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Background: Paclitaxel-inducedperipheral neuropathy (PN) is a serious clinical problem
with no approved drug for prevention. This study aimed to examine the neuroprotective
effect of metformin against paclitaxel-induced PN in breast cancer patients.

Methods: Patients with confirmed breast cancer diagnosis who were planned to
receive paclitaxel were randomized to receive either metformin or placebo. Both
groups received the standard chemotherapy protocol for breast cancer. Patients
started metformin/placebo 1 week before paclitaxel initiation and continued study
interventions thereafter for nine consecutive weeks. The primary outcome was the
incidence of development of grade two or more paclitaxel-induced sensory PN. The
PN was graded according to the National Cancer Institute Common Terminology
Criteria for Adverse Events (NCI-CTCAE). Patients’ quality of life (QoL)was assessed by
the Functional Assessment of Cancer Therapy/Gynecologic Oncology Group-
Neurotoxicity (FACTGOG-Ntx) subscale. Pain severity was measured by the Brief
Pain Inventory Short Form (BPI-SF). Serum levels of nerve growth factor (NGF) and
neurotensin (NT) were measured at baseline and at the end paclitaxel treatment.

Results: A total of 73 patients (36 in themetformin arm and 37 in the control arm)were
evaluated. The cumulative incidence of development of grade two or more PN was
significantly lower in themetformin arm (14 (38.9%) than the control arm (28 (75.7%);p=
0.001). At the end of paclitaxel treatment, patients’ QoL was significantly better in the
metformin arm [median (IQR) FACTGOG-Ntx subscale of (24.0 (20.5–26.5)] compared
to the control arm (21.0 (18.0–24.0); p = 0.003). The metformin arm showed lower
“average” and “worst” pain scores than those detected in the control arm. At the end of
the paclitaxel treatment, there was a significant difference in the median serum NGF
levels between the two arms, favoringmetformin (p<0.05), whileNT serum levelswere
deemed comparable between the two study arms (p = 0.09).

Conclusion: The use of metformin in breast cancer patients offered a marked
protection against paclitaxel-induced PN, which translated to better patient QoL.

Clinical Trial Registration: https://classic.clinicaltrials.gov/ct2/show/
NCT05351021, identifier NCT05351021.
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1 Introduction

Paclitaxel is a taxane chemotherapeutic agent that is used in
the treatment of breast, ovarian, and lung cancer (Malla et al.,
2022). Peripheral neurotoxicity, known as peripheral
neuropathy (PN), is a serious clinical problem that is most
prominently caused by oxaliplatin (Pachman et al., 2015) and
taxanes (Pachman et al., 2016). Taxane-induced PN influences
up to 97% of paclitaxel-treated patients and becomes chronic in
more than 60% of cases (Tanabe et al., 2013). The acute
neurological toxicities related to taxanes occur in a dose-
dependent manner, with incidence tending to be higher with
cumulative paclitaxel doses of more than 1,000 mg/m2

(Rowinsky et al., 1993). The neuropathy is mainly sensory
rather than motor or autonomic (Loprinzi et al., 2007). The
neuronal degeneration induced by paclitaxel is primarily
observed in large myelinated Aβ fibers, leading to impaired
sensation in patients. High cumulative doses of paclitaxel cause
loss of intraepidermal nerve fibers, resulting in hyperalgesia
(Klein and Lehmann, 2021). The initial symptoms of paclitaxel-
induced neuropathy, such as numbness, tingling, and/or
allodynia, can manifest in the patient’s fingers and toes
within 24–72 h post-injection. These symptoms may later
progress to affect the patient’s lower leg and wrists in a
“glove and stocking” pattern (Dougherty et al., 2004;
Argyriou et al., 2008). Symptoms typically begin distally and
then continue proximally as the situation worsens (Argyriou
et al., 2008; Smith, 2013). A total of 60% of all treated patients
manifest chronic paclitaxel-induced peripheral neuropathy.
These symptoms cause serious discomfort and might lead to
dose reduction, delay, or even termination of treatment in
severe cases, limiting therapeutic success (da Costa et al.,
2020). Chronic persistence of symptoms severely worsens a
patient’s quality of life (QoL). Therefore, the identification of
new drugs to prevent neurotoxicity would be a crucial step
towards enhancing treatment outcomes in cancer patients. Until
now, there have been no FDA-approved drugs for the
prevention of chemotherapy-induced PN (Loprinzi
et al., 2020). Comprehension of the exact etiology of PN is
still lacking, though several potential mechanisms include
neuroinflammation, promotion of microtubule
polymerization, and oxidative stress (Zajączkowska et al., 2019).

