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Diabetesmellitus (DM) increases the incidence of age-related cataracts. Currently,
nomedication is approved or known to delay clinical cataract progression. Using a
novel approach based on AI, we searched for drugs with potential cataract
surgery-suppressing effects. We developed a drug discovery strategy that
combines AI-based potential candidate prediction among 2650 Food and Drug
Administration (FDA)-approved drugs with clinical corroboration leveraging
multicenter electronic health records (EHRs) of approximately
800,000 cataract patients from the TriNetX platform. Among the top-10 AI-
predicted repurposed candidate drugs, we identified three DM diagnostic ICD
code groups, such as cataract patients with type 1 diabetes mellitus (T1DM), type
2 diabetes mellitus (T2DM), or hyperglycemia, and conducted retrospective
cohort analyses to evaluate the efficacy of these candidate drugs in reducing
the risk of cataract extraction. Aspirin, melatonin, and ibuprofen were associated
with a reduced 5-, 10-, and 20-year cataract extraction risk in all types of diabetes.
Acetylcysteine was associated with a reduced 5-, 10-, and 20-year cataract
extraction risk in T2DM and hyperglycemia but not in T1DM patient groups.
The suppressive effects of aspirin, acetylcysteine, and ibuprofen waned over
time, while those of melatonin became stronger in both genders. Thus, the
four repositioned drugs have the potential to delay cataract progression in
both genders. All four drugs share the ability to directly or indirectly inhibit
cyclooxygenase-2 (COX-2), an enzyme that is increased by multiple
cataractogenic stimuli.
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Introduction

Cataract, or opacification of the lens of the eye, is a multifactorial
ophthalmologic disease (Shichi, 2004). It is the leading cause of
blindness in middle- and low-income countries, accounting for half
of all incidences of blindness globally (Ang and Afshari, 2021).
According to the National Eye Institute (NEI), cataracts affect an
estimated 24.4 million U.S. citizens aged 40 or older. In addition,
approximately half of all U.S. citizens aged 65 and older have
suffered from cataracts (Desai et al., 1995). Diabetes mellitus
(DM) is a risk factor for cataract development, as increased
blood sugar levels result in cellular and biochemical damage and
eventually opacification of the lens (Drinkwater et al., 2019). While
the onset of cataracts in diabetes can be delayed by lifestyle
modifications such as dietary changes and smoking cessation, no
more than 20% of cataract surgeries are performed on DM patients
(Bixler, 2019), suggesting that not all patients partake in such

preventative measures. Prevention is crucial to the public health
burden of cataracts, and the NEI estimates that a 50% reduction in
the cataract progression rate would decrease cataract extraction by
45% (Seddon et al., 1995).

Currently, there are no Food and Drug Administration (FDA)-
approved therapies that can prevent, delay, or cure cataracts in
humans. The traditional drug discovery process for medication
development is lengthy and costly (Mullard, 2014). Drug
repurposing is a technique in which already approved drugs are
used to treat complex diseases for which they were not initially
indicated (Pushpakom et al., 2019). Numerous computational
approaches have been developed to identify new treatments for
various diseases (Park, 2019; Platania et al., 2020; Gesualdo et al.,
2021). Recently, researchers have been increasingly using artificial
intelligence (AI)-based algorithms that can analyze large amounts of
chemical, genetic, genomic, and biological data to further facilitate
the drug repurposing process (Levin et al., 2020; Pan et al., 2022a).

FIGURE 1
Flowchart of drug repurposing strategy to identify candidate therapies that reduce the risk of cataract extraction inDMcataract patients. (A)Weextracted raw
interactions from biomedical databases andmapped entities to standard identifiers andmerged raw interactions into a knowledge graph. (B) The KG-Predict first
modeledmulti-type interactions from various biomedical databases to learn the embeddings of entities and relations. Then, KG-Predict took the embeddings of
12 DM cataract-associated genes (e.g., hCCDC102A) and relation (e.g.,htarget) as input to rank drug candidates. (C) Clinical evaluation of top-ranked drug
candidates in reducing the risk of cataract extraction.
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Here, we developed a drug repurposing strategy (Figure 1)
combining an AI-based drug discovery system with clinical
corroboration using a large database of patient electronic health
records (EHRs) to identify FDA-approved drug candidates for
reducing the risk of cataract extraction in real-world patients
with diabetes.

