survival curve
to have only one change point. An alternative method is to use
enumeration, which lists all possible combinations of change points.
However, this method may be impractical when there are multiple
change points as the number of combinations can become
excessively large.

2.1.2 Bayesian approach
In a Bayesian framework, the posterior density is proportional to

the product of the likelihood function and the prior density.
Specifically,

p λ1, . . . , λK+1, τ1, . . . , τK ,K |D( )
∝ L D|λ1 , . . . , λK+1 , τ1 , . . . , τK ,K( )∏K+1

k�1 p λk
∣∣∣∣αk , βk , τk ,K( )∏K

k�1p τk
∣∣∣∣γk ,K( )p K|θ( ),

where D represents the phase II data on a seamless design or the
interim data on a group sequential design. It is assumed to follow the
same piecewise exponential model, as described in the previous
section. The prior distribution of parameter λk is assumed to follow
Gamma(αk, βk) with an inverse scale parameter, and λk is close to a
non-informative prior when αk ≤ 0.01 and βk ≤ 0.01. The prior
distribution of τk follows Uniform(γk−1, γk). The random
variable K is assumed to follow a truncated Poisson prior, and
p(K) � θK∑Kmax

k�1
θk
k!

(Kmax−K)!
Kmax! , where the hyperparameter θ represents

the average number of change points in a unit time. Its value can be
chosen based on specific circumstances. A larger value of θ indicates
a higher frequency of change point occurrences, and vice versa.

FIGURE 2
Simulations of the impact of different delayed months on conditional and predictive power at the interim analysis of the group sequential design.
Panels (A) and (B) represent conditional and predictive power, respectively. IA denotes interim analysis. The efficacy parameters used in simulations were
as follows: themedianOS of the immunotherapy groupwas 8 and 12 months before and after the delayed effect, and themedianOS of the control group
was 8 months.
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Kmax is the maximum predictive number of change points up to N
2 .

p(K|θ) � 1 when Kmax � 1. The number of change points is
accepted with Metropolis–Hastings probability min (1,M), where
M � p(λ1 ,...,λK+1 ,τ1 ,...,τK,K|D)

p(λ1 ,...,λK*+1 ,τ1 ,...,τK* ,K*|D)
p(K,K*)
p(K*,K) and K* is another possible

number of change points other than K. Typically,
p(K,K*) � p(K*, K). The posterior distribution of parameters
based on the piecewise exponential model is expressed as

p λ1, . . . , λK+1, τ1, . . . , τK ,K |D( )∝
∏K+1

k�1 λ
U τk( )−U τk−1( )+βk
k e−λk ∑N

i�1V τk( )−∑N

i�1V τk−1( )+αk[ ]∏K

k�1
1

γk − γk−1

θK

∑Kmax

k�1
θk

k!

Kmax − K( )!
Kmax !

.

The model’s parameters can be estimated using the MCMC
method.

2.1.3 Non-parametric approach
The frequentist and Bayesian approaches have a disadvantage

which is the fact that their calculation processes can become overly
complex. To overcome this limitation, we propose two non-
parametric methods. The idea of the non-parametric approach is
very intuitive, as shown in Figure 3 (Brahmer et al., 2015), which
describes that the survival curve of the nivolumab group has one
change point near the 3rd month after the first administration. This
implies that there are different hazard rates before and after the
change point. Our first approach involves dividing the survival curve
into multiple time subintervals of equal length. We calculate the area
under the survival curve for each time subinterval and identify the
subinterval that has the largest change in comparison to the previous
subinterval. The starting point of this subinterval is chosen as the
change point. Taking the identification of one change point as an
example, we first predict a range of the change point, such as from
the 1st to the 5th month after the first administration. The survival

curve is divided into equal-length time subintervals, for example,
from the 1st to the 2nd month, from 1.1th to the 2.1th month, or
from the 1.2th to the 2.2th month, denoted by I1−2, I1.1−2.1, and
I1.2−2.2, respectively. For each subinterval, we calculate the area
under the survival curve and subtract it from the area of its
neighboring subinterval, such as I1.1−2.1-I1−2 and I1.2−2.2-I1.1−2.1. It
should be noted that the area under the survival curve of It1−t2 is
equal to ∫t2

t1
(S(t) − S(t2))dt, which indicates that we only need to

calculate part of the area under the survival curve rather than the
entire area. The final step is to sort all the results from the previous
calculations and identify the two neighboring subintervals with the
largest difference in area. Referring to Figure 3 for illustration
purposes, we divide the survival curve of the nivolumab group
into four subintervals. By comparing the difference in the area under
the curve, the largest difference lies between the 2nd and 3rd
subintervals, which corresponds to the 3rd month after the first
administration as the change point. Another non-parametric
method, similar to the area method, uses the Kaplan–Meier
estimator as the criterion instead of the area. Additionally, the
lengths of the subintervals are not necessarily equal during the
division process. In this method, we first list the possible change
point range, such as from the 1st to the 5th month. Next, we divide
the survival curve into two subintervals, for example, from 0 to the
1st month and from the 1st to the 6th month. We calculate the
logarithmic Kaplan–Meier estimator for each subinterval,
ln Ŝ(t)0−1 � ∑1

ti�0ln(1 − di
ri
) and ln Ŝ(t)1−6 � ln Ŝ(t)0−6 − ln Ŝ(t)0−1.

