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Peroxisome proliferator-activated receptors (PPARs) have been extensively
studied for over 3 decades and consist of three isotypes, including PPARα, γ,
and β/δ, that were originally considered key metabolic regulators controlling
energy homeostasis in the body. Cancer has become a leading cause of
human mortality worldwide, and the role of peroxisome proliferator-activated
receptors in cancer is increasingly being investigated, especially the deep
molecular mechanisms and effective cancer therapies. Peroxisome
proliferator-activated receptors are an important class of lipid sensors and are
involved in the regulation of multiple metabolic pathways and cell fate. They can
regulate cancer progression in different tissues by activating endogenous or
synthetic compounds. This review emphasizes the significance and knowledge
of peroxisome proliferator-activated receptors in the tumor microenvironment,
tumor cell metabolism, and anti-cancer treatment by summarizing recent
research on peroxisome proliferator-activated receptors. In general,
peroxisome proliferator-activated receptors either promote or suppress cancer
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in different types of tumor microenvironments. The emergence of this difference
depends on various factors, including peroxisome proliferator-activated receptor
type, cancer type, and tumor stage. Simultaneously, the effect of anti-cancer
therapy based on drug-targeted PPARs differs or even opposes among the
three peroxisome proliferator-activated receptor homotypes and different
cancer types. Therefore, the current status and challenges of the use of
peroxisome proliferator-activated receptors agonists and antagonists in cancer
treatment are further explored in this review.
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1 Introduction

Peroxisome proliferator-activated receptors (PPARs) were first
recognized as promoters of peroxisome proliferation more than
40 years ago. PPARs are ligand-induced transcription factors that
belong to the nuclear receptor superfamily involved in nutrient and
energy metabolism, regulating energy homeostasis throughout the
body during lipid and carbohydrate metabolism, cell growth, and
cancer development (Hong et al., 2019). In 1990, two researchers
from the Central Toxicology Laboratory discovered a steroid
hormone receptor in mice that is structurally similar to the
steroid hormone receptors that have been described previously,
but the two receptors are significantly different. The newly
discovered receptor can be activated by different molecules,
including fatty acids and fibrin, and mediates peroxisome
proliferation; it was subsequently named PPARα (NR1C1) and
found to be expressed in frogs, mice, rabbits, and humans
(Issemann and Green, 1990; Göttlicher et al., 1992; Sher et al.,
1993; Guan et al., 1997). Later, in 1992, two more members of the
PPARs family, PPARβ/δ (NR1C2) and PPARγ (NR1C3), were
discovered in humans and in the Xenopus frogs (Dreyer et al.,
1992; Schmidt et al., 1992). Since then, due to their role as major
regulators of metabolism and body energy homeostasis research on
PPARs has grown exponentially. After ligand binding, PPARs bind
to peroxisome proliferation reaction elements (PPREs) on DNA and
after heterodimerization with retinol X receptors, translocate to the
nucleus to regulate the transcription of target genes (Phua et al.,
2018; Tan et al., 2021).

All three types of PPARs share the basic structural
characteristics of nuclear receptors, including four functional
domains: A/B, C, D, and E/F. The A/B domain is an activated
functional domain responsible for PPAR phosphorylation. The C
domain consists of two zinc fingers and is responsible for PPARs
binding to the peroxisome proliferative response element (PPRE)
located in the promoter of the target gene. The D domain is the
docking site for various cofactors. Finally, the E/F domain is
involved in the recruitment of PPARs cofactors during
transcription. The E domain is also called the ligand-binding
domain, which enables PPARs to bind endogenous or exogenous
ligands (Werman et al., 1997; Kota et al., 2005; Heidari et al., 2019).
PPARs activated by different ligands participate in different
physiological responses, including metabolism and energy
homeostasis. The endogenous ligands of PPARs are mostly fatty
acids and their derivatives, which are produced by diet, de novo
synthesis of fatty acids, and lipolysis (Woller et al., 2016). The three

PPARs subtypes are highly homologous but encoded by different
genes, distributed in different tissues, and exhibit different
behavioral patterns in biological functions (Berger and Moller,
2002; Bensinger and Tontonoz, 2008; Schupp and Lazar, 2010).
PPARα is mainly expressed in the liver, brown adipose tissue, the
heart, kidney, and muscle tissue, is involved in β-oxidation and fatty
acid transport, and regulates lipid balance. PPARβ/δ is commonly
expressed in skeletal muscle, adipose tissue, the heart, and the
gastrointestinal tract and is involved in fatty acid metabolism.
PPARγ is expressed in adipose tissue and immune cells and is
mainly responsible for regulating adipocyte differentiation and
improving insulin resistance (Gross et al., 2017; Corrales et al.,
2018). Based on this, PPARs are used to treat different aspects of the
metabolic syndrome. Before PPARs were discovered, fibrin, a
PPARα agonist, was used as a lipid-lowering drug and remains
the mainstream treatment for atherosclerotic dyslipidemia and
atherosclerosis (Jellinger et al., 2017). The clinical effects of
PPARs are not limited to metabolic disorders. So far, PPAR
agonists have been tested in many human diseases, including
neurodegenerative, psychiatric, autoimmune, inflammatory and
malignant diseases, with varying degrees of success (Hong et al.,
2018; Cheng et al., 2019).

Previous studies have shown that PPARβ/δ activation is associated
with tumor progression, whereas PPARα and PPARγ activation is
associated with tumor suppression. The role of PPAR in cancer has
gradually become a research hot spot because such a generalization
seems inappropriate due to the complex regulatory signals of PPARs,
and their deep mechanism remains to be explored in detail (Cheng
et al., 2019). Most anti-cancer therapies target cancer cells and largely
ignore the tumor microenvironment (TME) component. The TME or
tumor stromal community, consists of non-malignant host cells and
non-cellular components. Over the past few decades, the role of TME in
cancer progression and therapeutic efficacy has become apparent, and
the function of PPARs in these stromal cells has received increasing
attention and affects cancer progression directly and indirectly. The
cellular environment of cancer cells is composed of homogeneous cell
clusters along with highly dynamic and heterogeneous communities of
distinct cell types, including fibroblasts, adipocytes, immune,
endothelial, inflammatory, and mesenchymal stem cells, which are
collectively termed tumor stromal cells (Balkwill et al., 2012). Cancer
development is a complex and dynamic process involving three stages:
initiation, progression, and metastasis, and the interaction between
tumor stromal cells and cancer cells is critical for each step of
tumorigenesis, during which cancer cells exhibit plasticity and
resistance to various stressors and physiological signals (Kadosh
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et al., 2020). At the same time, the metabolism and bioenergetics of
cancer cells are very different from those of normal epithelial cells, and
the high basal metabolic rate and abnormal neovascularization in the
TME provide cancer cells with greater capacity for self-consumption of
energy. The surrounding stromal cells may also play an essential role in
this process.

We reviewed the mechanism of action of three subtypes of
PPARs in cancer initiation and development, especially the TME
energy metabolism and tumor cell mutations, along with the current
progress and challenges of targeted PPARs in cancer treatment, to
clarify the molecular basis and development direction for early
cancer control.

2 The role of PPARs in TME

2.1 PPARs in tumor cells

In hepatocellular carcinoma, ectopic expression of PPARα in
cancer cells significantly inhibits cell proliferation and induces
apoptosis. Specifically, the antitumor function of PPARα is
mediated by NF-κB, as manifested by inhibition of NF-κB
promoter activity, decreased levels of p65, p50, and BCL2, and
increased levels of IκBα protein (Zhang et al., 2014). The deletion of
PPARα in the intestine increases the expression of DNMT1 and
PRMT6, which in turn reduce the expression of tumor suppressor
genes Cdkn1a (P27) and Cdkn3b (p2) through DNA methylation
and histone H1R21 methylation-mediated transcriptional
inhibition, respectively, to further promote colon carcinogenesis
(Luo et al., 2019).

In addition, most studies support the anti-cancer effects of
PPARγ; for instance, a 2019 study found that high expression of
PPARγ was associated with a good prognosis in patients with
colorectal cancer (Yaghoubizadeh et al., 2020). PPARγ inhibits
colorectal cancer by regulating cell differentiation and the
expression of cell cycle regulators (Chen et al., 2005; Drori et al.,
2005). In cervical and liver cancer, PPARγ upregulates the
expression of the tumor suppressor gene PTEN, suppresses the
PI3K signaling pathway, and reduces the self-renewal and
aggressiveness of cancer stem cells (Liu et al., 2013a; Bigoni-
Ordóñez et al., 2018). Regarding cancer cell proliferation,
multiple cyclins and cyclin-dependent kinases (CDKs) are
positive regulators of cell cycle progression, and activated PPARγ
promotes cyclin D1 ablation and induces cell arrest (Motomura
et al., 2000; Huang et al., 2005). Similarly, when PPARγ is activated
by ligand binding, it interacts with Sp1 to stimulate p21 gene
transcription and thereby induces the G0/G1 phase arrest in
human colorectal and gastric cancer cells (Liu et al., 2018). In
another in vivo study in a rat model of breast cancer, direct
upregulation of PTPRF gene expression by PPARγ had some
inhibitory effect on tumor cell proliferation (Xu et al., 2019).

Recently, the dual roles of PPARβ/δ in cancer have been fully
explored, most of which are cancer-promoting activities, especially
in colorectal cancer (Wagner and Wagner, 2020). First, the IL-6/
STAT3 pathway is a key signaling pathway in colitis-associated
colorectal cancer. In mouse models of colitis-associated colon
cancer, PPARβ/δ increased IL-6 expression and phosphorylation
of STAT3, promoting tumorigenesis, while the concomitant 15-

lipoxygenase-1 in colon epithelial cells inhibited these effects by
downregulating PPARβ/δ (Mao et al., 2015). In mouse models of
skin cancer, ultraviolet light exposure induced PPARβ/δ activity,
further stimulated Src expression, increased Src kinase activity,
enhanced the EGFR/Erk1/2 signaling pathway, increased EMT
markers expression, and increased tumor burden (Montagner
et al., 2014). In prostate cancer cells, PPARβ/δ, as a key target of
transforming growth factor β1 (TGF-β1), activates the cholesterol
transporters ABCA1 and cave protein-1 (Cav1), leading TGF-β1 to
induce tumor growth, migration, and invasion (Her et al., 2013).

