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Background: Severe acute respiratory syndrome coronavirus (SARS-CoVs) have
emerged as a global health threat, which had caused a high rate ofmortality. There
is an urgent need to find effective drugs against these viruses.

Objective: This study aims to predict the activity of unsymmetrical aromatic
disulfides by constructing a QSAR model, and to design new compounds
according to the structural and physicochemical attributes responsible for
higher activity towards SARS-CoVs main protease.

Methods: All molecules were constructed in ChemOffice software and molecular
descriptors were calculated by CODESSA software. A regression-based linear
heuristic method was established by changing descriptors datasets and
calculating predicted IC50 values of compounds. Then, some new compounds
were designed according to molecular descriptors from the heuristic method
model. The compounds with predicted values smaller than a set point were
constantly screened out. Finally, the properties analysis and molecular docking
were conducted to further understand the structure-activity relationships of these
finalized compounds.

Results: The heuristic method explored the various descriptors responsible for
bioactivity and gained the best linearmodel with R2 0.87. The success of themodel
fully passed the testing set validation, proving that the model has both high
statistical significance and excellent predictive ability. A total of 5 compounds
with ideal predicted IC50 were found from the 96 newly designed derivatives and
their properties analyze was carried out. Molecular docking experiments were
conducted for the optimal compound 31a, which has the best compound activity
with good target protein binding capability.

Conclusion: The heuristic method was quite reliable for predicting IC50 values of
unsymmetrical aromatic disulfides. The present research provides meaningful
guidance for further exploration of the highly active inhibitors for SARS-CoVs.
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1 Introduction

The global epidemic of severe acute respiratory syndrome
coronavirus (SARS CoVs) in 2003 had caused a high rate of
mortality. Since that, the SARS CoVs have been recognized as a
worldwide threat (Konno et al., 2013). SARS CoVs is a large RNA
virus of the coronavirus family, which can infect vertebrates, such as
humans, pigs, cats and dogs, causing respiratory, gastrointestinal,
hepatic, and neurologic diseases (Weiss and Leibowitz, 2011;
Delgado-Roche and Mesta, 2020). Symptoms are influenza-like
and include high fever, malaise, myalgia, headache, non-
productive cough, diarrhea, and shivering (Lee et al., 2003). Due
to the recent spread of a new strain from 2019, named SARS-CoV-2,
a pathogenic agent of COVID-19 disease, this pathogen has become
the center of global attention. To effectively control the spread of the
SARS CoVs, many measures have been taken around the world,
including control of infection, vaccination, enhanced clinical
treatment, and so on. But, the mutant strains of SARS CoVs
remain a global pandemic, which can be more dangerous to
human health than the previous ones. The re-emergence of new
pandemic SARS-CoV-2 has posed a great risk than the strain of the
2003 outbreak (Yang et al., 2020). Therefore it is still an urgent need
to design novel anti-SARS CoVs inhibitors to combat this deadly
disease.

The study properties of compounds will help to create novel
anti-SARS inhibitors with hypo-toxicity, high-bioactivity, and
broader protection. We all know that getting a new inhibitor and
testing its biological activity and toxicity is a big project that takes a
lot of time, energy, and money. Fortunately, powerful artificial
intelligence provides practical ways to enter novel structures and
foresee security threats. In this regard, quantitative structure-activity
relationship (QSAR) is an effective technique for screening novel
structures and forecasting a variety of attributes of the synthesized
molecules (Saxena et al., 2010; Huang et al., 2011; Jia et al., 2013;
Song et al., 2016). The prediction issues of inhibitors action have
been settled in the recent 2 decades by creating a bionic mathematics
calculation models (Uysal and Tanyildizi, 2012; Reichelt et al., 2014;
Song et al., 2017; Si et al., 2021). QSAR model has the potential to
make a significant advancement in the development of inhibitors
that are both more highly effective and less harmful (Yang et al.,
2011; Haudecoeur et al., 2013).

The literature indicates that a variety of QSAR methods has been
widely applied in anti-SARS inhibitor researches. Masand et al. (2020)
discovered a genetic algorithm-multi-linear regression methodology to
modify the peptide-type compounds for SARS-CoV; Zaki et al. (2021)
identified anti-SARS-CoV-2 compounds from food by virtual
screening, molecular Docking, and molecular dynamics simulation
analysis; Galvez-Llompart et al. (2022) described a novel QSAR
model based repurposing study on molecular topology and
molecular docking for identifying inhibitors of the main protease of
SARS-CoV-2; Toropov et al. (2022) obtained new designed anti-SARS
CoVs inhibitors based on statistical and probability quality of molecular
alerts extracted from SMILES.