Finally, we divide by the length of each subinterval and
subtract, resulting in ln Ŝ(t)1−6

5 − ln Ŝ(t)0−1
1 . This process is repeated,

and ln Ŝ(t)1.1−6
4.9 − ln Ŝ(t)0−1.1

1.1 and ln Ŝ(t)1.2−6
4.8 − ln Ŝ(t)0−1.2

1.2 are calculated until
ln Ŝ(t)5−6

1 − ln Ŝ(t)0−5
5 is reached. The boundary point between two

intervals with the largest interval difference is chosen as the
change point. After identifying the change points, the hazard

FIGURE 3
The survival curve of nivolumab has one change point in the 3rd month after the first administration and is divided into four subintervals of equal
length.
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rates can be estimated using either frequentist or Bayesian
methods. The length of the time subinterval can be adjusted
as needed; narrower subintervals typically provide a more
accurate change point result. However, through simulations
in the subsequent sections, we find that a precision of
0.5 months is usually sufficient, and there is limited practical
meaning in having subintervals narrower than 0.5 months.

2.2 Hypothesis testing for change points

After identifying the change points, researchers may want to
know which of these change points are statistically significant.
In addition to the methods introduced in Section 1, we propose
a sequential likelihood ratio test that is applicable to both
blinded and unblinded analyses. This test consists of the
following three steps to assess whether there is one change
point or no change point.

I. Use a frequentist, Bayesian, or non-parametric approach to find
one change point in real trial data. Calculate the log-likelihood
function value based on the piecewise exponential model for
this change point, denoted as L1CP. Calculate the log-likelihood
function value based on the exponential distribution without
any change points in the same data, denoted as L0CP. Derive the
log likelihood ratio statistic as R1 = L1CP/L0CP.

II. Simulate 1000 samples of data using the hazard function
parameters estimated from the exponential distribution
without any change points, which were obtained in the
previous step. Each sample has the same sample size as the
real trial. Repeat step I for each sample, resulting in
1000 likelihood ratio statistics, Rn

2 � Ln1CP/L
n
0CP, where n �

1, . . . , 1000.
III. Substitute R1 in Rn

2 and sort them in ascending order. If R1 is
greater than (1-α) of the Rn

2 values, such as α = 0.1, it is
considered that there is one change point. Otherwise, it is
concluded that no change point exists.

By repeating the same sequential test steps, it is possible to
determine the presence of two change points beyond one. If two
change points are confirmed, we can proceed to test whether there
are three or more change points. In general, this sequential test does
not require adjusting the type I error rate. However, to avoid the
over-fitted issue with a large number of change points, we can refer
to the decreasing alpha spending function proposed by Goodman
et al. (2011). It is important to note that there may be cases where the
hazard function changes significantly after a change point, yet the
proportional hazards assumption still holds, such as in Panel F of
Figure 1. We simulate and discuss the impact of such a case in
Section 3, Section 4.

2.3 Treatment effect size estimation

To estimate the treatment effect using the change points and
hazard functions obtained from the previous steps, a common
approach is to use the AHR proposed by Kalbfleisch and

Prentice (1981). For any two treatment groups, the AHR can be
calculated as follows:

AHR1 � ∫∞
0
hT t( )SpC t( )SpT t( )dt

∫∞
0
hC t( )SpC t( )SpT t( )dt,

where hT(t) and hC(t) denote the hazard functions of the test and
control groups, respectively. SpC(t)SpT(t) is the weighted survival
function. When assuming that the survival data follow a piecewise
exponential model with K change points, the AHR can be
expressed as

AHR1 � ∫τ1

0
hT t( )SpC1

t( )SpT1
t( )dt + . . . + ∫∞

τK
hT t( )SpCK+1 t( )SpTK+1 t( )dt

∫τ1

0
hC t( )SpC1

t( )SpT1
t( )dt + . . . + ∫∞

τK
hC t( )SpCK+1 t( )SpTK+1 t( )dt.

The aforementioned weighting method has the disadvantage of
being complex to calculate when there is more than one change
point, and it is also challenging to choose the value of p. As an
alternative, there is another weighting method that assumes that the
HR of the kth subinterval follows a log-normal distribution, with
ln(hTk(t)/hCk(t)) as the mean and r/Ek as the standard deviation,
where Ek represents the number of events in the kth subinterval. r
equals 2 when the two groups are in a 1:1 allocation ratio. This
method uses the inverse standard deviation square to derive the
AHR. It calculates the overall hazard function as the weighted sum
of constant hazard rates for each subinterval in the survival curve,
like h(t) � ∑K+1

k�1 Wkλk, where the weighting factor
Wk � 1/σ2k∑K+1

k�1 /σ
2
k

� Ek/4∑K+1
k�1 Ek/4

. Consequently, the equation for this

alternative AHR is

AHR2 � E1λT1 + . . . + EK+1λTK+1
E1λC1 + . . . + EK+1λCK+1

.