Materials and methods

Trial drug selection using the AI-based drug
discovery system

We performed drug repurposing utilizing our AI-based drug
discovery system termed KG-Predict, which we have recently
developed (Gao et al., 2022; Gao et al., 2023) to identify potential
drug candidates for DM cataracts. We first constructed the
knowledge graph by extracting multiple types of interactions
between drugs, genes, diseases, and phenotypic annotations from
various public biomedical datasets that offered high-quality
structured information (Figure 1A). Six types of phenome-level
associations were collected from Gene Ontology Annotation
(GOA) (Ashburner et al., 2000), Genotype-Tissue Expression
(GTEx) (GTEx Consortium, 2015), Mouse Genome Informatics
(MGI) (Eppig et al., 2017), and Phenomebrowser databases
(OntoSIML, 2021). We also obtained two types of genome-level
associations from MGI and DrugBank (Wishart et al., 2008). In our
previous study, we constructed TreatKB (Xu and Wang, 2013),
which included drug-disease treatment relationships mined by NLP
techniques from records of patients in the FDA Adverse Event
Reporting System (FAERS), FDA drug labels, MEDLINE abstracts,
and clinical trial studies. To merge all interactions from different
datasets into a knowledge graph, we mapped each entity to an

identifier using standard biomedical terminologies. The
standardized knowledge graph contained 72,360 nodes,
1,313,075 edges, seven node types, and nine semantic
relationships. The statistics of entities and relations are illustrated
in Supplementary Table S1.

Candidate drugs were prioritized by KG-Predict (Gao et al.,
2022; Gao et al., 2023). Figure 1B provides an overview of the KG-
Predict model. The KG-Predict contains an embedding module and
a predicting module. The embedding module took the knowledge
graph as input and learned low-dimensional embeddings of entities
and relationships. Once learned, the predicting module
concatenated the embeddings of entities and relations to make
link predictions. For each triple (e.g., drug–target–gene), the
predicting module could be represented as a ranking function
that generated higher scores for true triples and lower scores for
false triples. We performed target-based drug repositioning toward
DM cataracts. We first obtained 12 DM cataract-associated genes
from the published literature (Hashim and Zarina, 2012; Lin et al.,
2013; Frankfater et al., 2020; Wu et al., 2020) based on a PubMed
search under “cataract” and “diabetes” that included CCDC102A,
CRYAA, KIAA1671, PPARD, AKR1B1, RPS6KA2, CACNA1C,
VEGFA, VARS1, MMP2, TAC1, and G6PD. The input to KG-
Predict is these genes. The output is a list of candidate drugs
prioritized based on their genetic, genomic, and phenotypical
relevance to diabetes and cataract, as shown in Supplementary
Table S2.

Retrospective cohort study design for top-
ranked drug candidates

We clinically evaluated the top 10 drug candidates: aspirin,
indomethacin, acetylcysteine, theophylline, melatonin, thalidomide,

FIGURE 2
CONSORT flow diagram of the retrospective cohort study design.
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ibuprofen, ephedrine, tamoxifen, and pentoxifylline with
deidentified population-level EHR data in TriNetX (TriNetX,
2023). TriNetX Analytics provides secure web-based access to
patient EHR data that covers over 90 million unique patients
from hospitals, primary care clinics, and specialty treatment
providers. The available information on TriNetX includes
demographics, diagnoses, procedures, medications, laboratory
testing, vital signs, and genomic information. The platform
features built-in functions that allow for cohort selection,
matching incidence and prevalence analysis, and comparison of
characteristics and outcomes between matched cohorts. TriNetX
only provides aggregate counts and statistical summaries of
deidentified patients, so no protected health information or
personal data are available to its users. As a result, the Metro
Health System, Institutional Review Board in Cleveland, Ohio,
has determined that all research using TriNetX is not human
subject research and is therefore exempt from review. We have
recently used the TriNetX network platform for large-scale cohort
studies (Wang et al., 2021; Wang et al., 2022a; Pan et al., 2022b;
Wang et al., 2022b; Wang et al., 2022c; Wang et al., 2022d; Wang
et al., 2022e).