Metformin, a biguanides antidiabetic drug, has an excellent
safety profile and well-known pharmacokinetic and
pharmacodynamic properties (Nasri and Rafieian-Kopaei,
2014). It has demonstrated beneficial effects in the treatment
of various inflammatory diseases (Koh et al., 2014; Cameron et al.,
2016; Dehkordi et al., 2019). The discrete neuro anti-
inflammatory effects of metformin support its repurposing as a
neuroprotective agent in patients with neurodegenerative diseases
(Rotermund et al., 2018). Numerous studies have proved that
metformin prevents oxidative damage (Esteghamati et al., 2013;
Diniz Vilela et al., 2016; Ren et al., 2020). Wang et al. recently
reported that metformin also has microtubule-stabilizing and
antiapoptotic effects (Wang et al., 2020). Mao-Ying et al.
reported that co-administration of metformin with cisplatin or
paclitaxel prevented the development of mechanical allodynia
and sensory deficits in mice. Specifically, metformin prevented

the reduction in density of intra-epidermal nerve fibers, which are
associated with a loss of sensory function and increase of pain
sensitivity (Mao-Ying et al., 2014). Astrocytes are a type of glial
cell that play important roles in maintaining the function of
neurons. In response to injury induced by chemotherapy to the
peripheral nerves, astrocytes become activated and undergo
significant functional changes. The study by Martinez et al.
demonstrated that oxaliplatin treatment induced an increase in
astrocyte activity and a glial reaction in the spinal cord of mice.
However, co-administration of metformin completely prevented
this effect, indicating that metformin may have a neuroprotective
effect by reducing the glial reaction in the spinal cord (Martinez
et al., 2020).

Taken together, metformin might exert a neuroprotective effect
against paclitaxel-induced PN. This hypothesis has not been
clinically examined. Considering the dearth of approved drugs
for preventing chemotherapy-induced PN, this study aimed to
assess the protective effect of metformin against paclitaxel-
induced PN in patients with breast cancer.

2 Patients and methods

2.1 Study design and setting

This study was a parallel-group, double-blind randomized
controlled trial. Patients were recruited from the Oncology
Center at Mansoura University Hospital, Egypt. The study
protocol was approved by the Mansoura University Research
Ethical Committee (code number: 2021–375). Before patient
enrollment, the study protocol was registered at ClinicalTrials.gov
(NCT05351021). The study procedures were carried out in
agreement with the Declaration of Helsinki. Patients were
requested to sign their informed consent before enrollment in the
study.

2.2 Patients

Patients (aged 18 years and above) with a confirmed diagnosis
of breast cancer (Kalli et al., 2018), who planned to receive
paclitaxel, and who had an Eastern Cooperative Oncology
Group performance (ECOG) status of 0–2 (Oken et al., 1982)
were eligible for inclusion in the current study. Patients were
excluded if they had pre-existing neuropathy before enrollment,
were pregnant/lactating, or had a history of hypersensitivity to
metformin. Patients with diabetes, renal impairment (serum
creatinine exceeding 1.4 mg/dl/or creatinine clearance less than
45 ml/min), hepatic impairment (aspartate transaminase and
alanine transaminase of more than 2.5-fold the upper normal
limit), or inadequate bone marrow functions (defined as less than
1,500/mm3 absolute neutrophilic count (ANC) or less than
100,000/mm3 platelet count) were excluded. Other exclusion
criteria were the concomitant use of vitamin supplementation,
antidepressants, opioids, and/or systemic analgesics. Patients
receiving medications that possibly induce PN, including
amiodarone, colchicine, metronidazole, and phenytoin, were
also excluded.
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2.3 Randomization and study interventions