Although the weights assigned to AHR2 are easily chosen and
assume equal weight for each event, they only consider the number
of events and disregard the influence of the duration of each
subinterval in the survival curve. For instance, in a survival curve
with one change point in the 3rd month after the first
administration, there exists an accelerated failure phase before
the change point. It is assumed that 100 events are observed both
before and after the change point, respectively. Both subintervals are
equally weighted when using the AHR2. However, the observation
duration for the first 100 events is only 3 months, considerably
shorter than the duration after the change point, and there are still
large amounts of censored data after the change point that is not
included in the weights. Considering these factors, we propose
another weighting method that takes into account the impact of
both time and the number of events, which is called the time- and
event-weighted HR (TEHR). It is calculated as follows:

TEHR �
E1∫τ1

0
λT1dt + . . . + Ek+1∫T

τk
λTK+1dt

E1∫τ1

0
λC1dt + . . . + Ek+1∫T

τk
λCK+1dt

.

One benefit of the TEHR is that the duration of time used in the
AHR1 and the number of events used in the AHR2 are taken into
account when assigning weights. Both the AHR and TEHR can be
calculated directly in unblinded analysis. The challenge is in the
estimation of the hazard function for each treatment group without
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unblinding. One approach is to use the EM algorithm to estimate the
hazard function. The other approach is to make certain
assumptions. For example, it is assumed that the blind combined
hazard rate λk and the predictive hazard ratio HRk in the kth

subinterval equal
λTk+λCk

2 and
λTk
λCk
, respectively. Then, we can obtain

λCk � 2λk
HRk+1 and λTk � 2λkHRk

HRk+1 to calculate the AHR or TEHR.
Although this method is relatively straightforward to implement,
it only allows estimation of λk under the blind condition and we
need to predict the value of HRk. When the actual value of HRk

significantly deviates from its predictive value, the results of AHR
and TEHR may be inaccurate.

2.4 Maximum interim information design

When planning an interim analysis in a group sequential design, the
interim analysis time is usually determined using either an event- or
calendar-driven approach. In an event-driven design, the interim analysis
is triggered when a predetermined number of events is observed. A
calendar-driven design refers to conducting the interim analysis after a
pre-specified time has arrived. Researchers typically choose one of these
approaches as the criteria for initiating the interim analysis. For example,
a tumor immunotherapy trial plans to conduct an interim analysis when
150 events are observed. In the case where the proportional hazards
assumption is established, 150 events are expected to be observed in the
18th month after the first administration. Hence, either event-driven or
calendar-driven criteria could be used to determine the interim analysis
time. However, if a delayed treatment effect is present, the hazard rate
would be higher before the change point and decrease afterward.
Consequently, it is possible to observe 150 events before the 18th
month. On the other hand, if the hazard rates of both groups are
relatively low before the change point but rise rapidly in the control group
after the change point, fewer than 150 eventsmay be observed in the 18th
month. To this end, we propose a flexible method for determining the
interim analysis time that considers event- and calendar-driven
information. The approach selects the later of the two criteria as the
interim analysis time. In the previously described first scenario, the
interim analysis would be conducted in the 18th month after the first
administration, where there would be more than 150 events due to the
presence of a delayed treatment effect. This approach, which selects the
interim analysis time with the larger information fraction between event-
and calendar-driven, is referred to as the maximum interim information
design.

2.5 Analysis flowchart

Figure 4 introduces a flowchart that provides an outline of the
proposed analysis procedure for the phase II/III seamless design and
the group sequential design in the presence of a potential delayed
treatment effect. This flowchart can serve as a useful reference when
implementing the proposed analysis procedure.

3 Simulation

In this section, we first conducted a comparative simulation for
different change point detection methods under various sample sizes

and data maturities. Our simulations focused on a scenario with a
single treatment group and assumed that there would be only one
change point, which was in the 2nd, 3.5th, or 5th month after the
first administration, respectively. The sample sizes were 200, 300,
and 500, while the censoring rates were set at 0%, 20%, or 50%. We
denoted the hazard rates of the survival curve before and after the
change point as λ1 and λ2. In all scenarios, λ1 remained constant at
0.1, while λ2 equals 0.05, 0.067, or 0.1, respectively. The simulated
data were sampled from the piecewise exponential model based on
λ1 and λ2. Additionally, we evaluated the relationship between the
sample size and the change point estimation accuracy by simulating
results with event numbers of 100, 200, 300, 500, 1000, and
2000 without any censored data. The comparison included the
frequentist method, the Bayesian method, and two non-
parametric methods introduced in the previous subsection. The
range of change point selection for the frequentist method and two
non-parametric methods was from the 1st to the 8th month, with an
interval of 0.5 months. This meant that there were 15 possible
choices for the change point. The hazard rates for the non-
parametric methods were estimated using the equation for λk in
Section 2.1.1. In the Bayesian method, the prior distribution for
parameters λ1 and λ2 followed Gamma(0.01, 0.01) with an inverse

FIGURE 4
Analysis flowchart for phase II/III seamless design and group
sequential design when there may be a delayed treatment effect.