Patients were queried in TriNetX and categorized based on their
International Classification of Diseases (ICD) code and medication
history. Diabetes status was based on the diagnosis of “type
1 diabetes mellitus” (ICD E10) and “type 2 diabetes mellitus”
(ICD E11). Hyperglycemia status was based on the diagnosis of
“elevated blood glucose level” (ICD R73). Cataract status was based
on the diagnosis of “cataract in diseases classified elsewhere” (ICD
H25); “other cataracts” (ICD H26); or “age-related cataracts” (ICD
H28). The outcomes of interest were cataract extraction, including
cataract extraction status (ICD Z98.4), cataract surgery (SNOMED
110473004), or the presence of the intraocular lens (ICD Z96.1). At
the time of the study, there were 1,033,763 patients with cataracts
and DM. Of these patients, 694,494 subjects had undergone cataract
extraction.

We then divided cataract patients into three groups, i.e., the type
1 diabetes mellitus (T1DM) patient group, the type 2 diabetes
mellitus (T2DM) patient group, and the hyperglycemia patient
group, and conducted a retrospective cohort study to investigate
the associations between the top 10 drug candidates and the risk of
cataract extraction in each patient group. For a given drug candidate
(drug A), we identified a study cohort of patients diagnosed with

FIGURE 3
Association of top-ranked medication use with risk of cataract surgery over 5 years of the study period in the three DM patient groups using Cox
proportional hazards regression. N is the number of patients in the exposure and control cohorts after propensity matching. Risk in the exposure cohort
denotes the percentage of patients who underwent cataract surgery in the exposure group. Risk in the control cohort is the percentage of patients
undergoing cataract surgery in the control group. The exposure and comparison cohorts were propensity score-matched for demographics,
comorbidities, and medications.

Frontiers in Pharmacology frontiersin.org04

Gao et al. 10.3389/fphar.2023.1181711

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1181711


drug A’s original indication. The study cohort was divided into the
exposure cohort and the control cohort (Figure 2). The exposure
cohort comprised patients with drug A’s original indication who
were prescribed drug A but never underwent cataract extraction
before drug prescription. The control cohort comprised patients
with drug A’s original indication who never took drug A but rather
other drugs with the same indication and who also never underwent
cataract extraction before drug prescription. For example, melatonin
is used for treating sleep disorders, and we identified patients in the
control cohort who were prescribed at least one drug belonging to
the class of hypnotics and sedatives (N05C) but never took
melatonin. The exposure and control cohorts were then
propensity-score-matched at a ratio of 1:1 using nearest neighbor
greedy matching with a caliper of 0.1 standardized mean difference
(SMD) to account for potential confounding variables. The list of
covariates and their standardized name codes and data types in
TriNetX is described in Supplementary Table S3. These covariates
include demographics (age, sex, and race/ethnicity) and known
comorbidities of cataracts, such as hypertension (ICD I10–I16),
glaucoma (ICD H40–H42), dry eye syndrome (ICD H04.12),
degeneration of the macula and posterior pole (ICD H35.3),
tobacco use (ICD Z72.0), and DM drugs (A10).

Cox proportional hazards regression was used to investigate the
risk of cataract extraction at various time points after drug
prescription (5, 10, and 20 years). The index event was the date
of drug prescription. The rate of cataract extraction was our outcome

of interest (Figure 2). The analyses were then repeated for subgroups
of male and female patients.

Results

Associations of AI-predicted top-ranked
drug candidates with risk of extraction in the
three DM patient groups

We performed retrospective cohort studies to evaluate the
association between the top 10 candidate drugs and cataract
extraction over the 5-year study period in three DM patient
groups. Figure 3 shows the hazard ratios (HRs) and
corresponding 95% confidence intervals (CIs) for the risk of
cataract extraction for each drug. Due to an insufficient study
sample size, tamoxifen, theophylline, and pentoxifylline were
excluded from the T2DM group and hyperglycemia group, and
thalidomide was excluded from the three DM patient groups. The
characteristics of patients who were prescribed aspirin in the T1DM
patient group before and after matching are shown in Table 1. The
patient characteristics for other drugs are provided in
Supplementary Tables S4–S13. As evidenced in the table,
matching rendered comparable exposure and control cohorts
with no significant differences among covariates. Aspirin, which
is used to treat pain, inflammation, and rheumatoid arthritis, was

TABLE 1 Characteristics of patients prescribed aspirin in the T1DM patient group.