We believe that the different environment of tumor cells may
cause differences in the function of the three PPAR subtypes on
cancer cells. Therefore, we will further analyze the mechanism of
PPARs in TME (Figure 1).

2.2 The role of PPARα in TME

Since tumor cells grow rapidly and require adequate nutrients and
oxygen supply, they enhance local blood perfusion by releasing
angiogenic factors that would otherwise lead to hypoxia and death,
a process significantly influenced by PPARα, which can inhibit
angiogenesis to varying degrees (Eales et al., 2016). It is important
to mention that functional tumor endothelial cells (TEC), which
evolved from endothelial cells lining the vascular system, contribute to
the progression of most cancers by supporting tumor metabolism,
secreting paracrine factors, and suppressing anti-tumor immune
responses (Yang et al., 2021). First, the synthetic PPARα agonists
fenofibrate and Wy-14643 have been shown to inhibit vascular
endothelial cell proliferation and tumor xenograft growth, whereas
mice with PPARα deficiency showed a notable (p < 0.05) increase in
neovascularization (Pozzi et al., 2007; Panigrahy et al., 2008).
Mechanistically, PPARα affects vascular endothelial growth factor
(VEGF) and fibroblast growth factor-mediated endothelial cell
proliferation and migration by increasing antiangiogenic factors
(thromboreagin-1 and endostatin) and decreasing pro-angiogenic
factors (VEGF-A and angiopoietin) (Arima et al., 2017). In
addition, NOX1 of the NADPH oxidase (NOX) family is a key
mediator of angiogenesis, and PPAR-α is also a downstream
regulator of NOX1-mediated angiogenesis, whose activity is
inhibited by the presence of NOX1, indicating that in NOX1-
deficient cells, the upregulated expression of PPAR-α blocks the
angiogenic signals required for endothelial cell migration,
germination, and angiogenesis (Garrido-Urbani et al., 2011).
Finally, in endothelial cells, PPARα reduced epoxyeicosatrienoic
acid production through inhibition of arachidonic acid
cyclooxygenase expression and also inhibited angiogenesis (Pozzi
et al., 2010).

Unlike its role in angiogenesis, PPARα′s effect on immune cells in
TME is often pessimistic, ultimately leading to immunosuppression or
even cancer immune escape. Tumor-infiltrating dendritic cells
(TIDCs) are essential for the regulation of anti-tumor immunity,
presentation of tumor-associated antigens to effector T cells, and
induction ofmemory T cells to limit tumor cell growth and recurrence
(Diamond et al., 2011). TIDCs that migrate to regional lymph nodes
initiate antitumor T cell responses, where they are able to cross
antigens from phagocytes to naive CD8+T lymphocytes
(Hargadon, 2020). Tumor-derived exosomes carrying fatty acids
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significantly activate PPARα in TIDCs, resulting in increased
intracellular lipid content and mitochondrial respiration, driving
immune dysfunction and cytotoxic T-cell activation. In addition,
colon cancer grew more slowly in PPARα knockout mice than in
wild-type mice, and TIDCs from PPARα knockout mice showed
stronger anti-tumor effects than wild-type mice, suggesting that the
PPARα signaling pathway is crucial in the immune function of
TIDCs, and is involved in DC cell dysfunction caused by TME
(Yin et al., 2020). Similarly, in the biological functions of T cells,
the expression of PPARα is downregulated after T cell activation, and
the activated PPARα can antagonize the F-κB signaling pathway and
cytokine production in lymphocytes, indicating that PPARα is an
endogenous inhibitor of T cell activation (Jones et al., 2002). IFN-γ
levels produced by T cells were higher in PPARα knockout mice than
in wild-type mice. The androgens in human T cells increased PPARα
expression, resulting in decreased IFN-α and increased IL-17
production in male CD4+ T cells (Dreyer et al., 1992; Zhang et al.,
2012). Compared to T cells, the role of PPARα in B cells has not been
well studied. It has been reported that lipid metabolite of leukotriene
B4 produced by breast cancer cells acts as an endogenous PPARα
agonist and induces immunosuppressive regulation of B cells (tBregs),
thereby promoting distant metastasis of cancer cells. Inhibition of

PPARα in B cells can block the production of tBregs, suggesting that
targeting PPARα may be beneficial in the regulation of tBregs-
mediated cancer escape (Wejksza et al., 2013). PPARα has a
similar cancer-promoting effect in cancer stem cells. Cancer stem
cells (CSCs) are the most self-renewing subpopulation in the TME,
and their activity is positively correlated with malignant tumor
progression; the higher the number of CSCs, the greater the
potential for tumor development. By activating the stearoyl-CoA
desaturase 1 pathway, the activated PPARα was significantly
upregulated for the maintenance of CSC stemness in human liver
cancer (Ma et al., 2019). 4-Phenylbutyric acid (4-PBA) is a low
molecular weight fatty acid that does not induce long-term liver
tumors by itself. However, 4-PBA can promote the occurrence of
hepatocellular carcinoma by activating the β-catenin signaling
pathway to regulate PPAR-α for the initiation of liver cancer stem
cells (Chen et al., 2021a).

2.3 Role of PPARγ in TME

In addition to being important components of the TME, stromal
cells such as tumor-associated fibroblasts (CAFs) and tumor-

FIGURE 1
The role of three PPAR subtypes in TME. The three PPARs in TME both promote and inhibit cancer. PPARα inhibits cancer by inhibiting angiogenesis
and promotes cancer through escape from immunity and growth of the carcinoma. PPARγ inhibits cancer by inhibiting f proliferation, metastasis and
angiogenesis, and promote cancer by promoting tumor growth and metastasis. PPARβ/δ inhibits cancer by inhibiting metastasis and promotes cancer
through promotion of metastasis and angiogenesis. The orange arrows and boxes indicate inhibition of cancer, and the gray arrows and boxes
indicate promotion of cancer. The detailed mechanisms of action are indicated by blue arrows, including up- and downregulation of cellular activities in
which certain cytokines or PPARs are involved.
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associated adipocytes (CAAs) provide tumor cells with essential
nutrients, including glutamine, L-lactic acid, fatty acids, and ketone
bodies. As an important component of tumor stromal cells, CAFs
affect the activation of immune cells in TME and the deposition of
extracellular matrix (ECM), and its activation is often a key feature
of malignant tumors (Chen et al., 2021b; Zheng et al., 2023). These
catabolic capacities are mostly secondary to ROS-induced stress
responses, mechanistically mediated by HIF1-α and NF-κB
signaling. Among them, PPARγ regulates several metabolic
remodeling processes in CAFs. With the activation of NFκB and
the significant upregulation of COX-2 expression, PPARγ
expression was significantly upregulated in CAFs of cutaneous
squamous cell carcinoma and colorectal adenocarcinoma
(Vandoros et al., 2006; Chan et al., 2018). Increased glycolysis
and L-lactic acid secretion in CAFs overexpressing PPARγ was
also observed, while the growth rate of MDAMD-231 breast cancer
cells was significantly accelerated by the implantation of such CAFs
(Avena et al., 2013). In addition, under hypoxic conditions, PPAR γ-
dependent hypoxia-inducible factor 1α (HIF-1α) exacerbated the
autophagic phenotype of tumor stromal cells, and the HIF1α-
PPARγ-UCP2-AMPK pathway significantly affected the
mitochondrial biological function of CAFs, resulting in the
metabolic reprogramming of CAFs and exacerbating breast
cancer growth (Boutoual et al., 2018; Wang et al., 2019).
Therefore, PPAR γ turned CAFs into an energy-exporting
machine to support tumor growth.

In addition to CAFs, mesenchymal stem cells can differentiate
into adipose precursor cells, which further differentiate into CAA
after stimulation by PPARγ, which is called adipogenic
differentiation. Normal fat cells are mainly considered energy
reservoirs to store surplus fuel, and new evidence suggests that
they are also important endocrine cells, capable of producing a
variety of hormones and chemokines that influence tumor behavior
(Wolins et al., 2006; Deng and Scherer, 2010). In pancreatic cancer,
cancer cells initiate de-differentiation of adjacent CAAs while the
number of CAFs increases, accompanied by the loss of fat cell
markers such as leptin, HSL, and PPARγ, and the increase of
fibroblast markers such as matrix metalloproteinase (MMP)
11 and α-SMA, which further drives the progression of
pancreatic tumors (Zoico et al., 2016; Cai et al., 2019). In a
mouse model of lip sarcoma, the activation of Notch signaling
weakened PPARγ ligand activity, which induced dedifferentiation
of CAAs and aggravated tumor-like manifestations, while PPARγ
agonists effectively promoted adipocyte redifferentiation and
delayed tumor progression (Bi et al., 2016). Similarly, in breast
cancer, the deletion of specific PPARγ in CAA downregulates
BRCA1 expression and accelerates tumor formation and
progression (Skelhorne-Gross et al., 2012). In breast cancer cells
in vitro and in vivo, the activation of PPARγ induces cancer cells to
differentiate into fat cells and induces apoptosis of fat cells through
the upregulation of transcription factor C/Ebpβ, thereby inhibiting
breast cancer cell growth (Li et al., 2015).

Like PPARα, PPARγ exhibits antiangiogenic effects. Previous
studies have shown that ligand-activated PPARγ can inhibit human
umbilical vein endothelial cell (HUVEC) tube formation and VEGF-
induced choroidal neovascularization in vitro and in vivo, and the
ligand 15d-PGJ2 of PPARγ has been shown to directly induce
endothelial apoptosis (Bishop-Bailey and Hla, 1999; Xin et al., 1999).