Frontiers in Pharmacology frontiersin.org07

Xie and Lu 10.3389/fphar.2023.1186456

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1186456


scale parameter and τ followed Uniform(1, 8). Furthermore, we
simulated a clinical trial with two treatment groups to evaluate the
performance of the proposed sequential likelihood ratio test. The
test objects were the test group, the control group, and the pooled
data on the two groups. We used Cox regression with an interaction
term of time and the treatment group as a benchmark. The
simulation encompassed a total of 300 subjects, with 150 subjects
in each treatment group. It was assumed that the test group had one
change point, with the location and hazard rates before and after the
change point being the same as the settings in the previous
simulations. The control group had no change point, and its
hazard rate was fixed at 0.1.

Next, to assess the impact of the proposed analysis procedure on
the decision success rate at the unblinded interim analysis, we
conducted a simulation of a double-blind, randomization,
placebo-controlled phase III clinical trial. The trial had two
treatment groups. Overall survival (OS) was the primary efficacy
endpoint. The estimated median OS for the test group was
12 months (λ1 = 0.057762), while the control group had a
median OS of 8 months (λ2 = 0.086643). The significance level
was set at 0.05. The recruitment duration was 12 months, and the
follow-up duration was 24 months. A total of 260 events were
required to achieve 90% statistical power, and each treatment group
was planned to enroll 150 subjects in a 1:1 ratio. An unblinded
interim analysis was scheduled to take place after observing 2/3 of
the total number of events, which were 174 events. All simulated
data were generated from the piecewise exponential model based on
the five scenarios in Table 1. There was no change point in Scenario
1, and its true hazard rate was the same as the estimated hazard rate.
Scenarios 2, 3, and 5 included one change point occurring between
the 2nd and 5th months after the first administration. In scenarios
2 and 3, the hazard rates of the two treatment groups were identical
before the change point but differed afterward. Hence, the
proportional hazards assumptions were untenable for both
scenarios. Scenario 5, discussed in the previous section,
represented a special case where both the test and control groups
had one change point, but their HRs before and after the change
point remained the same. Consequently, the proportional hazards
assumption held even though there was one change point. In
Scenario 4, we simulated a completely ineffective situation for the
test group. We used the same methods as those in the previous
simulations to detect change points and estimate hazard rates. The
unadjusted interim analysis was used as a comparative reference.
Conditional and predictive power were the indicators used to
determine the go/no-go decision.

To calculate these two indicators, the clinical success criterion
was set to 0.76. The predictive power solely relied on the interim
analysis data without incorporating any prior knowledge. The
decision threshold was set at 90%, indicating that if the
conditional or predictive power at the interim analysis exceeded
90%, it was deemed likely that the trial would succeed in the final
analysis without requiring any additional actions, such as sample
size re-estimation. To measure whether the decision success rate at
the interim analysis was improved, we compared the go/no-go
decisions with the final log-rank test results. The treatment effect
size at the interim analysis was estimated by the AHR1 and TEHR,
with p in the AHR1 set to 0.5. We used the maximum interim
information design to decide the interim analysis time in all

simulations except for the unadjusted method. In the maximum
interim information design, the calendar-driven time was the 20th
month after the first administration. Therefore, we chose the later of
the occurrence time of the 174th event and the 20th month as the
interim analysis time. Additionally, we summarized the average
number of events and the interim analysis time when using the
maximum interim information design under various scenarios. Each
scenario was repeated 1000 times using SAS 9.4 software.