Scientific studies show that SARS-CoVs encode a main protease
(Mpro, also called 3CLpro) that plays a critical role in processing viral
polyproteins and controlling the activity of replicator complexes
(Goetz et al., 2007). The Mpro at no less than 11 cleavage sites on the
large polyprotein 1 ab (replicase 1 ab, ~790 kDa); the recognition

sequence at most sites is LeuGln (Ser, Ala, Gly). Inhibiting the
activity of this enzyme would block viral replication the replication
of the SARS-CoVs. Generally, the disulfide bonds play essential roles
for bioactive proteins to keep correct folding (Zhang et al., 2011).
And scientists have long been committed to finding chemical
molecules that can control the occurrence of this key node. Since
the discovery of unsymmetrical aromatic disulfides possessing novel
resistance effects, numerous studies have been conducted to find
more powerful anti-Mpro inhibitors, including the study of disulfide
derivatives and other compounds with similar structural properties.
Based on the above two points, the QSAR study was used to analyse
and design more protein inhibitors.

The heuristic method (HM) is a wonderful QSAR method to
scan all the generated molecular descriptors and analyze the relevant
variables with the biological activity (Perestrelo et al., 2019). And the
HM models could provide a broader idea for designing new
molecule structures. Molecular docking is a contemporary
structure-based drug design approach, which provides in-depth
knowledge and understanding of binding patterns to identify the
important structural features of the enzyme of newly designed
molecules (Baig et al., 2016). Therefore, in this study, we
employed QSAR-based virtual screening, property analysis, and
molecular docking analyses to achieve the desired goals.

2 Methods

2.1 Data set

Forty unsymmetrical aromatic disulfides derivatives as the
inhibitor activities toward SARS CoVs Mpro were collected from
the literature (Wang et al., 2017). Structures of the studied molecules
with their activity IC50 values (required concentration of an
inhibitor to achieve 50% inhibition of replication of the Mpro) are
illustrated in Table 1. It could be seen that the target compounds
exhibited encouraging biological potency, with excellent IC50 values
ranging from 0.516μM to 5.954 μM. A lower IC50 value indicates
that has a stronger activity against the Mpro. The random number
method was employed to obtain a distinct set of random numbers.
By using this procedure, the subsequent number was unrelated to
the preceding one. Finally, 40 compounds are randomly divided into
8 compounds for the testing set and 32 compounds for the training
set. The ability and stability of QSAR models created by the training
set were assessed by the testing set.

2.2 Calculation of molecular descriptors

Chemical structures are always expressed in a QSAR model as
numerical physical and chemical characteristics, which are
computed by expert computational chemistry software and are
frequently referred to as molecular descriptors. Molecular
descriptors are the most crucial parameters in revealing chemical
information and influencing the quality of QSAR models.
Chemdraw software was used to include all unsymmetrical
aromatic disulfides derivatives into molecular structural formulae.
First, the MM + molecular mechanics force field was used in the
Hyperchem 7.5 application to optimize the molecular structure
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TABLE 1 Experimental and predicted IC50 of 40 unsymmetrical aromatic disulfides derivatives.

No. Compound Exp. (IC50) Pred. (IC50) Residue

1 2-((4-chlorophenyl)disulfanyl)thiazole 1.871 2.120 −0.249

2 N-(2-(p-tolyldisulfanyl)thiazol-5-yl)acetamide 2.803 2.079 0.724

3 Ethyl 2-((4-chlorophenyl)disulfanyl)-1H-imidazole-4-carboxylate 3.657 4.176 −0.519

4a 1-(5-Methyl-3-((2-nitrophenyl)disulfanyl)-1H-1,2,4-triazol-1-yl)ethanone 3.130 2.536 0.594

5 N-(2-(phenyldisulfanyl)thiazol-5-yl)acetamide 1.506 1.850 −0.344

6 1-(5-Phenyl-3-(p-tolyldisulfanyl)-1H-1,2,4-triazol-1-yl)ethanone 4.344 4.159 0.185