However, contrary to the CAFs-dependent pro-tumor
properties, PPARγ reduces hepatoma cell metastasis by inhibiting
the transcriptional activity of MMPs and smad family member 3
(SMAD3), thereby reducing hepatoma cell metastasis (Reka et al.,
2010; Shen et al., 2012). Activation of PPAR-γ inhibits transforming
growth factor β (TGF-β)-induced EMT in lung cancer cells and
prevents metastasis by antagonizing SMAD3 function (Reka et al.,
2010). Plasminogen activator inhibitor-1 (PAI-1), a member of the
serine protease inhibitor family of serpins, inactivates urokinase-
type plasminogen activators and inhibits extracellular matrix
degradation. There is increasing evidence that PAI-1 is involved
in cell migration, tumor invasion, and metastasis. In hepatocellular
carcinoma, β-estradiol (E2) activates PPARγ in cancer cells, and
activated PPARγ inhibits cell invasion by upregulating the
expression of PAI-1 (Pang et al., 2013). By inhibiting NF-κB,
activated PPARγ significantly reduced the expression of pro-
inflammatory, pro-angiogenic, and pro-transfer signaling
molecules in the TME, including IL-6, IL-8, CXCR4, MMP2, and
MMP9, which further inhibited the activity of tumor cells in breast
cancer (Papi et al., 2014; Rovito et al., 2016). But at the same time,
TAM, as one of the most abundant immune cell groups in TME,
may contribute to carcinogenesis by mediating neovascularization,
immunosuppression and chemical resistance (Wang et al., 2021).
Activation of PPARγ in macrophages leads to lipid retention and
PGE2 secretion, favoring their polarization toward anti-
inflammatory tumor-associated macrophages (TAM), reducing
M1 macrophage biomarkers, and tilting towards the
M2 phenotype, thereby altering macrophage fate and reducing
the Stat3-mediated pro-inflammatory response (Penas et al.,
2015; Souza-Moreira et al., 2019; Gionfriddo et al., 2020;
Christofides et al., 2021). The decrease of such proinflammatory
macrophages reduces the host’s defenses against microorganisms
and weakens anti-tumor immunity (Strack et al., 2020). However, in
melanoma, activation of PPARγ enhances the expression of surface
integrins, specifically integrin β-3 and integrin α-5, increasing the
capacity for distant metastasis and implantation of cancer cells, a
process also associated with the inhibition of thioredoxin-
interacting protein (Meylan et al., 2021). Therefore, the role of
PPARγ on TME may be diverse, and further research is needed to
explore its deeper mechanism.

2.4 Role of PPARβ/δ in TME

Unlike normal fibroblasts, CAFs are paracrine to tumor cells and
disrupt the extracellular matrix, often exacerbating cancer spread.
However, CAFs-selective PPARβ/δ deficient skin cancer mice
showed some remission of metastasis. Similar results were later
observed in mouse models of colon cancer (Yoshida et al., 2019; Tan
et al., 2020). Mechanistically, the PPARβ/δ knockout CAFs
significantly increased the production of reactive oxygen species
(ROS) in the neighboring cells, and subsequently activated the RAF/
MEK-mediated NRF2, which induced a strong cytoprotective
response. Subsequently, the activated NRF2 reduced the
phosphorylation of many oncogenes and upregulated the
expression of the tumor suppressor gene PTEN. At the same
time, it reduced the oncogenic activity of Src and Akt, thereby
delaying the tumor process (Tan et al., 2018). In melanoma cell lines
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with high metastatic potential, activation of PPARβ/δ causes
upregulation of Snail and increased sensitivity to signaling
stimuli for migration and invasion, where Snail acts as a
transcription factor to inhibit E-cadherin transcription in
epithelial cells, a phenomenon that can be reversed by inhibition
of PPARβ/δ (Ham et al., 2014). In colon tumor tissues, the
overexpression of PPARβ/δ intensified the activation of the
adhesion protein β-catenin and several factors involved in cancer
cell invasion, such as connexin 43, platelet-derived growth factor
receptor β (PDGFRβ), Akt1, EIF4G1, and CDK1, all of which
promote colorectal cancer progression (Liu et al., 2019a).
Similarly, PPARβ/δ also regulates novel metastasis genes such as
GJA1, VIM, SPARC, STC1, and SNCG, accelerating the
aggressiveness of colon cancer cells (Zuo et al., 2017).

In contrast, the synthetic ligand GW501516 decreased
migration and invasion capacity in breast cancer cell lines
in vitro following activation of PPARβ/δ. Its mechanism is
thought to be regulated by platelet-reactive protein-1 (TSP-1)
and its degrading proteases, and activated PPARδ significantly
inhibited breast cancer cell migration and TSP-1 expression
(Ham et al., 2017). Similarly, after GW501516 activated
PPARβ/δ, the expression of MMP9 was downregulated, and
the invasion ability of pancreatic cancer cells in vitro
decreased (Coleman et al., 2013).

Contrary to the inhibition of neovascularization by PPARα and
PPARγ, PPARβ/δ is a nuclear receptor that promotes angiogenesis.
As discovered in 2006, PPARβ/δ accelerates endothelial cell
proliferation and enhances tumor cell feeding and metastasis by
increasing VEGF, PDGFR, and c-KI biosynthesis (Piqueras et al.,
2007; Wagner et al., 2019). Furthermore, the expression of other
potential angiogenic mediators including cyclin-dependent kinase
inhibitor 1C, IL-8, intracellular chloride channel protein 4, and
cellular retinol-binding protein 1 are also affected by PPARβ/δ
(Adamkiewicz et al., 2007; Müller-Brüsselbach et al., 2007;
Meissner et al., 2010). Leucine-2 glycoprotein 1 (LRG1) is a
unique protein produced by tumor tissue, and its inhibition has
been shown to normalize blood vessels in tumors (O’Connor et al.,
2021). Transforming growth factor β (TGF-β) is a multifunctional
cytokine of the transforming growth factor superfamily, that
upregulates tumor suppressor genes, induces differentiation, and
improves cellular antioxidant properties (Meng et al., 2016).
PPARβ/δ upregulates LRG1 expression in CAFs while
attenuating the response of epithelial cells to TGF-β (Sng et al.,
2018). In patients with colorectal and pancreatic cancer, LRG1 levels
tends to be positively correlated with more advanced cancer stages
and worse prognosis, and the PPARβ/δ agonist, GW501516,
significantly increases LRG1 expression, strongly indicating that
LRG1 is a direct target of PPARβ/δ (Zhou et al., 2017; Liu et al.,
2019b; Xie et al., 2019). Compared with normal lung tissue, the
expression of PPARβ/δ, Cox-2, c-PLA, PGES, and VEGF was
increased in human non-small cell lung cancer, and tumor
progression was associated with upregulation of PPARβ/δ,
increased VEGF levels, and activation of the PI3K/Akt pathway.
Specifically, VEGF induction is due to PPARβ/δ binding to the
VEGF promoter, and PI3K/Akt pathway activation is due to
PPARβ/δ interaction with the PI3K regulatory subunit p85α,
resulting in PI3K activation and Akt phosphorylation (Genini
et al., 2012).

PPARβ/δ plays a unique role in combating endothelial
apoptosis. As early as 2001, prostacyclin was found to induce
apoptosis by activating PPARβ/δ in HEK293 cell lines, while
endothelial cells in the cytoplasm expressing prostacyclin
receptors are not affected by apoptosis. From this, prostacyclin-
mediated activation of PPARβ/δ is seen to promote vascular
endothelial apoptosis in cells lacking prostacyclin receptors
(Hatae et al., 2001). A subsequent study further demonstrated
that PPARβ/δ exerts anti-apoptotic effects and promotes
angiogenesis by activating endothelial cell 14-3-3ε protein
(Brunelli et al., 2007). Prostacyclin 165,041 and carbonaceous
prostacyclin (cPGL2) have a protective effect on H2O2-induced
apoptosis, and both substances can increase the expression of
PPARβ/δ (Liou et al., 2006). There is also evidence that the axis
of the COX-2/PPARβ/δ signaling pathway may be important in the
development of colorectal cancer by promoting angiogenesis
(Yoshinaga et al., 2009). A recent study of the downstream
activation targets of PPARβ/δ in angiogenesis demonstrated that
blood vessel density increased and tumor growth and metastasis
were enhanced in animals with vascular-specific overexpression of
PPARβ/δ. Further RNA sequencing was carried out to identify the
downstream targets of PPARβ/δ as PDGFRβ), platelet-derived
growth factor subunit B (PDGFb), and tyrosinase KIT (c-Kit)
(Wagner et al., 2019).

In conclusion, the three types of PPARs play vital roles in cancer
tissues, affecting the synthesis of neovascularization, the activity of
cancer-like stem cells, the secretion of stromal cells, and the anti-
tumor immune process. In such a complex regulatory network, it is
impossible to conclude that a certain type of PPAR can inhibit or
promote a certain type of cancer; rather, they often form a mutual
regulatory cycle.

3 PPARs in the energy metabolism of
cancer cells

PPARs play a key role in regulating multiple metabolic pathways
such as glucose homeostasis, lipoprotein metabolism, fat
production, and fatty acid uptake, and the dysregulation of these
metabolic processes can lead to the onset of certain metabolic
diseases, such as diabetes, nonalcoholic fatty liver disease, and
atherosclerosis. In a fasting state, PPARα accelerates the
formation of fatty acids by lipolysis in hepatic adipose tissue by
regulating the expression of apolipoprotein, increases the level of
plasma high-density lipoprotein cholesterol, and decreases the level
of low-density lipoprotein cholesterol (Berthou et al., 1996;
Schoonjans et al., 1996; Vu-Dac et al., 2003). PPARγ decreased
the content of free fatty acids in all organs except adipose tissue and
circulating blood, thereby increasing the triglyceride storage
capacity of adipose tissue (Gross et al., 2017). In contrast, the
effects of PPARβ/δ on different nutrient supply states were not
significantly different. PPARβ/δ can promote the catabolism of fatty
acids in skeletal muscle and inhibit lipogenesis in adipose tissue
(Derosa et al., 2018). PPARα antagonizes the role of insulin in
glucose homeostasis, promotes glycolysis and new fatty acid
synthesis, and reduces gluconeogenesis, whereas PPARγ plays
opposite roles in glucose homeostasis, including increased insulin
sensitization in skeletal muscle, improved glucose-stimulated insulin
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secretion in pancreatic beta cells, and increased gluconeogenesis in
the liver, and PPARβ/δ is important in promoting glycolysis,
glycogen storage, and reducing gluconeogenesis (Finck et al.,
2005; Lee et al., 2006; Ahmadian et al., 2013).