4 Results

The estimates of change points and hazard rates obtained by
different methods, considering varying sample sizes and censoring
rates, are summarized in Supplementary Table S1. It is evident that
the accuracy of estimates was influenced by the magnitude of the
hazard rate gap before and after the change point. Higher accuracy
was achieved when the hazard rate gap was larger. In addition, larger
sample sizes led to more accurate estimates, and censoring rates also
had an impact. The hazard rates estimated by various methods were
close to the true value when the estimated change points did not
significantly deviate from the true change points. Taking a sample
size of 200 and the true change point occurring in the 2nd month
after the first administration as an example, we observed that when
the estimated change point differed by 0.5 months from the true
change point, the estimated hazard rates showed a minor deviation
from the true values. Furthermore, when the difference between the
estimated and true change points increased to 1 month, as
demonstrated in the frequentist method with true hazard rates
λ1 = 0.1 and λ2 = 0.067 and a censoring rate of 50%, the
estimated change point was 3.05. In this case, the impact on the
estimated hazard rates remained limited. However, when the
difference further increased to 1.5 month, as observed in the
Bayesian estimation with true hazard rates λ1 = 0.1 and λ2 =
0.05, the bias in the estimated hazard rates became pronounced.
This implies that these methods allow for a certain degree of
deviation in the change point estimation when estimating hazard
rates. This indirectly supports our practice of selecting change points
at 0.5-month intervals when using frequentist and non-parametric
methods as it demonstrates that a deviation of 0.5 month in the
estimate of change points has a limited impact on the estimation of
hazard rates before and after the change point. This is also the reason
why there were fewer significant differences in the performances of
various change point detection methods in subsequent simulations
of the decision success rate. Figure 5 further shows the performance
of different methods in detecting change points across a wider range
of sample sizes. As the sample size increased, the estimated values
from all methods gradually approached the true values. The
frequentist method performed well in most cases, and when the
sample size exceeded 500, its estimated results were nearly identical
to the true values, and its SDs were also smaller than those of other
methods. Estimates based on the Bayesianmethod were less accurate
than those based on the frequentist method. This can be attributed
to two reasons. First, the Bayesian method assumed a uniform
distribution for the change point with a wide prior value range,
resulting in unsatisfactory change point estimation. Second, the
prior distribution of Bayesian parameters used non-informative
priors. Its performance can be improved by using an informative
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prior or reducing the prior value range of the change point. The two
non-parametric methods, particularly the one based on the KM
estimator, exhibited comparable performance to the frequentist
method when the sample size was less than 300 and even
outperformed it in certain cases. This is a useful conclusion
because, even in phase III trials, the sample size per group for
most of them is typically not more than 300. The area-based non-
parametric method performed worse than the KM estimator-based
non-parametric method, particularly when the change point
occurred in the 5th month after the first administration. We
observed similar conclusions when λ2 after the change point was
changed to 0.5. Refer to Supplementary Figure S1 for more details.
According to the results presented in Supplementary Table S2, the

proposed sequential likelihood ratio test outperformed the Cox
regression. When we applied the method to test the control or
test groups in the absence of the change point, the false positive rate
did not exceed 5% in most cases. When there was one change point
in the test group, such as λT1 = 0.1 and λT2 = 0.067, a substantial
proportion of results yielded significant findings using the proposed
method. Even though the proposed testing method exhibited slightly
lower performance as the censoring rate increased, it still
outperformed the results of the Cox regression.

For the results of the decision success rate at the interim analysis,
α and β in Table 2 refer to the comparison between the conditional
or predictive power of the interim analysis and the final analysis
results. If the final log-rank test result was statistically significant but

TABLE 1 Summary of various scenarios used in the simulations.

Scenario Actual hazard rate before the change point
(median OS)

Actual hazard rate after the change point (median OS)

Test group Active control group Test group Active control group

1 0.057762 (12) 0.086643 (8) 0.057762 (12) 0.086643 (8)

2 0.086643 (8) 0.086643 (8) 0.043322 (16) 0.086643 (8)

3 0.086643 (8) 0.086643 (8) 0.057762 (12) 0.086643 (8)

4 0.086643 (8) 0.086643 (8) 0.086643 (8) 0.086643 (8)

5 0.057762 (12) 0.086643 (8) 0.043322 (16) 0.064962 (10.67)

FIGURE 5
Mean and SD of the actual change points and the change points estimated by differentmethods under various scenarios for 1000 simulations. Panels
(A), (B), and (C) represent change points occurring in the 2nd, 3.5th, and 5th months after the first administration, respectively. The black line represents
the true value of the change point. The censoring rate is zero. SD is represented by the length of the whisker. The true hazard rates before and after the
change points are 0.1 and 0.067, respectively. NP is non-parametric. KM is Kaplan–Meier.
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the conditional or predictive power was below 90%, 1 was added
when calculating β, which was similar to the type II error and
indicated a potential incorrect no-go decision. If the final result was
not significant but the conditional or predictive power was above
90%, 1 was added in α, which was like the type I error. The
summation of incorrect go decisions and incorrect no-go
decisions, divided by 1000, respectively, yields the final values of
α and β. Typically, the conditional power exceeds the predictive
power when it is greater than 0.5, as observed in Scenario 2. On the
other hand, when the conditional power is less than 0.5, such as in
Scenario 4, it is lower than the predictive power. Hence, in Table 2,
we only reported the results of the conditional power and provided
simulation results for change points occurring in the 2nd or 5th
month after the first administration as the performance of other
change points fell between them. See Supplementary Tables S3, S4
for full results.