Characteristic Before matching After matching

Aspirin cohort Non-aspirin cohort SMD Aspirin cohort Non-aspirin cohort SMD

Total no. 14,376 24,180 9,608 9,608

Age 63.6 ± 12.2 60.4 ± 13.6 0.24* 62.5 ± 12.2 62.3 ± 12.4 0.02

Sex assigned at birth, %

Female 53.1 55.4 0.04 52.9 52.7 0.004

Male 46.8 44.5 0.04 47.1 47.2 0.004

Ethnicity, %

Hispanic/Latinx 11.6 11.9 0.008 12.1 12.1 0.005

Non-Hispanic/Latinx 66.3 53.9 0.25* 63.5 64.6 0.02

Race, %

African/ U.S. citizens/Black 25.4 19.3 0.14* 23.5 24.1 0.01

White 60.1 57.1 0.06 60.4 61.7 0.02

Asian 1.5 1.4 0.001 1.5 1.3 0.01

Comorbidities, %

Hypertension 90.3 76.1 0.39* 88.5 89.1 0.01

Tobacco use 4.8 3.9 0.04 4.8 4.5 0.01

Glaucoma 26.7 11.7 0.38* 19.4 19.2 0.006

Dry eye syndrome 17.5 5.9 0.36* 10.7 10.4 0.01

Degeneration of macula and posterior pole 17.1 5.5 0.36* 10.1 9.2 0.02

Other drugs, %

Drugs used in DM 80.4 59.6 0.46* 77.1 77.3 0.008

Note: SMD, standardized mean differences. *SMD, greater than 0.1, is a recommended threshold for declaring an imbalance.
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associated with a significantly lower risk of cataract extraction in the
three DM patient groups, with HRs of 0.71 (95% CI: 0.66–0.76), 0.72
(95% CI: 0.71–0.75), and 0.58 (95% CI: 0.55–0.61), respectively. In
addition to aspirin, two drugs (melatonin and ibuprofen) were also
associated with a significant reduction in the risk of cataract
extraction compared to other drugs with comparable indications
in the three DM patient groups: melatonin [HR = 0.76 (0.68–0.86),
0.79 (0.74–0.84), and 0.61 (0.55–0.66)] and ibuprofen [HR = 0.62
(0.56–0.68), 0.62 (0.59–0.64), and 0.61 (0.56–0.65)]. Acetylcysteine
did not meet the threshold for statistically significant associations
with reduced risk of cataract extraction in the T1DM patient group
but was significantly associated with decreased cataract extraction in
the other two groups with HRs of 0.65 (95% CI: 0.56–0.74) and 0.57
(95% CI: 0.42–0.75), respectively. For the other five drugs
(indomethacin, theophylline, ephedrine, tamoxifen, and

pentoxifylline), there was no significant reduction in cataract
extraction risk. Follow-up analyses were conducted for aspirin,
acetylcysteine, melatonin, and ibuprofen.

Association of the four candidate drugs with
the risk of cataract extraction according to
sex assigned at birth over different study
periods

As shown in Figures 4, 5, 6, three drugs (aspirin, melatonin,
and ibuprofen) were associated with a significantly lower risk of
cataract extraction in the three DM patient groups during a study
period of 5, 10, or 20 years. Acetylcysteine displayed a significant
reduction in the risk of cataract extraction compared with

