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Noise (noise-induced hearing loss), and ototoxic drugs (drug-induced
ototoxicity), and aging (age-related hearing loss) are the major environmental
factors that lead to acquired sensorineural hearing loss. So far, there have been
numerous efforts to develop protective or therapeutic agents for acquired hearing
loss by investigating the pathological mechanisms of each types of hearing loss,
especially in cochlear hair cells and auditory nerves. Although there is still a lack of
information on the underlying mechanisms of redox homeostasis and molecular
redox networks in hair cells, an imbalance in mitochondrial reactive oxygen
species (ROS) levels that enhance oxidative stress has been suggested as a key
pathological factor eventually causing acquired sensorineural hearing loss. Thus,
various types of antioxidants have been investigated for their abilities to support
auditory cells in maintenance of the hearing function against ototoxic stimuli. In
this review, we will discuss the scientific possibility of developing drugs that target
particular key elements of the mitochondrial redox network in prevention or
treatment of noise- and ototoxic drug-induced hearing loss.

KEYWORDS

acquired hearing loss, noise, ototoxic drugs, ROS, mitochondria, drug development

1 Introduction

Sensorineural hearing loss (SNHL), the most common type of permanent hearing
impairment, is caused by physical and/or functional damage of cochlear hair cells in inner
ear or auditory nerves including spiral ganglion neurons. Acquired SNHL, resulting from
continuous accumulation of cellular damage due to various environmental stimuli, increases
in prevalence with aging: Being identified in approximately 5–8 of 1,000 children, 33% of
adults 65–74 years of age, and over 80% of adults 85 years of age (Walling et al., 2012;
Baumgartner et al., 2021). This prevalence of acquired SNHL is much higher than congenital
SNHL that occurs in two to four of 1,000 newborns. The major environmental factors that
lead to acquired SNHL are aging (age-related hearing loss), noise (noise-induced hearing
loss), and ototoxic drugs (drug-induced ototoxicity). Over the past few decades, there have
been numerous efforts to develop therapeutic agents for each type of acquired hearing loss by
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investigating the pathological mechanisms of hearing loss at the
molecular level. An imbalance in mitochondrial reactive oxygen
species (ROS) levels that enhance oxidative stress has been suggested
as a key pathological factor that eventually causes hair cell death in
all three types of acquired SNHL (Bottger and Schacht, 2013;
Fujimoto and Yamasoba, 2014; Kamogashira et al., 2015; Wong
and Ryan, 2015). Attempts to decrease ROS levels in order to
prevent or slow acquired SNHL led researchers to test the
protective or alleviative effects of various antioxidants, such as
vitamins, lipoic acids, polyphenols, and other small molecules
(Hildebrand et al., 2008; Tavanai and Mohammadkhani, 2017;
Ibrahim et al., 2018; Fetoni et al., 2019; Pak et al., 2020). Most of
these investigations have been conducted in animal models with
only a few studies in humans, and there is still a lack of information
on the underlying mechanisms of redox homeostasis and molecular
redox networks in hair cells. Due to these limitations, there is
currently only one medicine at a clinically applicable level. In
2022, the Food and Drug Administration (FDA) of United States
approved the use of sodium thiosulfate, an antioxidant, as a
therapeutic agent of cisplatin-induced hearing loss, based on the
results of clinical trials (Freyer et al., 2017; Brock et al., 2018a; Brock
et al., 2018b). In the clinical test, sodium thiosulfate successfully
reduced the incidence of cisplatin-induced ototoxicity by nearly 50%
in the hepatoblastoma patients. However, verification of the
therapeutic effect was limited to patients under the age of
18 with non-metastic solid cancer, and the effect has also been
shown to vary depending on the time intervals between
administration of cisplatin and sodium thiosulfate (Hazlitt et al.,
2018). It means, the development of otoprotectants that are effective
for a wide range of acquired hearing loss is still needed. In this
review, we will discuss previous efforts to develop protective or

therapeutic agents focusing on oxidative stress-induced
mitochondrial damage in hair cells. We will also propose the
possibility of developing drugs that target particular elements of
the mitochondrial redox network in hearing loss pathology.