Before randomization, all the recruited patients received the
standard anthracycline cyclophosphamide (AC) chemotherapy
protocol for breast cancer. The AC regimen comprised
doxorubicin (dose/cycle = 60 mg/m2) plus cyclophosphamide
(dose/cycle = 600 mg/m2) for four cycles with 3 weeks in
between. The AC protocol was followed by four cycles of dose-
dense paclitaxel (dose/cycle = 175 mg/m2) with a 2-week period
between each two subsequent cycles (Dewidar et al., 2022). One
week before paclitaxel treatment initiation, patients were simply
randomized in 1:1 ratio either to the intervention group, which
received metformin as an adjuvant to paclitaxel, or to the control
group, which received placebo. The randomization schedule was
concealed in sequentially numbered envelopes. Patients were
enrolled by an independent researcher who was not involved in
patient care. The group allocation to placebo or metformin was
concealed from all the patients and investigators involved in the
outcomes assessment. The patients continued the study
interventions until the end of the paclitaxel treatment. Before
each chemotherapy cycle, the patients received standard
supportive treatment regimens of ondansetron plus
dexamethasone (8 mg each).

To enhance the patients’ tolerability and minimize side effects,
gradual titration of the metformin dose was performed as follows:
850 mg once daily for 1 week, followed by 850 mg twice daily until
the end of the treatment. The dose of metformin was selected based
on a previous report that indicated the efficacy of a comparable
metformin dose (1,500 mg) in the amelioration of neuropathy in
patients with colorectal cancer treated with a platinum-based
regimen (El-fatatry et al., 2018).

2.4 Efficacy outcome

2.4.1 The primary outcome
The primary outcome was comparing the difference in

the incidence of development of grade two or more paclitaxel-
induced peripheral sensory neuropathy at the end of the paclitaxel
treatment between the two arms. The grading of PN was undertaken
biweekly, with each cycle of paclitaxel, using the National Cancer
Institute Common Terminology Criteria for Adverse Events (NCI-
CTCAE) v 5.0 (NCI, 2017). The sensory neuropathy grades range from
one to four, where grade 1) is asymptomatic, grade 2) is moderate
symptoms, grade 3) is severe symptoms that limit daily self-care
activates, and grade 4) is associated with life-threatening consequences.

2.4.2 Secondary outcomes
2.4.2.1 Quality of life (QoL)

QoL was assessed using the Arabic version of the Functional
Assessment of Cancer Therapy/Gynecologic Oncology Group-
Neurotoxicity (FACTGOG-Ntx) subscale (Calhoun et al., 2003).
This tool is a validated and reliable measure for assessment of the
impact of PN on a patient’s life (Cheng et al., 2020). It contains
11 questions assessing sensory, motor, and hearing problems. Each
item in the Ntx subscale is represented by a Likert scale ranging
from zero to four, where zero represents “not at all” and four
represents “very much”. Scores are calculated by first reversing the

negatively stated items and then summing the resulting item
scores. The sum of the individual item scores is multiplied by
11 and then divided by the number of items answered. The Ntx
subscale generates total scores ranging from 0 to 44. Higher scores
reflect better QoL.

2.4.2.2 Pain severity
Pain severity was evaluated using the Arabic version of the Brief

Pain Inventory Short Form (BPI-SF) (Cleeland and Ryan, 1994).
Patients were asked to rate their pain on a numerical scale. Each
scale was presented as a row of equidistant numbers from zero to
ten, where zero indicates “no pain” and ten indicates “pain as bad as
you can imagine”. The BPI-SF assesses pain at its “worst”, “least”,
“average”, and “now” (current). Clinically, the “average” and “worst
pain” are usually recorded to reflect the pain severity.