FIGURE 4
Forest plots of cataract extraction risk in DM cataract patients prescribed aspirin, divided according to sex assigned at birth, with a study period of
5–20 years.
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matched individuals who were prescribed other drugs with
comparable indications in the T2DM group and
hyperglycemia group during a study period of 5–20 years
(Figure 7). We further investigated the effects of repurposed
drugs on the risk of cataract extraction in men and women
separately (Figures 4, 5, 6, 7). We observed that both male
and female patients prescribed the four drugs experienced a
significantly reduced risk of cataract extraction in the three
DM patient groups. We finally analyzed the time trend of
reduction in cataract prevalence of the four drugs in the three
DM patient groups over 20 years (Figure 8). Melatonin showed a
significant reduction in cataract prevalence in a sustained
manner over 20 years. Patients who were prescribed aspirin,
acetylcysteine, or ibuprofen also had positive effects during a
study period of 5–20 years, and their effects waned after that.

Discussion

In this study, we developed a drug repurposing strategy to
identify FDA-approved drugs that delay cataract extraction in
DM patients. Our approach combines an AI-based drug
repurposing system with EHR-based clinical corroboration. We
identified aspirin, acetylcysteine, melatonin, and ibuprofen as
therapies that may be associated with decreased risk of cataract
extraction in diabetic patients with cataracts.

Our study shows that patients with cataracts who were
prescribed aspirin experience a lower risk of cataract extraction
than matched individuals in all three DM patient groups. Findings
from animal models suggest that aspirin may prevent cataract
formation by reducing carbamylation (Crompton et al., 1985) of
soluble lens proteins, acetylation of lens proteins, inhibition of

FIGURE 5
Forest plots of cataract extraction risk in DM cataract patients prescribedmelatonin, divided according to sex assigned at birth, with a study period of
5–20 years.
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glycation, improved glucose tolerance, and an indirect antioxidant
effect (Mihail, 1990). Our results are also consistent with those of a
clinical trial evaluating aspirin in DM cataract patients with
rheumatoid arthritis (Cotlier, 1981), in addition to several
clinical trials (Heyningen and Harding, 1986; Harding et al.,
1989; Klein et al., 2001), further suggesting possible protective
mechanisms of aspirin against cataract extraction. However,
several other studies report no significant reduction in cataract
extraction for patients taking aspirin (Klein et al., 1987; Seddon
et al., 1991; Hankinson et al., 1993; Christen et al., 2001). Many
such studies focus on aspirin for a wide patient population, not just
those with DM, so our finding that aspirin reduces the risk of
cataract extraction in DM patients with pain, inflammation, or
rheumatoid arthritis should not be extrapolated to all patients with
cataracts.

Acetylcysteine is used to treat dry eye syndrome and respiratory
diseases. We found that cataract patients who were prescribed
acetylcysteine displayed a lower risk of cataract extraction than
those prescribed control drugs (mucolytics or eye lubricants) in the
T2DM patient group and the hyperglycemia patient
group. Acetylcysteine is an endogenously produced antioxidant
that scavenges free radicals (Carey et al., 2011). There is evidence
in animal models that acetylcysteine reduces cataract formation by
serving as a precursor for glutathione, a potent antioxidant (Zhang
et al., 2008), and through other antioxidant mechanisms (Aydin
et al., 2009).

Melatonin is an endogenous hormone produced by the pineal gland
that is indicated for the treatment of sleep disorders. Patients with
cataracts who were prescribed melatonin displayed a significantly lower
rate of cataract extraction thanmatched patients in all three DMpatient

FIGURE 6
Forest plots of cataract extraction risk in DM cataract patients prescribed ibuprofen, divided according to sex assigned at birth, with a study period of
5–20 years.
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groups. The efficacy of melatonin in preventing cataracts has already
been demonstrated in animalmodels (Abe et al., 1994; Yağci et al., 2006;
Khorsand et al., 2016). These studies suggest that melatonin’s
antioxidant properties, and its reduction of lipid peroxidation and
blood sugar levels, may explain the mechanism by which it prevents
cataract formation (Lledó et al., 2022). However, it may also act

indirectly by inducing sleep and thus act on circadian genes, either
by the downregulation of deleterious, cataractogenic genes such as
AKR1 (Franko et al., 2020) or by upregulating protective genes, such as
Nrf2 (Xing et al., 2023).