2 Oxidative stress in acquired
sensorineural hearing loss

The main pathological factors of acquired SNHL, aging, noise
exposure, and ototoxic drugs, induce multiple, simultaneous
responses in cochlear hair cells, that directly damage
macromolecules (nucleic acids, proteins, and lipids), change ion
homeostasis, and activate/inhibit intrinsic and extrinsic signaling
pathways (Wong and Ryan, 2015; Wu et al., 2020). These responses
ultimately produce irreversible hair cell damage when the
mechanical or biochemical stimuli overwhelm cellular
homeostatic capacity. Disruption of cellular redox homeostasis by
either or both increased ROS generation and inhibition of
antioxidant defense systems, is known to be mutually influenced
by other cellular responses induced by noise, drugs, and aging (Wu
et al., 2020) (Figure 1).

2.1 Noise-induced oxidative stress and
alleviative effects of antioxidants

Intense noise can directly cause mechanical disruption of the
hair cell stereocilia, resulting in their dysfunction in the auditory
pathway (Slepecky, 1986; Patuzzi et al., 1989). However, most noise-
induced hearing loss is caused by an accumulation of biochemical

FIGURE 1
Noise, aging and ototoxic drug-induced intracellular signaling pathways leading to hair cell death. It indicates that organelle stress (ER and
mitochondria), inflammation, MAPK signaling pathways induced by three environmental stimuli are all mutually interact each other, which finally leads to
apoptosis or necroptosis of hair cells. Importantly, increase in mitochondrial ROS is at the center of all the pathways.
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damage due to prolonged exposure to sound stimuli below the
threshold of mechanical damage. Stimulation of the mitochondrial
respiratory system by ischemia/reperfusion (Henderson et al., 2006)
and release of free Ca2+ from Ca2+ stores, such as endoplasmic
reticulum (ER) to cytosol and into mitochondria (Gorlach et al.,
2015; Wong and Ryan, 2015), are the major noise-induced
intracellular responses that cause biochemical hair cell damage.
Importantly, these processes are commonly linked to
overgeneration of ROS (Yamashita et al., 2004a). Noise exposure
also induces insufficiency of the antioxidant system. Consequently,
increased ROS randomly reacts with lipids, nucleic acids, and
proteins, resulting in dysfunction of these macromolecules, and
subsequently inducing release of pro-apoptotic factors. Cytochrome
C promotes caspase 3-mediated apoptosis, and translocation of
Endonuclease G (EndoG) and apoptosis-inducing factor (AIF)
from mitochondria into the nucleus, triggering apoptotic hair cell
death with condensed nuclei (Yamashita et al., 2004b; Wong and
Ryan, 2015; Sha and Schacht, 2017). Increased ROS has also been
shown to activate the c-Jun N-terminal kinase (JNK) signaling
pathway, leading to apoptosis in an animal model (Wang et al.,
2007; Wu et al., 2020).

Because oxidative stress has been strongly implicated as a cause
of noise-induced hearing loss, various types of antioxidant
molecules have been used to protect or recover hair cells.
Glutathione, D-methionine, resveratrol, salicylate, ebselen, and
coenzymeQ10 administered in animal studies had significant
protective effects on noise-induced hair cell damage (Sha and
Schacht, 2017; Pak et al., 2020). Specifically, N-acetyl cysteine
(NAC), α-lipoic acid, and ebselen have advanced to clinical trials
and shown a substantial otoprotective effect. In two randomized
clinical studies, a group of textile workers who received NAC had a
reduced temporary threshold shift after noise exposure (Fetoni et al.,
2009), as well as army members who received NAC for 14 days who
had a reduced temporary threshold shift (Lorito et al., 2008; Kopke
et al., 2015). Alpha-lipoic acid also had a protective effect on noise-
induced hearing threshold shift. When a group of healthy subjects
received oral α-lipoic acid 1 h before noise exposure, their temporary
threshold shift at 6 kHz was reduced after noise exposure (Campbell
et al., 2007). These results suggest a strong possibility that reducing
ROS accumulation may effectively prevent noise-induced
hearing loss.