7a 1-(3-((4-methoxyphenyl)disulfanyl)-5-phenyl-1H-1,2,4-triazol-1-yl)ethanone 4.100 4.908 −0.808

8 1-(3-((2-nitrophenyl)disulfanyl)-5-(pyridin-3-yl)-1H-1,2,4-triazol-1-yl)ethanone 1.762 2.443 −0.681

9 Ethyl 2-((1-acetyl-5-(pyridin-3-yl)-1H-1,2,4-triazol-3-yl)disulfanyl)benzoate 5.654 5.202 0.452

10 Ethyl 2-((1-acetyl-5-(pyridin-4-yl)-1H-1,2,4-triazol-3-yl)disulfanyl)benzoate 4.511 4.873 −0.362

11 1-(3-((4-methoxyphenyl)disulfanyl)-5-(pyridin-3-yl)-1H-1,2,4-triazol-1-yl)ethanone 5.794 4.855 0.939

12 N-(2-((4-chlorophenyl)disulfanyl)thiazol-5-yl)acetamide 2.626 2.138 0.488

13 N-(2-((4-bromophenyl)disulfanyl)thiazol-5-yl)acetamide 1.651 2.077 −0.426

14 Methyl 2-((2-nitrophenyl)disulfanyl)-1H-imidazole-4-carboxylate 2.075 2.583 −0.508

15 Methyl 2-((2-(ethoxycarbonyl)phenyl)disulfanyl)-1H-imidazole-4-carboxylate 5.954 5.465 0.489

16 Methyl 2-((2-(methoxycarbonyl)phenyl)disulfanyl)-1H-imidazole-4-carboxylate 3.975 4.435 −0.460

17 Methyl 2-((4-chlorophenyl)disulfanyl)-1H-imidazole-4-carboxylate 4.126 3.611 0.515

18a N-(2-((4-fluorophenyl)disulfanyl)thiazol-5-yl)acetamide 2.565 2.543 0.022

19a N-(2-((2-nitrophenyl)disulfanyl)thiazol-5-yl)acetamide 1.947 1.672 0.275

20 2-((2-nitrophenyl)disulfanyl)thiazole 2.029 1.958 0.071

21a 2-(p-tolyldisulfanyl)thiazole 1.250 2.077 −0.827

22a 2-((4-fluorophenyl)disulfanyl)thiazole 2.211 1.900 0.311

23 2-((4-bromophenyl)disulfanyl)thiazole 3.321 1.995 1.326

24 4-Methyl-2-((2-nitrophenyl)disulfanyl)thiazole 2.555 2.491 0.064

25 Ethyl 2-((4-methylthiazol-2-yl)disulfanyl)benzoate 2.452 2.982 −0.530

26 Methyl 2-((5-methyl-1,3,4-oxadiazol-2-yl)disulfanyl)benzoate 1.679 1.178 0.501

27a Ethyl 2-((5-methyl-1,3,4-oxadiazol-2-yl)disulfanyl)benzoate 1.557 1.772 −0.215

28 2-Methyl-5-((2-nitrophenyl)disulfanyl)-1,3,4-oxadiazole 1.713 1.578 0.135

29 Methyl 2-((1,3,4-oxadiazol-2-yl)disulfanyl)benzoate 1.118 0.416 0.702

30 Methyl 2-((4-methyloxazol-2-yl)disulfanyl)benzoate 1.264 1.291 −0.027

31 2-((4-chlorophenyl)disulfanyl)-1,3,4-oxadiazole 0.516 0.758 −0.242

32 4,6-Dimethyl-2-((2-nitrophenyl)disulfanyl)pyrimidine 0.921 0.779 0.142

33 2-((4-chlorophenyl)disulfanyl)-4,6-dimethylpyrimidine 1.437 1.708 −0.271

34 2-((4-bromophenyl)disulfanyl)-4,6-dimethylpyrimidine 1.121 1.722 −0.601

35 4,6-Dimethyl-2-(phenyldisulfanyl)pyrimidine 1.991 1.379 0.612

36 4,6-Dimethyl-2-(p-tolyldisulfanyl)pyrimidine 1.495 1.789 −0.294

37a 2-((2-nitrophenyl)disulfanyl)pyrimidine 0.833 1.264 −0.431

38 2-((4-chlorophenyl)disulfanyl)pyrimidine 0.864 1.294 −0.430

(Continued on following page)
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formulations. The semi-empirical PM3 approach and MOPAC
6.0 software were used to further improve molecular structure
formulas in order to provide a more precise optimization
(Katritzky et al., 1996). Finally, the calculative process of
molecular descriptors was performed by CODESSA software. The
molecular descriptors are divided into five groups (Helguera et al.,
2008) and include constitutional descriptors, geometrical
descriptors, electrostatic descriptors, thermodynamic descriptors,
quantum-chemical descriptors, and topological descriptors.