We first focus on the results in Scenarios 2 and 3 as they had a
delayed treatment effect, which is the main issue of this research. In
Scenario 3, when we analyzed the data directly without considering
the impact of the delayed treatment effect, β exceeded 40% for both
2-month and 5-month delays, which was relatively high. After
adjusting the interim analysis time based on the maximum

interim information design, the decrease in β was very limited.
This finding was consistent with Figure 2, in which we concluded
that increasing the number of interim analysis events had little effect
on the improvement of power. When using the proposed analysis
procedure, regardless of whether it was based on the AHR1 or
TEHR, the β-values of most methods were controlled between
0.25 and 0.3, which significantly improved the accuracy of the
interim analysis decision. In Scenario 2, the disparity in hazard
rates before and after the change point became more pronounced.
The unadjusted method exhibited an increase in β from 0.17 to
0.58 as the change point shifted from the 2nd month to the 5th
month. Correspondingly, although the various change point
detection methods also experienced an increase in β with the
delay of treatment efficacy, most of them did not exceed
0.25 when the change point was in the 5th month. This value
was less than half of the β-value observed with the unadjusted
method. Scenarios 1 and 5 demonstrated that when the proportional
hazards assumption held, the maximum interim information design
performed best in certain cases. However, in general, there was no
significant difference among the methods, with most of them
resulting in β between 0.2 and 0.3. In Scenario 4, the β-values
were almost the same across all methods.

TABLE 2 α and β-values of different methods under various scenarios when the change point is in the 2nd and 5th months.

Change point Scenario Unadjusted MIID only Frequentist Bayesian NP-area NP-KM

AHR1 TEHR AHR1 TEHR AHR1 TEHR AHR1 TEHR

2nd month 1 α = 0.005 α = 0.004 α = 0.011 α = 0.008 α = 0.007 α = 0.008 α = 0.011 α = 0.013 α = 0.014 α = 0.011

β = 0.31 β = 0.29 β = 0.31 β = 0.33 β = 0.28 β = 0.29 β = 0.25 β = 0.24 β = 0.25 β = 0.22

2 α = 0 α = 0 α = 0.002 α = 0.004 α = 0.002 α = 0.002 α = 0.002 α = 0.004 α = 0.002 α = 0.003

β = 0.17 β = 0.15 β = 0.06 β = 0.03 β = 0.07 β = 0.05 β = 0.06 β = 0.04 β = 0.07 β = 0.04

3 α = 0.004 α = 0.004 α = 0.023 α = 0.036 α = 0.016 α = 0.030 α = 0.018 α = 0.033 α = 0.020 α = 0.027

β = 0.44 β = 0.40 β = 0.29 β = 0.25 β = 0.32 β = 0.28 β = 0.30 β = 0.25 β = 0.30 β = 0.25

4 α = 0.003 α = 0.001 α = 0.008 α = 0.011 α = 0.004 α = 0.013 α = 0.006 α = 0.013 α = 0.009 α = 0.011

β = 0.06 β = 0.06 β = 0.06 β = 0.06 β = 0.06 β = 0.07 β = 0.06 β = 0.06 β = 0.06 β = 0.06

5 α = 0.006 α = 0.013 α = 0.011 α = 0.015 α = 0.009 α = 0.011 α = 0.007 α = 0.010 α = 0.008 α = 0.012

β = 0.27 β = 0.16 β = 0.27 β = 0.25 β = 0.29 β = 0.30 β = 0.24 β = 0.22 β = 0.23 β = 0.22

5th month 1 α = 0.005 α = 0.004 α = 0.011 α = 0.006 α = 0.006 α = 0.002 α = 0.007 α = 0.010 α = 0.012 α = 0.006

β = 0.29 β = 0.27 β = 0.28 β = 0.30 β = 0.29 β = 0.29 β = 0.25 β = 0.23 β = 0.24 β = 0.21

2 α = 0 α = 0 α = 0.020 α = 0.005 α = 0.017 α = 0.004 α = 0.006 α = 0.008 α = 0.019 α = 0.006

β = 0.58 β = 0.48 β = 0.17 β = 0.22 β = 0.20 β = 0.24 β = 0.24 β = 0.21 β = 0.20 β = 0.24

3 α = 0.002 α = 0.001 α = 0.042 α = 0.036 α = 0.031 α = 0.030 α = 0.017 α = 0.037 α = 0.042 α = 0.034

β = 0.43 β = 0.40 β = 0.27 β = 0.27 β = 0.29 β = 0.28 β = 0.30 β = 0.27 β = 0.28 β = 0.29

4 α = 0 α = 0 α = 0.007 α = 0.012 α = 0.005 α = 0.008 α = 0.004 α = 0.012 α = 0.008 α = 0.013

β = 0.05 β = 0.05 β = 0.05 β = 0.06 β = 0.05 β = 0.05 β = 0.05 β = 0.06 β = 0.05 β = 0.06

5 α = 0.001 α = 0.005 α = 0.015 α = 0.008 α = 0.006 α = 0.004 α = 0.010 α = 0.009 α = 0.013 α = 0.011

β = 0.24 β = 0.16 β = 0.23 β = 0.23 β = 0.28 β = 0.27 β = 0.23 β = 0.22 β = 0.22 β = 0.21