2.4.2.3 Blood sampling and biochemical analyses
To compare levels of potential markers for neuropathic pain, 5 mL

of venous blood was withdrawn at baseline and after the end of the
study. The serum was separated by centrifugation, and the supernatant
was immediately frozen at −80°C until analysis. Serum concentrations
of nerve growth factor (NGF) and neurotensin (NT) were quantified by
enzyme-linked immunosorbent assay (ELISA) kits (Human NGF,
catalogue number: E-EL-H1205, Elabscience®, USA, and Human
NT, catalog number: E EL H1886, Elabscience®, USA, respectively),
as directed by the manufacturers.

2.5 Safety outcomes

Study medications were provided to the participants biweekly.
They were followed up through direct meetings at every paclitaxel
cycle and telephone calls in between cycles to evaluate their
adherence and record any adverse effects, particularly those likely
related to metformin. Their adherence was evaluated via pill counts.
They were considered non-adherent and excluded from the analysis
if they administered less than 90% of their study medication.

2.6 Patient assessment and follow-up
schedule

NCT-CTCAE peripheral neuropathy grading and serum levels
of the neuropathy biomarkers were assessed at baseline just prior to
paclitaxel initiation and 1 week after the end of paclitaxel therapy
(9th week). Quality of life assessment and pain severity evaluation
were conducted at the baseline, 6th week, and 9th week.

2.7 Sample size calculations

No previous studies were available to estimate the actual effect size
of metformin use on the incidence of paclitaxel-induced PN in breast
cancer patients. Based on a previous study in patients with colorectal
cancer, a large effect size in the primary outcomemeasure was assumed
(El-fatatry et al., 2018). Sample size estimation was performed using
G*Power software with a two-sided test at the alpha level of 0.05. It was
estimated that a total sample size of 65 patients would have a power of
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98% to detect an effect size of 0.5 in the primary outcome (Serdar et al.,
2021). To account for possible dropouts, the number of patients in the
current study was increased to 76.

2.8 Statistical analysis

Statistical analysis was conducted using IBM SPSS® Statistics version
26, IBM corporation software group, USA (IBM® Corp., Armonk, NY,
USA). Numerical continuous data were expressed as the mean and
standard deviation or median and interquartile range (IQR), as
appropriate. Categorical data were expressed as frequency and
percentage. Quantitative continuous data were tested for normality
using the Shapiro–Wilk test. Every possible comparison between the
study groups was performed. For parametric data, the mean values

between the two groups were compared using an unpaired Student’s
t-test. The Mann–Whitney U test was used to compare non-parametric
variables. A comparison of each group over timewas carried out using the
Freidman test. The chi-square test was used to compare the groups with
respect to the categorical data. Survival was analyzed for up to 60 days and
was defined as the time (in days) from the first paclitaxel cycle until the
development of grade two or more PN or the end of follow-up. Survival
analysis was performed using the Kaplan–Meier method, and survival
curves were compared using the log-rank test. All p values were two sided,
and values less than 0.05 were considered significant.

3 Results

A total of 160 patients were assessed for eligibility. Of those
screened, 76 patients were included in the present study. During the
follow-up period, three patients were dropped out due to treatment
discontinuation (n = 1), non-adherence (n = 1), or the development
of metastasis (n = 1). A total of 73 patients (36 patients in the
metformin arm and 37 patients in the control arm) were evaluated
for the primary and secondary outcomes of the study. A consort flow
diagram of the study is illustrated in Figure 1.

3.1 Baseline demographics and biomedical
data

The patients’ demographic data were similar for the two studied
groups at baseline. Tumor characteristics and laboratory data were
also comparable between the two arms of the study (Table 1).

FIGURE 1
CONSORT flow diagram of patient screening, recruitment, and follow-up.

FIGURE 2
Clinical assessment of paclitaxel-induced peripheral neuropathy
at the end of the study (p = 0.001).
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3.2 Primary outcome

The cumulative percent of development of grade two or more
PN significantly differed between both groups (p = 0.001), favoring

metformin (Figure 2). Grade two PN was reported in 25 (67.6%)
patients in the control arm compared to 13 (36.1%) patients in the
metformin arm (p = 0.007). Grade three PN was only reported in
one patient in the intervention arm versus three cases in the control

TABLE 1 Baseline demographics, clinical, and biomedical data.