2.3 HM linear model

The CODESSA software offers the heuristic approach, a
spontaneous linear regression algorithm that can quickly search for
a large number of chemical descriptors to provide the best linear
equation. The collinearity of the molecular descriptors should be
managed during this process. This is not a random mixture of
variables. Each descriptor is assessed to guarantee (Si et al., 2011): a)
Entire compounds should have a descriptor accessible. The variables
that are “0″for the majority of samples are excluded. b) The descriptor
values differ from one another and contain more physical and chemical
data. c) Any two descriptors’ correlation coefficients should not be
higher than 0.8. High correlation variables in the HM model typically
lead to inaccurate forecast outcomes. d) F test’s value for the one-
parameter correlation with the descriptor is above 1.0. e) The
parameter’s t-test value is less than the defined. The coefficient of
determination (R2), a square of cross-validate coefficient regression
(R2

CV), F test value (F), and mean square error (S2) were used to assess
the stability of the HM model. The following equation can be used in
this study to compute the root mean square of HM:

RMS �

����������∑ns
i�1

yk − ŷk( )2
ns

√√

yk: the predictive value, ŷk: the experimental value, ns: the number of
compounds

Using QSAR method to filtrate and predict the activity of new
high-efficient structures has beenwidely used in drug design.With the
help of HMmodel, changing or adding chemical group to the original
structure will help us design new drug molecules purposefully.

2.4 Property prediction and molecular
docking

In drug discovery, newly designed molecules must meet a set of
different criteria. In addition to suitable potency for biological

targets, the compound should also be quite selective for
unwanted targets and exhibit good physicochemical properties.
For instance, charges should be balanced and atom valances not
exceeded. Property explorer is a free tool to predict physicochemical
and toxicological molecular properties for designing
pharmaceutically active compounds (Song et al., 2017). It allows
the construction of new molecular structures and property values to
be given after automatic analysis. Property includes molecular
weight, partition coefficient (LogP), aqueous solubility,
topological polar surface area (TPSA), drug-likeness, toxicity
assessment and overall drug-score.

Molecular docking has become an indispensable component of
the drug discovery process. It enables the identification of new
molecules of therapeutic effect, predicting and delineating the
interactions of ligand-target at a molecular level. And this
approach would assist to design a dosage form in the most cost-
effective and time-saving manner. Based on automatic, ligand, and
residues three modes, the intended binding site where the molecule
can fit can be excavated, and the potential interactions of the
molecule with protein can be created by the Sybyl-X 2.0 package
(Li et al., 2012).

In this study, molecular docking technology was used to explore
the possible interactions of new molecular inhibitors with SARS
CoVs Mpro at the binding site. Firstly, chemical structures were
imported into Sybyl-X software for calculation and optimization.
The “max interactions,” “initial optimization,” “max displacement,”
“min energy change,” “dielectric constant,” “non-bonded reset,” and
“H-bond radius scaling” was set as 1000, 0.01, 0.01, 0.05, 1.0, 10, 0.7,
respectively. Then molecules would be assigned Gasteiger-Hückel
charges and minimized by the Tripos force field when convergence
reached 0.05 kcal/mol/Å. The protein was imported into Sybyl-X
software for hydrogenation, charging and optimization. Then, the
unnecessary ligands and water molecules were removed. After that,
the molecular could bind with protein targets. Finally, the docking
results were imported into PyMol software for image optimization.
The Amino acid residues and hydrogen bonds were labeled by
Pymol software.