Metabolic reprogramming is essential for cancer cells to adapt to
changing environments as tumors develop the features of aggressive
cancers. In TME, tumor cells exhibit more active metabolic
behavior, making their growth possible in this harsh
environment. Among these features, increasing glucose uptake
and glycolysis, called the Warburg effect, is the first well-known
adaptive metabolic event, providing the most direct source of energy
for cancer cells, which is essentially glycolysis in the oxygen
microenvironment; enhanced glutamine depletion and dissolution
provide carbon and amino nitrogen; abnormal lipid metabolism
compensates cancer cells for glucose-based energy and biofilm
components and regulates proliferation, survival, and metastasis
(Altman et al., 2016; Hay, 2016; Luo et al., 2017). While metabolic
disorders of cancer cells may directly affect cancer progression, there
is early evidence that the activation of PPARs affects tumor
metabolism by interfering with the Warburg effect, and the
mechanism of action of three PPARs subtypes in cancer cell
metabolism will be explored (Grabacka et al., 2013; Han et al.,
2017a; Han et al., 2017b) (Figure 2).

3.1 PPARα

Activation of PPARα regulates gene expression of specific
proteins involved in mitochondrial and peroxisomal function,
which dominate the β-oxidation of fatty acids, glucose
metabolism, and fatty acid transport (Feige et al., 2006;
Rakhshandehroo et al., 2010). The genes regulated by PPARα can
determine their cancer-promoting or cancer-suppressing effects due
to their relationship with tumor metabolism; for example, inhibitory
and promoting effects have been reported in melanoma and breast
cancer, respectively (Suchanek et al., 2002; Grabacka et al., 2006).

In terms of cancer promotion, CSCs, as the starting cell
population of tumor tissue, exhibit similar self-renewal and
differentiation characteristics to normal stem cells and significant
upregulation of PPARα, and are important in energy metabolism
(Fidoamore et al., 2016). Glioblastoma stem cells are metabolically
reprogrammed under hypoxic conditions by upregulating glucose
transporters, glucose uptake, and glycogen and lipid storage, in a
process that results from the activation of PPARα by hypoxia-
inducible factor-1 (HIF-1). The use of GW6471 to antagonize
PPARα activity was found to improve glucose and lipid tumor
metabolism, thereby reducing glioblastoma proliferation
(Fidoamore et al., 2017). In another study, two renal cell cancer
cell lines (Caki-1 and 786-O cell lines) were cultured using GW6471,
and higher levels of PPARα were observed in high-grade cancer cells
than in low-grade cancer cells, requiring high levels of fatty acid
oxidation due to their need for more energy, which is regulated
upstream by PPARα signaling (Perroud et al., 2009). Furthermore,
blocking PPARα in renal cell cancer cell lines under the synergistic
effect of glycolytic inhibition significantly reduced the levels of the
cell cycle-related proteins cyclin D1 and CDK4, and blocked the cell
cycle in the G0/G1 phase, thereby reducing cell viability (Shah et al.,
2007; Wang et al., 2011). Fatty acid synthase (FAS) is significantly

upregulated in urinary tumors, the metabolic intermediate in the
process of fatty acid synthesis is the endogenous ligand of PPARα.
Activated PPARα further regulates glucose, lipid, and cholesterol
metabolism of tumor cells, and inhibition of FAS in mice can lead to
PPARα dysfunction. In addition, PPARα induces fatty acid synthesis
by upregulating FAS, and increased FAS expression may indicate
tumor aggressiveness and poor prognosis in renal cell carcinoma
(Chakravarthy et al., 2005; Chakravarthy et al., 2007; Horiguchi
et al., 2008). Elevated expression of genes involved in fatty acid
oxidation and glucose metabolism have also been observed in
human hepatocellular carcinoma tissues, including PPARα,
carnitine palmitoyl transferase 1A (CPT1A, an FAO rate-limiting
enzyme), glyceraldehyde 3-phosphate dehydrogenase (G3PDH),
and cyclin D1 (Kurokawa et al., 2011). Similar to CPT1A,
carnitine palmitoyl transferase 1C (CPT1C), an enzyme located
in the outer mitochondrial membrane, is involved in fatty acid
transport and oxidation and in cell proliferation, a potential driver of
cancer cell senescence. The study confirmed that CPT1C is a novel
target gene of PPARα, and that knockout of PPARα leads to a
decrease in CPT1C expression, which inhibits the proliferation of
MDA-MB-1 and PANC-1 tumor cell lines in a CPT1C-dependent
manner (Chen et al., 2017a). Mitochondrial 3-hydroxy-3-
methylglutaryl-CoA synthase (HMGCS2) is a rate-limiting
enzyme for ketogenesis that catalyzes the first enzymatic reaction
in the ketogenic process, and HMGCS2 expression is associated with
clinical prognosis and poor prognosis in patients with colorectal
cancer and oral squamous cell carcinoma. Studies have
demonstrated that PPARα and HMGCS2 directly interact,
resulting in the activation of the proto-oncogene Src and
promoting the growth and invasion of malignant tumors (Saraon
et al., 2013; Chen et al., 2017b). PPARα signaling also improves lipid
turnover, which is the rate at which lipids are removed and stored in
fat cells, and maintains the high energy requirements of tumor cells
to ensure the stemness and self-renewal ability of pancreatic and
colorectal cancer stem cells (Kuramoto et al., 2021). Given the
interaction between PPAR-α and hormone metabolism, the
researchers found that activated PPAR-α increased the expression
and activity of CYP1B1 (a subtype of cytochrome P450), further
influencing the occurrence and progression of hormone-dependent
tumors including breast cancer through the biotransformation of
endogenous estrogens and environmental carcinogens (Hwang
et al., 2019).

In terms of cancer suppression, studies have demonstrated that,
on the one hand, PPARα limits the process of mitochondrial
oxidative phosphorylation (OXPHOS), and non-tumor cells are
not affected by it; on the other hand, PPARα increases the
production of ROS, leading to the accumulation of mitochondrial
oxidative stress in melanoma cells. At the same time, the activation
of PPARα also promotes the amp-activated protein kinase (AMPK)
signaling pathway, which increases the oxidation of fatty acids, while
effectively inhibiting the glycolysis of tumor cells, further reducing
the production of ATP and resisting the occurrence of oral cancer
(Chang andHuang, 2019; Grabacka et al., 2020). In addition, PPARα
in HCT-1, SW1, HeLa, and MCF-116 cancer cell lines reduced levels
of the Glut480 (glucose transporter 7) protein. In contrast, silent
PPARα reversed this phenomenon. On further analysis, PPARα
directly targeted the consensus PPRE motif in the Glut1 promoter
region, inhibiting Glut1 transcription, which in turn led to a
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decrease in glucose inflow in cancer cells (You et al., 2017). The
lipid-lowering drug fenofibrate as a PPARα agonist induces
metabolic reprogramming in oral cancer, changing the protein
expression of hexokinase II (HK II), pyruvate kinase, pyruvate
dehydrogenase, and voltage-dependent anion channel, thus
delaying tumor development (Jan et al., 2016). In addition,
fenofibrate exhibits antitumor activity in vitro and in vivo
through mitochondrial and metabolic reprogramming, altering
glucose and lipid metabolism, inhibiting the proliferation of
gastric cancer cells, and promoting apoptosis of gastric cancer
cells, indicating mitochondrial regulation and normalization of
cancer cell metabolism as new therapeutic strategies for cancer
(Chen et al., 2020).

3.2 PPARγ

Similarly, although PPARγ has been extensively studied in the
metabolic regulation of tumor cells, due to its complex regulatory

network does not allow conclusions to be reduced to simple cancer
promotion or suppression. A study in 2009 reported that breast
cancer cells positive for ERBB2 (an epidermal growth factor
receptor, a marker of poor prognosis) produce large amounts of
fat due to the activation of PPARγ, a key pathway for these cells to
produce energy and survive. Activated PPARγ enables ERBB2-
positive breast cancer cells that produce high levels of fat to
convert fatty acids into triglycerides, allowing these cells to avoid
cell death caused by lipotoxicity (Kourtidis et al., 2009). After
PPARγ was identified as a mature positive regulator of
adipogenesis and lipid storage in 2013, inhibition of PPARγ was
reported to reduce aldehyde dehydrogenase (ALDH) activity in
ERBB2-positive breast cancer cells. The results of an in vitro
tumor spheroidization assay showed that the PPARγ antagonists
GW9662 and T0070907 reduced tumor spheroids formation in
ERBB2-positive cells (Wang et al., 2013). A 2014 study showed
that activated PPARγ inhibited lung cancer cell proliferation by
metabolic changes. Treatment with PPARγ agonist pioglitazone
triggers metabolic switches that inhibit pyruvate oxidation and

FIGURE 2
The role of three PPAR subtypes in tumor cell metabolism. All three PPAR subtypes are extensively involved in the special energy metabolism of
tumor cells. Compared with the other two PPARs, PPPARβ/δ showed a strong tumor-promoting effect. PPARα inhibits tumors through decreasing
glucose influx, oxidative stress in mitochondria, inhibition of glycolysis, and limitation of OXPHOS, and promotes tumors through promotion of
ketogenesis, increase in fatty acid transport, and increase in fatty acid synthesis. PPARγ inhibits tumors through the arrest of the cancer cell cycle and
promotes tumors through the increase in fatty acid synthesis, escape from death, increase in mitochondrial output, and formation of tumor spheres.
PPARβ/δ promotes tumors through promotion of glycolysis, protecting cancer cells from the harsh environment, promotion of glucose transport,
promotion of proliferation, and promotion of chemoresistance. The orange arrows and boxes indicate inhibition of cancer, and the gray arrows and boxes
indicate promotion of cancer. The blue arrows indicate effector factors involved in regulating metabolism.
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reduce glutathione levels, and these metabolic changes lead to a
significant increase in ROS levels and cell cycle arrest (Srivastava
et al., 2014). This was followed in 2015 by the discovery of a link
between the induction of PPARγ activity and concomitant
autophagy cell death in chronic myeloid leukemia cell lines
(K562 and KCL-22). The anticancer fatty acid derivative AIC-47
binds and activates PPARγ, indirectly reduces the expression level of
oncogene c-Myc, and leads to β-catenin inactivation and increase of
the PKM1/PKM2 ratio. Metabolism shifts from glycolysis to the
tricarboxylic acid cycle, and at the same time, ROS levels increase,
inducing autophagy in cancer cells (Shinohara et al., 2015). The
following year, a study based on Sleeping Beauty confirmed that the
insertion of mutations in the PPARγ gene made mice more tumor-
aggressive. PPARγ overexpression determines the upregulation of
enzymes involved in de novo fatty acid synthesis, and in contrast,
this effect is masked by PPARγ knockout (Ahmad et al., 2016).
Similarly, in prostate cancer, overexpression of PPARγ promotes
Akt3 activity, inhibits nuclear output protein CRM1, and enhances
nuclear retention of PPARγ coactivator 1α (PGC1α). This activity
increases mitochondrial ATP output in cancer cells to meet the high
energy demands of EMT and cancer cell metastasis (Galbraith et al.,
2021).