Variable Metformin group n = 36 Control group n = 37 p-value

Age, mean ± SD, years 45.9 ± 8.3 46.6 ± 8.2 0.717 a

BMI, mean ± SD, Kg/m2 32.7 ± 6.3 34.5 ± 5.6 0.201 a

BSA, median (IQR), m2 1.9 (1.8–2) 1.9 (1.8–2) 0.691b

Menopausal state, n (%)

Postmenopausal 11 (30.6%) 16 (43.2%) 0.262c

HER 2, n (%)

Negative 18 (50%) 25 (67.6%) 0.127c

Positive 18 (50%) 12 (32.4%)

Estrogen receptor

Negative 5 (13.9%) 7 (18.9%) 0.562 c

Positive 31 (86.1%) 30 (81.1%)

Progesterone receptor

Negative 6 (16.7%) 4 (10.8%) 0.467c

Positive 30 (83.3%) 33 (89.2%)

Lymph node, n (%)

N0 8 (22.2%) 12 (32.4%)

N1 16 (44.4%) 14 (37.8%) 0.401c

N2 8 (22.2%) 10 (27%)

N3 4 (11.1%) 1 (2.7%)

Tumor size, n (%)

T0 1 (2.8%) 0 (0)

T1 10 (27.8%) 6 (16.2%) 0.250c

T2 19 (52.8%) 24 (64.9%)

T3 4 (11.1%) 7 (18.9%)

T4 2 (5.6%) 0 (0)

Liver functions; median (IQR)

Alanine transaminase (IU/L) 19 (14–21.5) 17 (13–20) 0.370b

Aspartate aminotransferase (IU/L) 20.5 (15–24) 19 (17–22) 0.580b

Serum total bilirubin (IU/L) 0.5 (0.4–0.6) 0.4 (0.3–0.5) 0.046b

Serum creatinine; median (IQR), (mg/dL) 0.7 (0.7–0.9) 0.8 (0.7–0.8) 0.699b

Blood tests; median (IQR),

Hemoglobin; (g/dL) 12.8 (12.2–13.5) 12.8 (12.3–13.5) 0.782b

White blood cell count; (× 109/L) 7.8 (6.4–9.4) 7.3 (5.6–8.1) 0.075b

Platelet count; (× 109/L) 263.5 (212.5–319.5) 237.0 (184.0–264.0) 0.099b

Cumulative doses of chemotherapeutic agents; median (IQR), (mg)

Doxorubicin 456 (420–480) 456 (432–480) 0.691b

Cyclophosphamide 4,560 (4,200–4,800) 4,560 (4,320–4,800) 0.691b

Paclitaxel 1,330 (1,225–1,400) 1,330 (1,260–1,400) 0.691b

Baseline QoL, FACTGOG-Ntx subscale, median (IQR) 41.5 (40.0–42.0) 41.0 (39.0–42.0) 0.202 b

Baseline pain severity 5 (4–6) 6 (5–6) 0.031 b

Baseline Serum levels of NGF, median (IQR) 37.3 (35.7–41.2) 36 (33.6–39.5) 0.054b

Baseline Serum levels of NT, median (IQR) 137.9 (110–237.6) 162.1 (120.8–265.4) 0.172b

BSA, body surface area; BMI, body mass index; HER2, Human epidermal growth receptor 2; FACTGOG-Ntx, Functional Assessment of Cancer Therapy/Gynecologic Oncology Group-

Neurotoxicity; IQR, interquartile range, IU, international unit; NGF, nerve growth factor; NT, neurotensin.
aIndependent t-test.
bMann–Whitney U test.
cchi-square test.
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arm with a need for dose delay. None of the patients included in the
study developed grade four neuropathy.

3.3 Secondary outcomes

3.3.1 Time to develop peripheral neuropathy
Figure 3 shows the Kaplan–Meier curves for comparison of the

time effects. The log-rank test revealed significant difference
between the groups (p = 0.0008), with patients in the
metformin group being less likely to develop grade two or more
PN over time than those in the control group. In the control group,
50% of the patients developed grade two or more PN by 17 days,
while only 25% of the patients in the metformin group developed
this by 30 days.