Ibuprofen, which is an NSAID, was identified as a potential
candidate drug for delaying cataract extraction. Patients with

FIGURE 7
Forest plots of cataract extraction risk in DM cataract patients prescribed acetylcysteine, divided according to sex assigned at birth, with a study
period of 5–20 years.

FIGURE 8
Relative risk reduction of cataract extraction in cataract patients prescribed aspirin, acetylcysteine, melatonin, and ibuprofen in three groups of
diabetic patients from the TriNex database: (A) T1DM patient group, (B) T2DM patient group, and (C) hyperglycemia patient group. Note that
acetylcysteine was not protective in the T1DM group.
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cataracts who were prescribed ibuprofen had a lower risk of cataract
extraction than those prescribed other NSAIDs in all three DM
patient groups. Ibuprofen inhibits the enzymes cyclooxygenase-1
and -2, reducing the synthesis of prostaglandins and functioning as a
potent antioxidant (Bushra and Aslam, 2010). Several animal studies
indicate that ibuprofen possesses anti-cataract activity due to its
antioxidant properties (Robert and Harding, 1992) and by binding
to lens proteins and preventing cross-linking events that lead to lens
opacification (Plater et al., 1997).

The fact that we found that the drugs did not have additive
effects in reducing the risk of cataract surgery suggests a possible
common mechanism of action, with COX-2 inhibition being a
shared target of all four drugs, either via direct or indirect
inhibition. COX-2 levels are increased in experimental cataracts
(Cao et al., 2018), and levels are increased by known cataractogenic
stimuli such as hyperglycemia (Song et al., 2020), UV light (Chan
et al., 2015), smoking (Huang and Chen, 2011), low glutathione
levels, and oxidative stress (Robert and Harding, 1992). On the
contrary, in addition to the well-known inhibition of COX-1/2 by
ibuprofen and aspirin, COX-2 protein or RNA levels have been
shown to be suppressed by N-acetylcysteine and other antioxidants
(Cao et al., 2018; Villagarcía et al., 2018), and by melatonin via
ATF6, itself a COX-2 suppressor (Bu et al., 2017).

Our study has several limitations. First, we selected 12 genes
that are deemed to be highly associated with DM cataracts as our
model’s input to generate a ranked list of candidate drugs.
However, our knowledge of genes involved in DM cataracts is
still evolving. The AI-based drug prediction system is highly
dynamic and can easily incorporate new data and knowledge.
Second, the EHR database has limited information on drug usage
duration, dosage, and patient compliance; for example,
prescriptions may be obtained from outside providers that are
not recorded in TriNetX. Due to these limitations, we could not
evaluate how the duration, dosage, and compliance of medication
use affect the risk of cataract extraction in DM cataract patients.
Third, no subgrouping of cataract types (such as cortical, nuclear,
posterior subcapsular cataract, and posterior capsule
opacification) was performed, as only a small percentage of
EHR records contained these sub-diagnoses. Therefore, this
study could not detect medications that prevent the extraction
of a specific subtype of cataract. Further limitations are
dependent on the accuracy of the digital data entry in
TriNetX. These include drug utilization, risk factors, patient
misdiagnosis, and other possible confounding factors. A
potential limitation may arise from propensity score matching.
Although patient matching can strictly balance the distribution
of covariates between exposure and control cohorts and therefore
avoid many confounders, this method cannot account for those
confounders that are unobserved or unmeasured due to the
observational nature of the study design, which could increase
data imbalance and bias. In addition, TriNetX represents patients
who had medical encounters with healthcare systems, not a
random selection of individuals throughout the United States,
so the conclusions drawn from our analyses may not be
representative of the entire U.S. citizens population. The
generalizability of the results from the TriNetX platform

remains unknown and needs to be validated in other
populations and all drug recipients.

In conclusion, we believe we have identified drug candidates for
delaying cataract extraction in DM patients by combining a
knowledge graph-based drug discovery system with clinical
corroboration. We identified four drugs (aspirin, acetylcysteine,
melatonin, and ibuprofen) that appear to reduce the risk of or
delay cataract extraction in this patient population. Our results
provide the foundation for future hypothesis-driven clinical studies
of these drug candidates to further understand their efficacy.
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