In our cancer suppression review, we reported that PPARγ
stimulates adipogenesis in colorectal and breast cancer cells,
disrupting the YAP-Hippo signaling pathway, thereby forcing
terminal differentiation and inhibiting the proliferation of cancer
cells (Sarraf et al., 1998; Basu-Roy et al., 2016). Ornithine
decarboxylase 1 (ODC1) is a metabolic enzyme key involved
in polyamine biosynthesis, typically upregulated in
hepatocellular carcinoma. After siRNA silenced ODC1, the
downregulation of ODC1 led to the upregulation of Krüppel-
like factor 2 (KLF2), which in turn led to a decrease in PPARγ
levels, inhibition of the expression of important regulators
affecting glucose transport and lipid biogenesis in cancer cells,
and a significant reduction in lipid droplet accumulation
(Banerjee et al., 2003; Choi et al., 2016).

In addition, we found that several typical epithelial cancers share
a common feature: disruption of the Wnt/β-catenin pathway, which
often leads to the upregulation of enzymes associated with aerobic
glycolysis. In many tissues, PPARγ activation induces inhibition of
the β-catenin pathway, and activation of the typical Wnt/β-catenin
pathway inactivates PPARγ. The development of most cancers is
often accompanied by downregulation of PPARγ and upregulation
of Wnt/β-catenin pathway (Lecarpentier et al., 2017). Specifically,
ligand-activated Wnt ligands trigger nuclear translocations of β-
catenin and bind to target genes, including pyruvate dehydrogenase
kinase (PDK), monocarboxylic lactate transporter-1 (MCT-1),
c-Myc, and COX-2, while downregulation of PPARγ is associated
with upregulation of Wnt/β-catenin. PDK1 acts as phosphorylating
pyruvate dehydrogenase, which is converted to lactate by activating
lactate dehydrogenase. Simultansously, MCT-1 is involved in the
secretion of extra cytoplasmic lactic acid. Therefore, PPARγ inhibits
PDK1 and MCT-1 gene transcription, resulting in ineffective
activation of the Wnt/β-catenin pathway (Abbot et al., 2005;
Lecarpentier et al., 2014). Activated PPARγ promotes cell cycle
arrest, cell differentiation, and apoptosis, while downregulation of
the Wnt/β-catenin pathway reduces the release of inflammatory
factors (TNF-α, TGF-β, IL-6, and IL-8) and oxidative stress. This

pathway inhibits hepatocellular carcinoma metastasis (Vallée and
Lecarpentier, 2018; Zuo et al., 2021).

3.3 PPARβ/δ

Compared with that of the other two PPARs, the cancer-
promoting effect of PPARβ/δ is more widely recognized. Early
studies have shown that PPARβ/δ is a transcription factor
associated with metabolic gene regulation and inflammation,
which is related to tumor promotion and PDK1 regulation, as a
key regulator of the AGC protein kinase family, which includes
proto-oncogenes such as Akt and PKB associated with several
malignancies, including breast cancer. The PI3K/Akt pathway is
known to phosphorylate and activate ATP citrate lyase, the target
gene Pdk4 of PPARβ/δ slows the flow of pyruvate to oxidative
phosphorylation, and Acss2 (a member of the acyl-CoA synthase
short-chain family 2) promotes the conversion of lactate to pyruvate.
These three proteins work synergistically to increase the content of
acetyl-CoA to promote glycolysis and fatty acid synthesis, while the
PPARβ/δ agonist GW501516 improves their prometabolic efficiency
and increases cancer cell aggressiveness in cancer model mice (Di-
Poï et al., 2002; Pearce et al., 2010; Pollock et al., 2011).

To explore the mechanism whereby PPARβ/δ expression in
patients with breast cancer is inversely correlated with survival,
human breast cancer cells were cultured under conditions of low
glucose and other endoplasmic reticulum stress (such as hypoxia),
and cells overexpressing PPARβ/δ had the better potential for
multiplication. Conversely, cells that knocked down PPARβ/δ
expression had a proliferation rate comparable to that of the
control group, and this was associated with elevated levels of
catalase and Akt protein. In summary, PPARβ/δ regulates the
viability of breast cancer cells in harsh environments by reducing
oxidative stress and enhancing metabolic efficiency (Wang et al.,
2016). A similar phenomenon has been found in chronic
lymphocytic leukemia (CLL) cells: glucocorticoids or synthetic
PPARβ/δ agonists are upregulated in depleted tissue culture
media (low glucose levels, hypoxia, and exposure to cytotoxic
drugs), protecting CLL cells from metabolic stressors (Li et al.,
2017). Follow-up studies demonstrated that lipid-activated PPARβ/
δ in CLL induces high cholesterol and plasma membrane levels and
enhances interferon-dependent STAT phosphorylation (Sun et al.,
2018). To further investigate the effect of PPARβ/δ on the survival of
cancer cells in harsh environments, Jeong et al. found that the
expression of hypoxia-induced tumor-promoting cytokines IL-2
and VEGF was significantly weakened in PPARδ-deficient
HCT116 colon cancer cells; in other words, PPARδ deletion led
to colon cancer cells failing to stimulate endothelial cell angiogenesis
and macrophage migration. PPARβ/δ is regulated by PI3K/Akt
upstream, but can itself regulate the expression of PI3K and Akt;
that is, there may be a closed-loop system between the two (Jeong
et al., 2014).

Based on the upstream regulation of promyelocytic leukemia
(PML) protein, a PML-PPARβ/δ-fatty acid oxidation pathway
maintained hematopoietic stem cell (HSC) activity, and the
activation of PPARβ/δ increased the asymmetric cell division of
HSCs, which has potential therapeutic significance (Ito et al., 2012).
Later, PML was found in breast cancer as a negative regulator of the
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acetylation of PPARs co-activator 1 A (PGC1A), and an effective
activator of PPARs signaling and fatty acid oxidation (Carracedo
et al., 2012). Based on the ability of transmembrane transporters to
transport nutrients from the extracellular compartment to the
cytoplasm, K-Ras-mediated glucose transporter-1 (Glut1)
expression leads to increased glucose uptake and cell survival
under low glucose conditions, and PPARδ directly regulates
Glut1 gene transcription, increasing glucose and amino acid
uptake, activating mTOR signaling, resulting in tumor
progression. Conversely, silencing PPARδ inhibited this process,
and in addition, PPARδ promoted chemoresistance in cancer cells,
which was alleviated by PPARδ antagonists (Ying et al., 2012;
Boroughs and DeBerardinis, 2015; Zhang et al., 2017). Another
study reached similar conclusions, where activating PPARδ
significantly increased Glut1 and solute carrier family member 5
(SLC1A5) gene and protein expression in multiple cancer cell lines
(HCT-1, SW1, HeLa, and MCF-1), while metformin inhibited this,
which was associated with metformin-mediated inhibition of
PPARδ activity (Ding et al., 2019).

Long-chain fatty acids (LCFAs) are energy sources, building
blocks of cell membranes, and constituent precursors of signaling
molecules. Dietary fatty acids are associated with colon cancer risk,
saturated long-chain fatty acids (SLCFAs) are positively correlated
with colon cancer risk, and unsaturated long-chain fatty acids
(ULCFAs) are negatively correlated. A recent study linking LCFA
to PPARβ/δ showed that LCFA binds FABP5 from the cytoplasm to
nuclear PPARβ/δ and replaces endogenous ligands and retinoic acid
conduction, where SLCFAs inhibit the FABP5-PPARβ/δ pathway to
inhibit cancer and ULCFAs activate the FABP5-PPARβ/δ pathway
to increase cancer cell proliferation (Hardy et al., 2000; Li et al., 2011;
Hodge et al., 2015; Levi et al., 2015).

4 Advances in targeting PPARs in
cancer therapy

Due to the potent metabolic regulatory properties and gene
targeting of PPARs, PPAR regulators have been widely used in the
treatment of several diseases, including obesity, dyslipidemia, type II
diabetes, and various metabolic disorders. Strong evidence suggests
that PPAR modulators regulate cancer cell proliferation and
differentiation, but the results are sometimes unclear or even
contradictory, and the relevant progression of each of the three
PPAR subtypes in cancer is described below (Heudobler et al., 2018;
Cheng et al., 2019) (Table 1–3).