3.3.2 Quality of life (QoL)
At baseline, there were no significant differences in the Ntx

subscale scores between the two studied arms. In each group, a
marked decrease in QoL was observed over time as compared
with the baseline (p < 0.05 in both groups). At the end of the
treatment, comparisons between the two groups revealed
statistically higher median (IQR) values of the Ntx subscale
scores in the metformin group than those reported in the
control group (24 (20.5–26.5) versus 21 (18–24), respectively,
p = 0.003, Figure 4).

3.3.3 Assessment of severity of pain using BPI-SF
Comparisons of the current, average, least, and worst BPI-SF

pain scores across the two arms are represented in Figure 5. At
the end of the paclitaxel treatment, the metformin arm showed
marked lower median (IQR) “average” and “worst” pain scores
than those detected in the control arm (7 (5.5–8.0) versus 8 (8–8),

p = 0.003 and 3.5 (1.0–6.5) versus 7 (4.0–7.0), p = 0.001,
respectively).

3.3.4 Serum biomarkers levels
At baseline, the two groups were comparable in terms of

NGF and NT serum levels (p = 0.054 and 0.172 respectively).
At the end of the paclitaxel treatment, there was a
significant difference in the median serum NGF between the
control and metformin group, favoring metformin (p < 0.05).
Regarding NT, the serum levels were deemed comparable
between the two study arms (p = 0.092) at the end of the
treatment. The serum levels of NGF and NT are presented in
Figure 6.

3.4 Safety outcomes

The most frequently experienced adverse effects in both study
arms were myalgia, nausea, and headache. As shown in Table 2, the
metformin group was comparable to the control group with respect
to the frequency of reported side effects, except for diarrhea, which
was more frequent in the metformin group (p = 0.002). None of the
patients in the metformin group discontinued treatment due to this
side effect.

4 Discussion

Prevention of chemotherapy-induced PN is enormously
challenging due to varying underlying pathophysiological
mechanisms with different chemotherapeutic agents (Desforges
et al., 2022). Currently, according to the latest clinical guidelines,
there are no effective agents to prevent chemotherapy-induced PN

FIGURE 3
Kaplan–Meier survival estimates of developing grade two or more paclitaxel-induced peripheral neuropathy in the control and metformin arms.
p-value of log-rank test = 0.0008.
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(Loprinzi et al., 2020). The main mechanisms for paclitaxel-induced
PN are impairment to the function of the microtubules and
breakdown of the transport process in peripheral nerves
(Andersen Hammond et al., 2019). The existing solid evidence of

the role of metformin in the modulation of these processes
stimulates the interest in testing the hypothesis that metformin
protects against chemotherapy-induced PN (Mao-Ying et al., 2014;
Wang et al., 2020; Zhou et al., 2022).

FIGURE 4
Box plot comparing the quality of life expressed by the Functional Assessment of Cancer Therapy/Gynecologic Oncology Group-Neurotoxicity
(FACTGOG- Ntx) in the control and metformin arms.

FIGURE 5
Box plots comparing the average (A), current (B), least (C), andworst (D) neuropathic pain according to the brief pain inventory short form (BPI-SF) in
the control and metformin arms.
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This is the first randomized study that demonstrates the
preventive efficacy of metformin against paclitaxel-induced PN in
breast cancer patients. The difference in the incidence of
grade ≥2 PN was taken as a primary endpoint. The grading was
performed according to the NCI-CTCAE neuropathy grading, the
most ubiquitous measure of chemotherapy-induced PN (Li et al.,
2022); this approach has been widely used in similar recent clinical
trials evaluating other interventions (El-fatatry et al., 2018; Khalefa
et al., 2020; Werida et al., 2022; Haroun et al., 2023).