3 Results

3.1 Calculation results of HM

The CODESSA algorithm evaluated 460 descriptors for each
chemical in total. To construct the HM model in an organized
manner, the various category descriptors would be used as
variables. The multi-parameter t-test value for significance was
3.0. The HM model’s evaluation parameters R2, R2

CV, S
2 changed

when the number of selected variables varies. It is generally

TABLE 1 (Continued) Experimental and predicted IC50 of 40 unsymmetrical aromatic disulfides derivatives.

No. Compound Exp. (IC50) Pred. (IC50) Residue

39 2-((4-bromophenyl)disulfanyl)pyrimidine 0.697 1.237 −0.540

40 2-(p-tolyldisulfanyl)pyrimidine 1.522 1.303 0.219

aThe compounds of the testing set. Residue: Exp. (IC50)-Pred. (IC50).
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believed that the optimal model can be determined when R2
CV

values decline suddenly or R2 values increases less than 0.02
(Votano et al., 2004).

As shown in Figure 1, the best breaking point (R2
CV declined)

occurs when there are four to five variables. At the same time, it
also meets the standard that the number of parameters (k) and
the sample number (n) require: n ≥ 3 (k + 1). And the F test value
for the one-parameter correlation with the descriptor is 65.44. In
this way, the HMQSARmodel was established, due to the validity
ensured by R2, F and the stability ensured by R2cv. Finally, the 4-
variable model should be considered as the optimal linear stable
model taking into all the above shreds of evidence. The
parameters are WPSA-2 Weighted PPSA (PPSA2*TMSA/1000)
(WPSA), Max electroph react index for a C atom (MERIC),
Balaban index (BI), and Max coulombic interaction energy for
a C-N bond (MCIECNB), Table 2. The t-test value of each
parameter is greater than 3.0, which indicates the selected
parameters are statistically significant.

Table 3 provides the correlation coefficients between the four
variables examined by SPSS 20.0 to avoid any multi-collinearity of
different variable scales. The correlation coefficient is higher than
0.8, which shows the model is credible and stable. Hence, the HM
model can accurately estimate the IC50 of unsymmetrical aromatic
disulfides derivatives based on statistical data. The following is the
linear HM model equation:

IC50 � 12.825 + 0.0073046WPSA − 37.795MERIC − 3.8530BI

− 0.65506MCIECNB

R2cv is 0.82; F = 58.65, p < 0.001. The R2, S2 values for the
training set in this model are 0.87 and 0.29, values for the testing set
are 0.78 and 0.53, respectively. The scatter plot of experimental and
predicted IC50 by HM model is shown in Figure 2.

3.2 Design of new compounds

The structural factors influencing the IC50 values of these
compounds might be found by examining the model molecular
descriptors. Table 2 provides two different coefficients, the non-
standardized coefficient and the standardized coefficient. The non-
standardized coefficient is the slope of the regression equation,
indicating that each independent variable changes by one
amplitude and the dependent variable changes by the
corresponding amplitude. Since this coefficient is related to the
unit of the independent variable, it is generally not necessary to
measure the influence of the independent variable. The standardized
coefficient eliminates the influence of independent variable units,
and its size can measure the magnitude of the effect of each
independent variable on the dependent variable. The larger the
absolute value of the standardization coefficient, the greater its
impact on the dependent variable (Jonas et al., 2018). According
to the absolute values of the standardized coefficient, the
contribution of the descriptor to IC50 of the compounds is in the
order of WPSA > BI > MERIC > MCIECNB. By studying the
descriptors included in the HM model, it is possible to obtain some
factors related to IC50 activity.

WPSA belongs to electrostatic descriptors. Electrostatic
descriptors are used to reflect characteristics of the charge
distribution of the molecule. This descriptor is based on the
Sanderson electronegativity scale and uses the concept which
represents molecular electronegativity as a geometric mean of
atomic electronegativities. WPSA presents the whole surface area
of the molecule and functional group portions and encodes the
responsible features for polar interactions between atoms (Luan
et al., 2013). In the HM equation, WPSAmeans effect has the largest

FIGURE 1
The effects of different number of descriptors on the R2, R2

CV, S
2.

TABLE 2 The corresponding physicochemical meaning and statistical parameters.

Symbol Physical–chemical meaning Non-standardized coefficient Standardized coefficient t-test

WPSA WPSA-2 Weighted PPSA (PPSA2*TMSA/1000) 0.0073046 0.77426 12.039

MERIC Max electroph react index for a C atom 37.795 0.29331 −4.5675

BI Balaban index 3.8530 0.30594 −4.6424

MCEICNB Max coulombic interaction energy for a C-N bond 0.65506 0.25369 −3.8547

TABLE 3 Correlation coefficient of the descriptors in HM model.