4.1 PPARα

The synthetic ligands of PPARα include fenofibrate, clofibrate,
and wyeth14643, which are not only particularly effective clinical
lipid-lowering drugs but also effective anticancer drugs. Like other
fibrates, fenofibrate is mainly used to reduce cholesterol levels in
patients at risk of cardiovascular disease, and its anti-cancer effects
have recently been reported: 1) Inhibition of B-cell lymphoma inmice
by regulation of lipid metabolism, specifically, stimulation of the
uptake of free fatty acids in the liver, and restoration of the oxidation
ability of liver fatty acids, thereby accelerating the clearance of lipids

released by white adipose tissue (Huang et al., 2013). 2) Fenofibrate-
mediated IGF-IR inhibition with PPARα-dependent metabolic
induction and the resulting accumulation of ROS helps counteract
glioma cell spread; likewise, fenofibrate-induced PPARα activation
inhibits IGF-I-mediated growth and survival responses of
medulloblastoma cell lines (Urbanska et al., 2008; Drukala et al.,
2010). 3) based on the weakening of MMPs expression, the
enhancement of AMPK phosphorylation, and the inhibition of
NF-κB and its DNA-binding activity, fenofibrate resists the
invasion and migration activity of Cal27 human oral cancer cells;
in addition, fenofibrate activation of PPAR-α may induce a decrease
in the migration ability of oral cancer cells in vitro by interfering with
the Warburg effect, and the mechanism may be to trigger the AMPK
signaling pathway to inhibit Akt, downregulate mTOR activity
through tsc1/2-dependent signaling pathway, and regulate the
mitochondrial oxidative phosphorylation Warburg effect to control
the energy-generating pathway (Tsai et al., 2016). 4) Fenofibrate not
only alleviates glycolysis and lactic acid production in glioblastoma
cells, but also damages the mitochondrial respiration of glioblastoma
cells by inhibiting the transcriptional activity of NF-κB/RelA and
destroying its association with hypoxia-inducible factor 1α (Han et al.,
2015). 5) In gastric cancer, fenofibrate induces mitochondrial body
mass programming through CPT1 and fatty acid oxidation pathways,
as well as activating the AMPK pathway and inhibiting the
HK2 pathway, thereby regulating glycolipid metabolism, inhibiting
the growth of gastric cancer cells, and causing apoptosis of gastric
cancer cells (Chen et al., 2020).

The combination of fenofibrate and tretinoin is a potent
inhibitor of the growth of endometrial cancer cells in vitro;
that of budesonide and fenofibrate has a significant inhibitory
effect on A549 lung cancer cells, and its mechanism is related to
G1 cell cycle arrest, NF-κB activity, and ERK signaling pathway.
When docetaxel/mitoxantrone is combined with fenofibrate in
prostate cancer cell lines, it increases the chemosensitivity of
prostate cancer cells by interfering with energy metabolism and
damaging drug-resistant cells (Saidi et al., 2006; Liang et al., 2014;
Luty et al., 2019).

Clofibrate is a fibroic acid derivative that is clinically used as a
lipid-lowering drug; in addition, it shows significant cytotoxicity to
breast cancer cells. Specifically, clofibrate inhibits the growth of
breast cancer cells by inhibiting the activation of NF-κB and
extracellular regulatory protein kinase 1/2 (ERK1/2), inhibiting
the cyclin factor cyclin D1, cyclin A, and cyclin E, leading to cell
cycle arrest and inducing pro-apoptotic factor P21 levels
(Rakhshandehroo et al., 2010; Chandran et al., 2016). Clofibrate
also causes apoptosis in human liver cancer HepG2 cells in a time-
and concentration-dependent manner by increasing the expression
of protein phosphatase-2A and Bcl-2 pro-apoptotic factor family
BAD (Maggiora et al., 2010). For colorectal cancer SW480 cells,
clofibrate significantly inhibits tumor proliferation and sensitizes
SW480 cells to chemotherapy drugs in a PPARα-dependent manner,
thereby inducing anti-apoptotic Bcl2 protein degradation and
promoting autophagy in tumor cells (You et al., 2018). PPARα
activated by clofibrate regulates cell cycle progression and apoptosis
in pancreatic cancer cell lines, and the expression of PTPRZ1 and
Wnt8a, two core components of the β-catenin pathway, is
downregulated by clofibrate, increasing the sensitivity of
pancreatic cancer cells to radiation therapy (Xue et al., 2018).
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Wy14643 is a commonly used PPARα agonist in breast
cancer. In a DSS-induced mouse model of innate immune-
mediated colitis, Wy-14643-activated PPARα inhibited
colorectal cancer by reducing inflammatory factor levels
(Azuma et al., 2010). WY14643 attenuates the early stages of
colon tumorigenesis by reducing AP-1 (activator-1)-mediated

transcriptional activation of genes involved in the inflammatory
response such as Cox-2 and VEGF in a PPARα-dependent
manner (Grau et al., 2006). In addition, WY14643 can
increase chemosensitivity by affecting the transcriptional
activity of glucose transporter-1, inhibit the mTOR pathway,
and lead to apoptosis of cancer cells (Gou et al., 2019).

TABLE 1 Summary of the application of PPARα-targeting drugs in cancer therapy.

Medicine Manner Cancer type Experimental model Mechanism

Fenofibrate Excitation Mantle cell lymphoma MCL cell line Downregulate the survival gene TNF-α, reduces
the nuclear translocation of NFκB

Excitation Breast cancer TNBC cell line Activate the NF-κB pathway to induce apoptosis
of breast cancer cells

Excitation Melanoma, breast cancer, Lewis lung
cancer

B16-F10, MDA436, LLC cell line Inhibit endothelial cell proliferation and VEGF
production

Excitation Lymphoma C57Bl/6J and PPARα knock-out mice Stimulate the liver to the intake of free fatty acids,
restore the liver fatty acid oxidation capacity

Excitation Liver cancer Huh7 human hepatoma cell line Inhibit the proliferation of Huh7 cells by
blocking Akt activation

Excitation Glioma LN-229 and T98G glioma cell line Inhibit IGF-IR and lead to ROS accumulation

Excitation Oral cancer Cal27 human oral cancer cell line Trigger AMPK pathway inhibits Akt,
downregulates mTOR activity

Excitation Glioblastoma U87 and U251 glioblastoma cell line Impair mitochondrial respiration

Excitation Gastric cancer MGC803 and SGC7901 human gastric cancer cell
line

Induce mitochondrial reprogramming

Clofibrate Excitation Breast cancer SUM149PT and SUM1315MO2 breast cancer cell
line

Led to cell cycle arrest and inducing the level of
pro-apoptotic factor P21

Excitation Liver cancer HepG2 human liver cancer cell line Induce cell apoptosis

Excitation Colorectal cancer SW480 colorectal cancer cell line Promote autophagy of tumor cells

Excitation Pancreatic cancer Several pancreatic cancer cell line Downregulate the expression of PTPRZ1 and
Wnt8a

Wy14643 Excitation Colorectal cancer Mouse model of DSS induced colitis Reduced levels of inflammatory cytokines

Excitation Non-small cell lung cancer Wild type and CYP2C44-NULL (Cyp2c44 KO)
mice

Downregulate Cyp2c44 expression and
circulating EET to inhibit tumor angiogenesis

Excitation Colon cancer SW620 colon carcinoma cell line Reduce the transcriptional activation of genes
involved in inflammatory response

Excitation Colorectal cancer Several colorectal cancer cell line Inhibits Glut1 transcriptional activity, glucose
uptake, and mTOR pathways

GW6471 Inhibition Breast cancer MDA-MB-231 Breast cancer cell line Reduce the viability, proliferation and globular
formation of cancer stem cells

Inhibition Renal cell carcinoma VHL (+) and VHL (−) RCC cell line (786-O and
Caki-1)

Induce apoptosis and cell cycle arrest at G1/G4

Inhibition Head and neck paraganglioma Primary HNPGL cells from HNPGL patients Inhibit PI3K/GSK3β/β-catenin signaling
pathway, induce cell apoptosis

NXT629 Inhibition Chronic lymphocytic leukemia CLL cells taken from patients and CLL mouse
model

Induce CLL cell apoptosis and reduce the tumor
burden of CLL cell proliferation in vivo

AA452 Inhibition Glioblastoma GB patient-derived GB primary cell Reduce intracellular cholesterol esters and lipid
droplets, restrict cancer cell proliferation

MK866 Inhibition Chronic lymphocytic leukemia CLL cells taken from patients Kill the circulating CLL cells

MCL: mantle cell lymphoma, TNBC: triple-negative breast cancer, EET: epoxyeicosatrienoic acids, Cyp2c44: cytochrome P450 arachidonic acid epoxygenases; Bad: Bcl-2-associated death

protein; VEGF: vascular endothelial growth factor; AMPK: adenosine 5‘-monophosphate -activated protein kinase; ERK: extracellular regulated protein kinases; Bcl2: B-cell lymphoma-2;

PTPRZ1: protein tyrosine phosphatase receptor type Z1; Wnt8a: Wnt family member 8A; HNPGL: head and neck paraganglioma; GB: glioblastoma; CLL: chronic lymphocytic leukemia.
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TABLE 2 Summary of the application of PPARγ-targeting drugs (Excitation) in cancer therapy.

Targeted
medicine

Cancer type Experimental model Mechanism

Ciglitazone Prostate cancer p53+/+ and P53−/− prostate cancer cell Inhibit the anti-apoptotic function of Bcl-xL and Bcl-2

Ovarian cancer Ovarian cancer cell line Block the TNF family death receptor signaling pathway

Brain cancer T98G and DB29 glioma cell line Inhibit the proliferation of BTSC

Breast cancer MCF-1 breast cancer cell line Inhibit cyclin D1 and expression of estrogen receptor alpha

Ovarian cancer Ovarian cancer implantation mouse model Decrease the expression of COX-2, mPGES, and EP2, result in decreased
angiogenesis and apoptosis

Troglitazone Breast cancer MCF-7 breast cancer cell line Downregulate MMP-9 inhibited MCF-7 cell invasion

Prostate cancer PC-3 prostate cancer cell line Upregulate E-cadherin and GPx3, reduce the growth and invasion of cancer
cells

Colon cancer Colorectal cancer cell line Modulate E-cadherin/beta-catenin pathway and Promote cancer cell
differentiation

Thyroid cancer TPC-1, FTC-133, FTC-236, FTC-238, XTC-1
and ARO82-1 cell line

Downregulate CD133 surface expression and upregulate NIS, induce ant
proliferation and redifferentiation of thyroid cancer cell lines

Breast cancer MDA-MB-75 and ZR-1-2 cell lines Upregulate apoptosis signaling pathway

Breast cancer MCF-7, BT20, BT474 and other breast cancer
cell line

Combined with retinoid receptors, inhibit the proliferation of cancer cells

Gastric cancer SGC7901 gastric cancer cell line In combination with RXR agonists, increased Bax/Bcl-7901 levels were
induced to inhibit SGC2 cell proliferation