The incidence of NCI-CTCAE grade two or three PN was
substantially lower in patients randomized to receive metformin
compared to that reported in those allocated to the control group,
indicating that metformin had a neuroprotective effect. Moreover, a
longer time for the development of PN was shown in the metformin
arm than the control arm. Our findings agree with the earlier preclinical
evidence where metformin administration protected against paclitaxel-
induced mechanical allodynia in a mouse model (Mao-Ying et al.,
2014). Clinically, similar findings were reported in colon cancer
patients, where metformin use prevented oxaliplatin-induced PN
using 1,500 mg metformin daily (60% in the metformin group
versus 95% in the control group; p = 0.009) (El-fatatry et al., 2018).

In search of an underlying mechanism, the protective efficacy
reported in the present study is plausibly illustrated by the
interference with different pathological contributors. It has been
recently demonstrated that activation of adenosine
monophosphate-activated protein kinase (AMPK) inhibits
necroptosis (Lee et al., 2019), a cell death mechanism associated
to several neurodegenerative conditions including paclitaxel-
induced PN (Inyang et al., 2019a; Martinez et al., 2020).
Metformin, through the activation of AMPK, might promote
nerve repair and reduce toxic protein aggregates in sensory

neurons (Kong et al., 2020; Demaré et al., 2021). Repurposing
metformin as an AMPK activator has been recently shown in
randomized trials to improve clinical outcomes in inflammatory
diseases (Abdallah et al., 2021) and different neurodegenerative
diseases (Asiedu et al., 2016; Markowicz-Piasecka et al., 2017;
Demaré et al., 2021). Thus, plausibly, the outcome reported in
the present study could be at least partially illustrated by
metformin-mediated AMPK activation, which protected against
loss of the peripheral nerve endings (Mao-Ying et al., 2014).

The pathogenesis of chemotherapy-induced neuropathies
involves changes in the expression of key proteins and signaling
pathways. There is consistent evidence suggesting that AMPK
activators can induce changes in these pathways and thus may be
effective in preventing or treating neuropathies caused by
chemotherapy. A study conducted by Pereira investigated the
effect of metformin, an AMPK activator, on oxaliplatin-induced
sensory peripheral neuropathy. The study found that metformin had
a preventive effect on the increase in transcription factors c-Fos and
ATF3, which are known to be elevated in response to stress and
neuronal injury induced by oxaliplatin in neurons (Pereira et al.,
2019). In addition, metformin was found to decrease the activation
of microglia and astroglia (Ge et al., 2018; Inyang et al., 2019b),
inhibit TRPA1 channels (Wang et al., 2018), and inhibit the mTOR
signaling pathway (Melemedjian et al., 2011). These mechanisms are
known to play a key role in the pathogenesis of oxaliplatin-related
neurotoxicity. Taken together, these findings suggest that metformin
targets AMPK to modulate various pathways involved in the
pathogenesis of chemotherapy-induced neuropathies, thereby
preventing oxaliplatin-associated sensory peripheral neuropathy
(Xiao et al., 2012; Carozzi et al., 2015; Di Cesare Mannelli et al.,
2015; Duan et al., 2018).

FIGURE 6
Box plot comparing the biomarker serum levels in the control and metformin arms.
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Apart from the AMPK-dependent modulation, our findings
might be also illustrated through the putative mitochondrial
protective effects of metformin (Du et al., 2022). It acts as a
scavenger of reactive oxygen species and subsequently modulates
oxidative stress and mitochondrial dysfunction, which are major
contributors to neurodegeneration (Areti et al., 2014).

The FACT-Gog-NTx subscale was used for the assessment of the
patients’ QoL as a secondary outcome. The 11-item neurotoxicity
elements of this questionnaire displayed excellent consistency and
validity, with taxane-induced QoL worsening (Cella et al., 2003). A
decline in the scores of the FACT-Gog-NTx subscale was observed
over time from the baseline to the end of the paclitaxel treatment in
both groups. This could be illustrated by the remarkable side effects
associated with taxanes such as PN, arthralgia, and myalgia, which
significantly worsen a patient’s QoL (Okuyama et al., 2018).
However, the FACT-GOC-NTX subscale scores at the end of the
treatment were significantly higher in the metformin group than in
the control group (24 vs 21, p = 0.003), indicating better QoL. These
findings are in accordance with those of El-fatatry et al., who
previously reported higher mean scores of the Ntx-12
questionnaire with metformin use as an adjuvant to a platinum-
based regimen in patients with colorectal cancer (24.0 vs 19.2, p <
0.05) (El-fatatry et al., 2018). On the contrary, the effect of
metformin on QoL was evaluated in metastatic breast cancer by
Nirula et al. and in early breast cancer by Pimentel et al., and both
observed non-significant differences (Niraula et al., 2012; Pimentel
et al., 2019). The discrepancy between our results and those studies
could be attributed to the use of different non-specific tools in their
assessments.