Note:MIID denotes maximum interim information design. α and β are based on the conditional power. AHR1 is the average HR proposed by Kalbfleisch and Prentice. TEHR is time- and event-

weighted HR. NP is non-parametric. KM is Kaplan–Meier.
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In all scenarios, the α-values of all methods were controlled
below 0.05. The change point detection methods had a slightly larger
α than that of the unadjusted method and the maximum interim
information design in most scenarios, but the difference was
typically no more than 0.03. For example, in Scenario 1, the
α-value of the AHR1 of the frequentist method was 0.006 larger
than that of the unadjusted method, which indicated that 6 out of
1000 simulated samples had false positive results. This adheres to the
rule that α increases as β decreases and vice versa. The proposed
analysis procedure obtained a significant decrease in β at the cost of a
slight increase in α. Similarly, the comparison of the four change
point detection methods revealed that, when the sample size was less
than 300, the non-parametric methods performed no worse than the
frequentist method, and in some scenarios, they even outperformed
it, which aligned with previous simulations. However, overall, there
was no significant difference in performance observed among the
various methods, and the reason has also been explained in the
previous simulations.

In the comparison between AHR1 and TEHR, the α-value of
TEHR was usually larger than that of AHR1 when the proportional
hazards assumption was violated and the change point occurred in
the 2nd month. However, when the delayed treatment effect
persisted until the 5th month, the α-value of TEHR decreased in
comparison to that of the AHR1. The opposite conclusion was
observed in β. Therefore, the TEHR is recommended if controlling α
is more important, particularly for long-lasting delayed treatment
effects. Under the same conditions, if β is more crucial,
AHR1 should be chosen.

The number of events adjusted by the maximum interim
information design at the interim analysis for various scenarios is
shown in Supplementary Table S5. The unadjusted method
maintained a fixed number of events at 174. In previous
simulations, all change point detection methods selected the
interim analysis time based on the maximum interim
information design. Therefore, they had the same number of
events as the maximum interim information design. In cases
where the proportional hazards assumption was held, such as
scenarios 1, 4, and 5, different change points had no impact on
the number of events. The number of events in scenarios 2 and
3 increased as the delayed treatment effect persisted. This
maintained the power of the study to some extent and
demonstrated the benefits of the maximum interim information
design. Supplementary Table S6 provides a summary of the actual
average time of the interim analysis under various scenarios. When
there was a delayed treatment effect due to the longer accelerated
failure period in the survival curve, the interim analysis time shifted

earlier as the number of delayed months increased. In Scenario 5,
although the proportional hazards assumption was established, the
interim analysis time was postponed. However, as observed in
Table 2, this phenomenon had a limited impact on the decision
results in Scenario 5. It further reaffirmed that the violation of the
proportional hazards assumption was the key factor influencing the
accuracy of the analysis and decision-making. In scenarios 1 and 4,
where no delayed treatment effect was present, the interim analysis
time was not impacted.

5 Example

The Bladder1 dataset in the R package survival, which contains
information on bladder cancer recurrences, is frequently used by
researchers to assess statistical methods. It consists of three treatment
groups, namely, thiotepa, pyridoxine, and placebo, comprising 81, 85,
and 128 subjects, respectively. The primary endpoint event is defined as
the occurrence of bladder cancer recurrence or death due to any reason.
Upon plotting the survival curves for these groups, the figure reveals no
discernible disparity in the curves during the first 7 or 8 months.
However, the decline in the survival curve for the thiotepa group
subsequently decelerates, indicating a potential delayed treatment
effect. We opted to apply the proposed analysis procedure only to
the thiotepa and pyridoxine groups as the placebo group’s survival curve
fell between them.Weused the log-rank test to compare the thiotepa and
pyridoxine groups, yielding a p-value of 0.258, suggesting a lack of
statistical significance. To convert the trial’s data into interim analysis
data, we sorted the data by start time and set the last 30% as censoring,
regardless of whether the events were observed. The censoring rate
increased to 50.6% as a result. Our intent is tomake an accurate go/no-go
decision by applying the proposed analysis procedure to the unblinded
interim data. To accomplish this, we used frequentist, Bayesian, and two
non-parametric methods to detect the change point in the combined
data from the 5th to the 9th month after the first administration,
maintaining the same settings as the previous simulations for other
parameters. Subsequently, we calculated the TEHR, conditional power,
and predictive power based on the estimates of the hazard rates before
and after the change point for the two groups. The outcomes of the
proposed analysis procedure were then compared with those of the
unadjusted method. The clinical success criterion was set to 0.8 when
calculating the conditional and predictive power. The final results are
presented in Table 3.

The change point detection results obtained through the
frequentist and non-parametric methods based on the KM
estimator demonstrated higher accuracy than the other two

TABLE 3 Interim analysis results were estimated using different methods for the Bladder1 dataset.