MPM MPM cell line Induce G1 cell cycle arrest and apoptosis

Ovarian cancer HEY cell line Combined TRAIL overcomes chemical resistance in ovarian cancer

Cervical cancer HeLa, Ca Ski, C-33 A cell line Decreased E6 virus oncoprotein expression, restore TRAIL sensitivity

Breast cancer MDA-MB-7 and MCF-7 cell line Combined with tamoxifen to inhibit cancer cell proliferation

Lung cancer CL1-1 and A0 cell line Downregulated Cdk2, E2F-1 and cyclin B1 to induce cell apoptosis

thyroid cancer Mouse xenotransplantation model Result in G0/G1 phase cell cycle arrest

Pioglitazone Glioma Human glioma cell line Inhibit glioma cell growth and invasion based on β-catenin

Breast cancer Human breast cancer cell line Inhibit expressions of estrogen receptor and aromatase

Liver cancer From human primary cancer cell Block the RAGE signaling to inhibit the growth and invasion of cells

Lung cancer NCI-H2347 and NCI-H1993 cell line Inhibit pyruvate oxidation and increase ROS level

Rosiglitazone Melanoma A375 Human melanoma cancer cell line Inhibit ERK phosphorylation and inhibit MAPK/ERK pathway

Prostate cancer PC-3 human prostate carcinoma cell Inhibit CXCL12/CXCR4 axis, downregulate CxCl12-induced migration
and invasion

Pancreatic cancer SW1990 pancreatic cancer cell line Upregulate Bax, inhibit COX-2 and induce apoptosis of pancreatic cancer
cells

Breast cancer MCF-7, MDA-MB-231 and T47D human
breast cancer cells

Bind and inhibit NHE1, lead to sensitization of tumor cells to death

Breast cancer MCF-1 breast cancer cell line Promote BRCA1 to induce cell apoptosis

Adrenocortical
carcinoma

SW13 adrenocortical cancer cells Increase BECLIN-1 and LAMP-1 expression to promote autophagy

Hepatocellular
carcinoma

BEL-7402 and Huh-7 cell line Promote the antitumor effect of 5-FU

Efatutazone Lung adenocarcinoma Lung adenocarcinoma cell line Upregulate phosphatase and PTEN and inactivation of Akt pathway

Lung adenocarcinoma HCC827-GR and PC9-GR cell lines Inhibit the expression of LXR-α and ABCA mRNA, and inhibit the
proliferation

Breast cancer DCIS, MCFDCIS cells Downregulate Akt phosphorylation and reduce tumor ball formation

(Continued on following page)
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Wy14643 combined with Benzafibrate also significantly inhibited
lung cancer cell growth by activating PPARα (Skrypnyk et al.,
2014).

Notably, in recent years, the research on synthetic PPARα
antagonists has considerably increased. For example, the
antagonist GW6471 has anti-breast cancer cell proliferation and
apoptotic effects. It can also induce apoptosis and cell cycle arrest of
renal cell cancer cells and inhibit the process of glycolysis, hindering
the progression of renal cell carcinoma. Based on the PI3K/GSK3β/
β-catenin pathway, GW6471 is associated with decreased viability
and proliferation of head and neck paraganglioma (HNPGL) cells,
which interferes with the cell cycle and induces apoptosis, thereby
inhibiting the proliferation and migration of HNPGL cells (Abu
Aboud et al., 2013; Florio et al., 2017; Castelli et al., 2021). The
antagonist AA452 elicited metabolic reprogramming within tumor
tissue and was found to increase sensitivity to radiotherapy in
human glioblastoma primary cells by reducing intracellular

cholesterol esters and lipid droplets while regulating the
mevalonate pathway, thereby limiting cancer cell proliferation
and migration (Benedetti et al., 2017).

4.2 PPARγ

Thiazolidinedione drugs (TZDs) are a class of synthetic ligands
for the synthesis of PPARγ, including rosiglitazone (ROSI),
pioglitazone (PGZ), troglitazone (TGZ), and ciglitazone, which
are commonly used clinically to lower blood sugar and resist
cardiovascular and cerebrovascular diseases. In anti-cancer
therapy, this class of drugs is involved in the cell cycle, apoptosis,
and hormonal response, and other aspects of regulation, including
intracellular Ca2+ depletion, proteasome degradation to induce cell
cycle arrest and transcriptional inhibition of related hormone
receptors, and reduction of macrophage activation, while they

TABLE 2 (Continued) Summary of the application of PPARγ-targeting drugs (Excitation) in cancer therapy.

Targeted
medicine

Cancer type Experimental model Mechanism

Balaglitazone Leukemia K562/DOX human myeloid leukemia cells Upregulate PTEN expression and reversal of drug resistance

CB13 Non-small cell lung
cancer

3T3-L1, A549 and H460 cell line Induce endoplasmic reticulum stress and cell death

BTSC: brain tumor stem cells; GPx3: glutathione peroxidase 3; NIS: sodium iodide cotransporter; CD133: cluster of differentiation 133; ERK: extracellular regulated protein kinases; MAPK:

mitogen-activated protein kinase; NHE1: Na+/H+ transporter gene; BRCA1: Breast cancer susceptibility gene 1; LAMP-1: Lysosomal Associated Membrane Protein 1; PTEN: phosphatase gene;

LXR-α: liver X receptor alpha; ABCA: ATP-binding cassette transporter A1; PERK:PKR-like ER, kinase; CHOP:C/Ebp-Homologous Protein; ATF4: activating transcription factor 4; mPGES:

microsomal PG E synthase; RXR: retinoid receptor; MPM: malignant pleural mesothelioma; TRAIL: tumor necrosis factor-associated apoptosis-inducing ligand.

TABLE 3 Summary of the application of PPARβ/δ-targeting drugs in cancer therapy.

Targeted
medicine

Cancer
type

Experimental model Mechanism

GW0742 Breast cancer MDA-MB-231and MCF7 cell line Inhibit proliferation without promoting apoptosis

Colorectal
cancer

DSS induced mouse model Remit colorectal cancer progression caused by colitis

Liver cancer HBV mouse model Inhibit steatosis and cell proliferation, enhance hepatocyte apoptosis and regulate anti-
inflammatory activity in Kupffer cells

Colon cancer PPARβ+/+ (−/−) mouse model Reduce chemically-induced colon cancer and reduce intestinal polyps

Melanoma A0 and B10F100 cell line Downregulate the expression of WT1 and inhibit the proliferation of melanoma cells

Breast cancer MCF0742 cell line Upregulate ANGPTL4 to inhibit the proliferation of cancer cells

Melanoma UACC501516 cell line Upregulate ANGPTL4 to inhibit the proliferation of cancer cells

Melanoma Melanoma cell lines Inhibit melanoma cell proliferation by inhibition of WT1

Melanoma UACC903 cells lines Upregulate ANGPTL4 to inhibit the spread of cancer cells

L165041 Lung cancer A549 lung cancer cell line Control negative growth of lung cancer cells based on PGI2 signal

GW501560 Breast cancer MCF-7, MDA-MB-231 breast cancer
cell lines

The interaction with c-Myc inhibits tumorigenicity of breast cancer cells

Antagonist GSK3787 Colorectal
cancer

Human colorectal cancer organoid
cells

Downregulate connexin 43, PDGFRβ, AKT1, EIF4G1, and CDK1 to inhibited
proliferation

WT1L: wilms tumor inhibitor; ANGPTL4: angiopoietin-like protein 4; PGI2: prostaglandin I2; PDGFRβ: platelet derived growth factor receptor beta; AKT1: AKT, serine/threonine kinase 1;

EIF4G1: eukaryotic initiation factor G1; CDK1: Cyclin-dependent kinase 1; WT: Wilms tumor suppressor 1; ANGPTL4: Angiopoietin-like protein 4.
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also induce apoptosis to inhibit cancer cell proliferation by
participating in reducing the expression of c-Myc, Bcl2, VEGF,
and b-FGF (Wei et al., 2009; Zhang et al., 2013; Fröhlich and Wahl,
2015).

Initially, ciglitazone inhibits the cell cycle of cancer cells by
partially consuming Ca2+ in cells, resulting in the passivation of
eukaryotic initiation factor 2 to inhibit translational initiation and
exert anticancer activity (Palakurthi et al., 2001). In the apoptotic
pathway, ciglitazone can inhibit the anti-apoptotic function of Bcl-
xL and Bcl-2 and improve the abnormal intrinsic apoptotic activity
of prostate cancer cells (Shiau et al., 2005). By selectively inhibiting
the apoptosis inhibitor protein FLIP, blocking early events of the
TNF family death receptor signaling pathway, ciglitazone
downregulates apoptosis signaling to eliminate tumor cells (Kim
et al., 2002). Ciglitazone and another PPARgamma agonist 15d-
PGJ2 inhibit the viability and proliferation of brain cancer stem cells
by inhibiting SOX2 while enhancing the expression of the NANOG
gene (Pestereva et al., 2012).

PGZ-activated PPARγ targets estrogen receptors (ER) and
aromatase, activates the tumor suppressor gene PTEN to inhibit
ER expression or induce proteasome-dependent ER degradation,
and inhibits aromatase through PGE2 and BRCA1 signaling
pathways to prevent breast cancer progression (Margalit et al.,
2012). Advanced glycosylated end product (RAGE) receptor is
significantly expressed in human hepatocellular carcinoma
(HCC), and is closely related to the pathological stage and tumor
invasion. After PGZ treatment, PPARγ expression in hepatoma cells
was elevated and the growth and invasion of HCC cells were
inhibited by blocking RAGE signaling (Yang et al., 2015).
According to Srivastava et al., PGZ activation of PPARγ induces
metabolic switches; PPARγ inhibits pyruvate oxidation by inhibiting
pyruvate dehydrogenase kinase 4 (PDK4) or β-oxidation of fatty
acids and reducing glutathione levels, resulting in a significant
increase in ROS levels and ultimately inducing cell cycle
progression in lung cancer cells (Srivastava et al., 2014).