WPSA MERIC BI MCIECNB

WPSA 1.000 0.180 0.238 0.004

MERIC 1.000 0.009 0.232

BI 1.000 0.273

MCIECNB 1.000
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positive sign in the model, which suggests that enviable decreased
IC50 can be achieved by decreasing the ramification of molecular
polar interactions.

BI is a very useful molecular topological descriptor with
attractive properties. It is an analytical and quantitative
method for analyzing the strength of the molecular structure,
which is used to measure the relative mechanical stability
between atoms or bond energies in substances (Thakur et al.,
2004). The size of BI represents the stability of the aromatic ring
of organic molecules. The larger it is, the greater the stability of
the aromatic ring of organic compounds. As its coefficient in the
HM model is negative, with the increasing value of the BI, the
IC50 value is gradually decreased.

MERIC provides the information about characteristics of the
different charge distributions of the C atoms in molecules. MERIC is
an electrostatic descriptor that is calculated by using the approach
proposed by Zefirov (Si et al., 2007). It can affect the charge of the
carbon atoms in the molecule. In this HM model, MERIC has a
negative regression coefficient with the IC50 values. It suggests that
the greater MERIC values, the suppressive ability of SARS CoVs
Mpro will be enhanced.

MCIECNB is a quantum chemical descriptor. These descriptors
characterize the total energy of the molecule in different energy

scales and the intramolecular energy distribution using different
partitioning schemes (Salman et al., 2006). Max coulombic
interaction energy for a C-N bond can reflect the stability of the
carbon and nitrogen ring in the unsymmetrical aromatic disulfides
derivatives. MCIECNB has a negative sign in the model. This sign
suggests that the bigger the coulombic interaction energy between C
and N atoms is, the weaker IC50, and higher the activity is.

In a conclusion, based on the HM model and interpretation of
molecular descriptors, some factors that influenced the inhibitory
activity have been found. In this way, the design of new compounds
is provided below:

Firstly, the reduction of the polar interactions between atoms of
molecules will be extremely favorable to the activity.

Secondly, improvement of the Balaban index of the aromatic
ring could enhance the activity.

Thirdly, changing the characteristics of the different charge
distributions of the C atoms may be beneficial to improve activity.

Fourthly, to enhance the coulombic interaction energy between
C and N atoms.

Based on these four factors, the ideal inhibitor structures may be
obtained by changing the structural composition of compound 31
(the most potent compound in the literature). The molecular
structure adjustments were concentrated in the R region, as

FIGURE 3
The design strategy mainly focused on the R region of
compound 31.

FIGURE 2
Plot of experimental and predicted IC50 by HM.

TABLE 4 Predicted IC50 by HM and analysis results of the property explorer applet of new designed compounds.

No. Pre.IC50 Toxicity LogP Solubility Mol weights TPSA Druglikeness Drug score

31 0.758 Good 2.81 −3.65 244 89.52 0.68 0.69

31a 0.139 Good 1.43 −2.31 251 113.3 0.47 0.75

31b 0.446 Good 2.73 −3.79 302 115.8 −3.46 0.42

31c 0.366 Good 2.81 −3.65 244 89.52 −0.11 0.61

31d 0.212 Good 3.42 −4.39 278 89.52 0.45 0.59

31e 0.449 Good 2.41 −3.55 246 89.52 −2.93 0.45
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shown in Figure 3. There are 6 C atoms in the benzene ring, which is
relatively beneficial for the improvement of the Balaban index and
the change distribution of different charges. Some Chemical
functional groups were introduced and randomly combined at
positions R1 to R5 to the reduce the polar interactions between
atoms, such as halogen elements, hydroxy, carboxyl, aldehyde group
and hydrocarbyl. Furthermore, different forms of C and N atoms
have also been involved.

After continuous targeted adjustments and combinations, a total
of 96 molecules were designed according to the HM model and
descriptors analysis. Then, the physical and chemical parameters of
newly designed molecules were calculated by CODESSA software.
Entering the physical and chemical parameters of new structures
into the HMmodel will be predicted the IC50 values. If the predicted
IC50 values are lower than compound 31, the corresponding
compounds will be taken into property explorer applet analysis
and molecular docking study. As a result, only five compounds’
predicted IC50 values were lower than 0.516 of compound 31 as
shown in Tables 4, 5.