Unadjusted Frequentist Bayesian NP-area NP-KM

HR = 0.761 ĈP = 7 ĈP = 6.2 ĈP = 6 ĈP = 7

CP = 59.33% TEHR = 0.832 TEHR = 0.785 TEHR = 0.784 TEHR = 0.832

PP = 57.74% CP = 26.39% CP = 47.37% CP = 48.13% CP = 26.39%

PP = 30.09% PP = 47.83% PP = 48.46% PP = 30.09%

Note: ĈP denotes the estimate of the change point. TEHR is time- and event-weighted HR. CP and PP denote conditional power and predictive power, respectively. NP is non-parametric. KM is

Kaplan–Meier.
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methods. If 50% of this was used as the go/no-go decision criterion,
it was evident from the conditional and predictive power that the
unadjusted method would have incorrectly decided to continue the
trial. In contrast, all values of calculated conditional and predictive
power from the proposed analysis process were below 50%,
especially the results of the frequentist and non-parametric
methods based on the KM estimator, which were exceptionally low.

6 Discussion

In the context of phase II/III seamless design and group sequential
design, the violation of the proportional hazards assumption can result in
two potential outcomes at the interim analysis: overpower and
underpower. Overpower occurs when the power of the interim
analysis exceeds expectations, while underpower occurs when the
power is insufficient due to a delayed treatment effect. Given the
impact of the latter on statistical analysis, this paper proposes an
analysis procedure that includes detecting the number and location
of change points in the survival curve and then using them to estimate
the treatment effect size, ultimately improving the decision success rate
of the interim analysis. The main benefit of the proposed analysis
procedure over the unadjusted method is a significant reduction in
the type II error rate at the expense of a slight increase in the type I error
rate. The accuracy of the four proposed change point detection methods
is influenced by the sample size and censoring rate. In simulations, we
found that the frequentist method demonstrated relatively stable
performance, while the non-parametric methods, particularly those
based on the Kaplan–Meier estimator, outperformed the frequentist
method in some scenarios with a sample size of less than 300. All four
methods yielded superior results compared to the unadjustedmethod for
decision-making. We introduce TEHR, which incorporates both time
and events to estimate efficacy in the presence of delayed treatment
effects. In comparison to the commonly used AHR, TEHR has its own
advantages, particularly when dealing with multiple change points. We
also provide amethod for selecting the interim analysis time in the group
sequential design, which can limitedly improve the decision success rate.
In this section, we discuss important considerations while applying the
analysis procedure.

In the previous sections, we summarized the performance of
various change point detection methods. However, these
conclusions were based on the assumption that the simulated
data followed the piecewise exponential model. The selection of
the detection method should be guided by the specific
characteristics of the data, such as the distribution, sample
size, and available prior information. Simulation can assist in
identifying an appropriate method for a given scenario. In
general, if there is a good understanding of the distribution
and an adequate sample size, frequentist methods can be
considered. This approach is particularly convenient when the
survival curve has only one change point, which is the most
common situation in tumor immunotherapy studies. On the
other hand, if the distribution is uncertain or the sample size
is small, non-parametric methods may be more appropriate. In
cases where reliable prior information is available, Bayesian
methods can be utilized.

In comparison to AHR2, which applies the same weights for all time
intervals, TEHR can be regarded as a weighted approach that

incorporates the element of time. In scenarios with a significant
treatment delay, TEHR tends to provide a relatively conservative
estimate of treatment efficacy between the two groups. Conversely,
when there is a shorter delay, TEHR yields a relatively larger
estimate of treatment efficacy. This characteristic of TEHR was
adequately illustrated through the simulations and the provided
example. It is important to note that TEHR is just one type of
weighted method that can be used based on the aforementioned
rules; it may not be applicable in all situations. Researchers should
carefully consider the specific context and characteristics of the study
when using TEHR. We did not specifically test for violations of the
proportional hazards assumption or the significance of change points
while calculating AHR1 or TEHR in the simulations. The results showed
that the performance of the proposed analysis procedure was not inferior
to that of the unadjusted method when the proportional hazards
assumption held, and it exhibited clear advantages when this
assumption was violated. This suggests that the proposed analysis
procedure can be directly applied to scenarios with no more than
one change point without the need to test its statistical significance.
Since most real tumor immunotherapy scenarios only involve a single
change point, this application condition is particularly useful. It
demonstrates the robustness of the proposed analysis procedure
while simultaneously reducing the complexity of statistical analysis.

One more issue that has not been discussed is the adjustment and
allocation of the type I error rate when using the maximum interim
information design. Some traditional methods can still be used to
address this issue. For example, the alpha spending function (DeMets
and Lan, 1994) can be used to adjust the type I error rate according to the
updated interim analysis time. Moreover, the proposed analysis
procedure makes decisions based on indicators such as conditional
power, predictive power, or probability of success. These indicators can
play a decisive role in the phase II/III seamless design. For the group
sequential design, in addition to its application in go/no-go decisions, the
analysis procedure can also be used in conjunction with the p-value
obtained at the interim analyses. For instance, if the p-value of the
interim analysis results cannot reject or acceptH0, the proposed analysis
procedure can provide complementary insights and a supporting
prediction for the final results. The last point to be illustrated is that
the analysis procedure is not limited to go/no-go decisions. It can also be
applicable to other important objectives, such as sample size re-
estimation, and can be extended to various fields that involve delayed
treatment effects and change points beyond the scope of tumor
immunotherapy.
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