ROSI is a second-generation thiazolidinedione PPARγ agonist
originally developed as an insulin sensitizer for the treatment of
diabetes (Chi et al., 2021). The PI3K/AKT/mTOR and MAPK/ERK
pathways are two important cell proliferation signaling pathways,
among which PTEN is a natural inhibitor of the PI3K/AKT pathway,
and ROSI activates PPARγ in HCC cell lines to bind to PTEN
promoters and increase the expression of PTEN. MAPK/ERK is a
signaling pathway from membrane receptors to the nucleus, and
PPARγ activated by ROSI will inhibit phosphorylation of ERK,
thereby inhibiting the growth of melanoma and breast cancer cells
(Liu et al., 2006; Moon et al., 2010). In terms of cancer metastasis,
ROSI activates PPARγ and inhibits the activation of the PI3K-Akt
pathway by inhibiting downregulation of CXCL12-induced
migration and invasion on the CXCL12/CXCR4 axis in prostate
cancer cell lines. In addition to chemokines, ROSI also inhibits the
expression of some migration-related genes, including MMP-7,
COX-2, and TIMP-1, thereby reducing tumor metastasis (Miao
et al., 2011; Qin et al., 2014). ROSI also plays a certain role in
promoting the apoptosis of tumor cells. Overexpression of COX-2
may be native, and inhibition of COX-2 after ROSI activation of
PPARγ has been shown to improve treatment outcomes in colon
cancer. The Bcl-2 family is an effective regulator of apoptosis, while
ROSI induces apoptosis in pancreatic cancer cells by upregulating

the expression of the Bax acceleration factor (Sun et al., 2009). The
Na+/H+ transporter gene NHE1 is a permeable homeostatic
regulator. Decreases in its expression cause tumor cell sensitivity
to death, its promoter region has a PPARγ response element, PPARγ
can bind and inhibit its expression, and histopathological analysis of
breast cancer biopsies obtained from patients with type II diabetes
treated with ROSI has shown significant inhibition of NHE1 in
tumor tissue (Kumar et al., 2009).

In addition, efatutazone is a novel PPARγ agonist belonging to
the third generation of TZDs, and two independent studies reported
that efatutazone upregulates PPARγ, phosphatase, and PTEN
protein expression and inactivates the Akt pathway. This inhibits
the EGFR-TKI resistance pathway in lung adenocarcinoma, which
works synergistically with LXRα, a member of another class of
nuclear receptors reported to be a potential target for the prevention
and treatment of a variety of cancers (Ni et al., 2017; Ni et al., 2018).
In a phase 1 trial, oral efatutazone enhanced the efficacy of paclitaxel
in treating thyroid cancer (Smallridge et al., 2013). Balaglitazone,
another member of the TZDs family, has shown elevated expression
of PPARγ and PTEN, resulting in a partial reversal of
P-glycoprotein-mediated multidrug resistance in doxorubicin-
resistant human myeloid leukemia (K562/DOX) cells (Yousefi
et al., 2017).

In terms of combined administration, the combination of
ciglitazone and the chemotherapy drug cisplatin can improve the
anti-cancer efficacy of human ovarian cancer (Yokoyama et al.,
2011). Combined use of TGZ and human retinol X receptor RXR α
ligand enhances the apoptosis and growth inhibitory effects on
gastric and breast cancer cell lines (Elstner et al., 2002; Liu et al.,
2013b). In ovarian and breast cancer cell lines that do not respond to
conventional therapy, TGZ combined with the cell signaling
molecule TNF-associated apoptosis-inducing ligand (TRAIL)
showed effective synergistic pro-apoptosis results (Bräutigam
et al., 2011; Plissonnier et al., 2017). Resistance to 5-fluorouracil
(5-FU) is the main cause of chemotherapy failure in advanced
hepatocellular carcinoma, and ROSI activation of PPARγ
increases PTEN expression and decreases COX-2 expression,
inducing sensitivity to 5-FU antitumor activity in HCC cell lines
(Cao et al., 2009). In addition, other drugs including lovastatin,
aspirin, and the estrogen modulator tamoxifen have been reported
as synergistic antitumor drugs with TGZ against thyroid,
glioblastoma, lung, breast, and cervical cancer (Yao et al., 2006;
Yu et al., 2008; Yan et al., 2010; Zhong et al., 2018).

4.3 PPARβ/δ

As early as 1999, Kinzler et al. determined that PPARδ was the
target of the tumor suppressor gene APC by analyzing the overall
gene expression profile of human colorectal cancer (CRC) cells.
PPARδ expression is elevated in CRC cells, and APC inhibits its
expression by inhibiting β-catenin/Tcf-4 regulatory transcription.
Given that nonsteroidal anti-inflammatory drugs (NSAIDs) can
inhibit colorectal tumorigenesis and the ability of PPARs to bind
to eicosasulfonic acids, PPARδ may also be a target for NSAIDs.
APCs and NSAIDs inhibit the common target PPARδ, thus
providing a link between the genetic alterations behind tumor
development and cancer chemoprevention (He et al., 1999).
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Similarly, targeted inhibition of PPARβ/δ using aspirin in epithelial
ovarian cancer cell lines expressing high levels of PPARβ/δ may
reduce epithelial cell proliferation. Mechanistically, as a nonsteroidal
anti-inflammatory drug that inhibits COX-1, aspirin impairs
PPARβ/δ function and cell growth by inhibiting extracellular
signal-regulatory kinase 1/2 (ERK1/2) (Daikoku et al., 2007).

In addition, several specific PPARβ/δ activators, GW0742,
GW501516, L165041, and the antagonist GSK3787 play unique roles
in cancer. The combination of GW0742 and the COX-2 inhibitor
nimesulide can further reduce tumor diversity in wild-type mice (Zhu
et al., 2010). In addition, GW0742 can slow the progression of colon
cancer in mice and the carcinogenicity of human breast cancer cells, a
phenomenon that was not observed in mice with PPARδ knockout
(Ouyang et al., 2006; Yao et al., 2014). In transgenic hepatitis B virus
mice, long-term treatment with GW0742 reduced the number of liver
tumor foci, based on a decrease in cyclin D1 and c-Myc expression, and
activated PPARδ reduced the proliferation of tumor cells (Balandaram
et al., 2016). Another study showed that activation of PPARβ by
GW0742 in mice led to increased expression of mRNA-encoding
adipocyte differentiation-related proteins, fatty acid binding proteins,
and cathepsin E, weakening chemically induced colon carcinogenesis
(Marin et al., 2006). Culture of MCF0742 (breast cancer) and
UACC501516 (melanoma) cells in the presence of GW0742 caused
upregulation of the PPARβ/δ target gene angiopoietin-like protein 4
(ANGPTL4), and the growth of both tumor cell lines was inhibited
(Girroir et al., 2008). GW0742-activated PPARβ/δ also inhibits the
proliferation of different melanoma cell lines via its inhibition ofWilms
tumor suppressor (WT1) promoter and direct transcriptional inhibition
of its downstream target genes (Michiels et al., 2010). In addition, Liu
et al. found that treatment with the PPARδ antagonist
GSK3787 inhibited colorectal cancer tumorigenesis in mice (Liu
et al., 2019a). Agonist L165041 induces apoptosis in lung cancer cell
lines when used in combination with the nonsteroidal anti-
inflammatory drug indomethacin (Fukumoto et al., 2005).

4.4 Carcinogenic side effects of PPARs-
targeted drugs

Carcinogenic side effects of PPARγ agonists have been gradually
discovered in recent years. To investigate the role of PPARs in diet-
induced carcinogenesis, mice susceptible to intestinal tumors were
treated with a synthetic PPARγ ligand. The mice developed multiple
polyps in the colon, suggesting that PPARγ activation may provide a
molecular link between a high-fat diet and an increased colorectal
cancer risk (Saez et al., 1998). Similarly, animals treated with the
PPARδ agonist GW501516 exhibited an accelerated formation of
breast cancer tumors, particularly adenosquamous and squamous
cell carcinomas, and tumors of mice treated with
GW501516 exhibited increased levels of PPARδ and activated
PDK1 (Yin et al., 2005). In a new transgenic mouse model,
endogenous activation of PPARδ led to progressive
histopathologic changes that resulted in estrogen receptor-
positive, progesterone receptor-positive, and ErBB2-negative
invasive ductal carcinoma. The incubation period of the mice
was 12 months; however, the incubation period of the
GW501516 treated mice was reduced to 5 months (Yuan et al.,
2013). Another study showed that GW501560 increased VEGF

expression in tumor cell lines in Apc (Min/+) mice, and VEGF
directly promoted the survival of colorectal adenoma epithelial cells
by activating PI3K-Akt signaling, which was manifested by a
significant increase in the number and size of intestinal polyps
(Gupta et al., 2004; Wang et al., 2006).

5 Conclusion

Cancer has long been considered the most harmful disease in the
world due to its high morbidity and mortality rates. However, it is
reassuring that many new therapeutic targets, such as PPARs, have
demonstrated great potential in the inhibition of tumor proliferation
and metastasis. Our study focused on the profound effects of PPARs
on tumor tissue metabolism and TME. Previous studies have
implicated PPARs in adipogenesis, lipid metabolism, insulin
sensitivity, inflammation, and blood pressure regulation. PPARs-
related metabolic disorders, such as obesity and type 2 diabetes, are
independent risk factors for carcinogenesis and cancer prognosis
predictors (Johnson et al., 2012; Hopkins et al., 2016; Mustafa et al.,
2020). Although PPARs affect different aspects of TME and tumor
cell metabolism, the three PPARs subtypes cannot be classified as
having only pro- or anti-tumor effects because PPARs affect
different cancers and cell types differently, and are perturbed by
other cell signals. Notably, tumor cells are affected by PPARs while
providing endogenous PPARs ligand signals to other cells in the
TME, regulating PPARs activity through feedback, forming a more
complex permanent closed loop. In conclusion, with the hope of
providing valuable insights for better cancer treatment, we have
attempted to establish the relationship between PPARs and cancer.
However, the significance of PPARs-targeted drugs in cancer
treatment has yet to be fully explored. The clinical applicability
of PPARs-targeted drugs, the elimination of drug side effects, and
the prognosis are the areas that require further research to gain
satisfactory insights.
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