3.3 Property prediction of new compounds

In the Property explorer applet, the prediction results are
presented digitally and color-coded. Toxicity assessment includes
mutagenic, tumorigenic, irritant, and reproductive effects. The
prediction process relies on a pre-computed set of the structural
fragment that gives rise to toxicity alerts in case they are encountered
in the structure currently drawn. The green signal indicates the
compounds are largely free of toxic effects. When there is a red
signal, it means the compounds most likely have a high risk of
toxicology effects. The logP value is the logarithm of its partition
coefficient between n-octanol and water, which is a well-established
measure of the compound’s hydrophilicity. It has been shown that
for compounds with a reasonable threshold of good absorption, the
logP value must be no greater than 5.0. The aqueous solubility of
compounds significantly affects their intestinal absorption and
cellular distribution characteristics. Usually, lower solubility is
accompanied by poor absorption, so the general goal is to get
higher solubility of compounds. TPSA is the total sum of all
topological polar regions of a molecule’s surface, which correlates
well with various bioavailability-related properties, such as blood-
brain barrier penetration (Ertl et al., 2000). If the contribution of

TABLE 5 Docking total score of new design compounds.

No. Compounds Total score

31 3.203

31a 4.564

31b 4.078

31c 3.271

31d 1.914

31e 1.837

FIGURE 4
Docking assay of compound 31a with SARS-CoVs Mpro related
target (PDB ID: 2AMD). In the images of residuesMet-49 and GLY-143,
carbon atoms are shown in green, oxygen atoms in red, nitrogen
atoms in blue, sulfur atoms in yellow, hydrogen atom in white.
The red dash lines show the bonding reaction between compound 31a
and residues.
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TPSA is greater, then the molecules’ likelihood to pass membranes
easily is significantly reduced. Molecular weights influence the
biological activity of compounds. Compounds with lower weights
are more likely to be absorbed and distributed. So, Thus, reducing
molecular weights as much as possible should be the desire of every
drug counterfeiter. Druglikeness is applied in new drug design to
evaluate how it ‘druglike’ an object that is regarding factors, such as
bioavailability (Smith, 2011). About 80% of the drugs have a positive
druglikeness value whereas the big majority of commercially
available chemicals account for the negative values. Thus, it is
important to keep newly designed compounds in the positive range.

The drug score is an eventual criterion used to synthetically
judge the compound’s overall potential to qualify for a drug. It is
calculated by the combining of the above property parameters. All
the drug scores about the newly designed compounds are listed in
Table 5.

3.4 Molecular docking of new compounds

In molecular docking experiments, the new compounds were
used as ligands for docking with the SARS-CoVs Mpro (pdb code
2AMD). As a result, compound 31a had the highest molecular
docking total score 4.564, which was a lot higher than compound 31.
Figure 4 shows a detailed binding mode with two hydrogen bond
interactions formed with residues.

From the docking conformation of compound 31a, the nitrogen
atom (located in the structure 1,3,4-oxadiazole) formed a hydrogen
bond with the residue GLY-143, this is the same binding mode as
that of compound 31 (Wang et al., 2017). And the nitrogen atom of
the newly designed structural component formed a hydrogen bond
with MET-49. It appears that compound 31a can form a strong
bonding reaction with SARS CoVs Mpro, and maybe a promising
candidate inhibitor for this protease.

4 Conclusion

In this study, the linear QSAR approaches HM was successfully
used to demonstrate the relationship between unsymmetrical
aromatic disulfides derivatives with SARS CoVs Mpro

experimentally, and it can be seen from the experimental results
that the descriptor WPSA has the greatest influence on compound
activity. Finally, 96 new derivatives were designed according to the
molecular descriptors and suggest some new compounds with
possible great activities. Based on the property explorer applet,

compound 31a passed the stringent criteria and got the highest
drug score. To further verify the biological activity, molecule
docking experiments were performed and indicating that
compound 31a also formed a strong bonding reaction with SARS
CoVs Mpro. In conclusion, these results could provide new
instructions for further exploration of the highly active inhibitors
for SARS CoVs.
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