Nerve growth factor is a main neurotrophic factor that supports
nerve cell growth and survival (Rocco et al., 2018). This factor is
trophic to small-fiber neurons that govern pain and autonomic
function. The connection between low NGF serum levels and the
occurrence of severe neuropathy has been well recognized in
diabetic patients (Anand et al., 1996) and in patients with
malignancies as well (Youk et al., 2017). Exogenous NGF
administration showed the possibility of preventing paclitaxel-
induced PN. At the end of the treatment, a significant increase in
the NGF level was evident in the metformin group compared to
control group, supporting the potential neuroprotective effect. Our
results correlate well with the findings reported by Lós et al., who
demonstrated that treatment of diabetic mice with metformin
potentiated the NGF expression and attenuated the
neuroinflammatory response in the sciatic nerve (Lós et al., 2019).

In terms of metformin tolerability, gastrointestinal adverse effects have
been themajor concern. In our study, despitemetformin being initiated at a
low dose and titrated up slowly, a significant increase in the incidence of
diarrhea was observed in the metformin arm. However, it did remain
tolerable in respect to the self-resolved adverse effects, and none of the
patients required treatment discontinuation. Similar findings have been
reportedwith the adjuvant use ofmetformin in efficacy investigating studies
(Barakat et al., 2022; Essa et al., 2022). The incidence of gastrointestinal
complications is generally more frequent with metformin immediate-
release preparations than with extended-release ones. Hence, it is
recommended to use the latter in future studies to improve tolerability.
None of the randomized patients in our study experienced hypoglycemia,
which is consistentwith the established classificationofmetformin as adrug
with negligible risk of inducing hypoglycemia when used as monotherapy
(Lipscombe et al., 2018; ElSayed et al., 2023).Nonetheless, caution should be
exercised when using metformin in different patient populations who may
bemore susceptible to hypoglycemia, such as individuals with diabetes who
are receiving insulin or sulfonylurea and/or those with renal and hepatic
impairment.

Collectively, the previously reported enhancement of taxane
antitumor efficacy with adjuvant metformin use and its promising
tolerability and affordability, coupled with the findings reported in the
present study, present metformin as an ideal preventive agent against
paclitaxel-induced PN. However, this study may be limited by the small
sample size. Although NCI-CTCAE neuropathy grading represents a
valid and robust tool in the grading of neuropathy, it remains limited
because of its subjective nature. Therefore, confirmation of our results in
future larger trials using objectivemeasures of PN, such as sensory nerve
conduction and electromyography, is crucial. The focus on biweekly
paclitaxel-based regimens represents another notable limitation. Other
taxane-based regimens, such as weekly paclitaxel, docetaxel, or nab-
paclitaxel, should be also assessed in future clinical research.

In conclusion, the use of metformin in breast cancer patients was
effective in reducing the incidence of paclitaxel-induced PN. The
protective effect of metformin was reflected in the patients’ QoL as
measured by the FACT-GOG-NTx subscale.
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TABLE 2 Adverse effects reported in the two groups.

Adverse effects, n (%) Metformin group n = 36 Control group n = 37 p-Value

Headache 15 (41.7%) 19 (51.4%) 0.407a

Diarrhea 8 (22.2%) 0 (0) 0.002a

Dyspepsia 5 (13.9%) 5 (13.5%) 0.963a

Myalgia 23 (63.9%) 30 (81.1%) 0.100a

Nausea 21 (58.3%) 21 (56.8%) 0.892a

Dizziness 1 (2.8%) 1 (2.7%) 0.984a

aChi-square test.
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