2.2 ROS accumulation in drug-induced
ototoxicity and therapeutic effects of
antioxidants

Aminoglycoside, broad-spectrum antibiotics, and platinum-
based anticancer agents such as cisplatin are the most well-
known ototoxic drugs that can cause irreversible, bilateral, and
high frequency hearing loss (Musial-Bright et al., 2011).
Following entry into the hair cells, both aminoglycosides and
cisplatin directly bind to hundreds of intracellular proteins such
as kinases, transcription factors, and ion channels that potentially
cause dell death (Karasawa et al., 2010; Karasawa et al., 2011;
Karasawa et al., 2013; Karasawa and Steyger, 2015).

Although they affect multiple cellular signaling pathways by
directly interacting with various proteins, the central affected

pathological pathway is the accumulation of oxidative stress
caused by accelerated ROS generation and inhibition of
antioxidant enzyme activities, eventually leading to apoptosis or
necrosis of hair cells (Steyger, 2021). Aminoglycosides are known to
accelerate both enzymatic and non-enzymatic ROS formation
(Priuska and Schacht, 1995), thereby activating the JNK signaling
pathway followed by apoptotic hair cell death (Mielke and
Herdegen, 2000). In enzymatic ROS formation, nicotinamide
adenine dinucleotide phosphate (NADPH) oxidases are
considered a primary source of ROS generation. NADPH oxidase
is a protein complex composed of several subunits including a
catalytic subunit, NOX (Altenhofer et al., 2015; Steyger, 2021). In
previous studies, NOX2 expression was abundantly increased in
outer hair cells after neomycin administration in rat cochlea, and
inhibition of NOX2 significantly reduced neomycin-induced hair
cell damage (Qi et al., 2018). Cisplatin also upregulates
NOX3 expression and activates the NOX3 signaling pathway,
increasing superoxide production in cultured cells and rat
cochlea (Banfi et al., 2004; Mukherjea et al., 2008; Mukherjea
et al., 2011).

Disruption of the intracellular antioxidant system also
contributes to aminoglycoside- or cisplatin-induced oxidative
stress. For example, cisplatin can bind directly to sulfhydryl
groups within antioxidant enzymes causing enzyme dysfunction,
and can also deplete glutathione (GSH) and NADPH that are
essential factors for antioxidant enzyme function (Rybak et al.,
2007). Cisplatin and kanamycin are known to decrease
expression and activity of the primary antioxidant enzymes:
Superoxide dismutase (SOD), glutathione peroxidase (GPx),
glutathione reductase (GR), and catalase (CAT) (Rybak et al.,
2000; Rybak et al., 2007). Although there are various molecular
factors directly affected by drugs, ultimately they cause an excessive
accumulation of ROS, and numerous studies have shown that the
subsequent cell death signaling pathways shared with noise-induced
hearing loss.

Various types of antioxidants were also tested in drug-induced
ototoxicity to examine their ability to prevent hearing loss. The
widely-used antioxidants, NAC, sodium thiosulfate, and
D-methionine, effectively protected or rescued cisplatin-induced
ototoxicity, due to their high affinity for platinum molecules, as
well as their antioxidative activity (Wu et al., 2020). In our previous
studies, we identified several antioxidants that had protective effects
against drug-induced ototoxicity. Inmouse cochlear explants treated
with amikacin, kanamycin, or cisplatin, pre-treatment with galangin
(flavonoid antioxidant), fursultiamine (thiamine disulfide
derivative), or berberine chloride (alkaline isoquinoline) reduced
intracellular ROS levels in hair cells. These treatments prevented
ROS-mediated caspase-3 activation, DNA fragmentation, and
apoptosis of hair cells, indicating that an antioxidant can be used
to prevent both noise- and drug-induced hearing loss. Sodium
thiosulfate (STS) is currently the only clinically approved
treatment for cisplatin-induced ototoxicity. As an antioxidant, it
is known to plays a role in directly removing ROS and promote
antioxidative and anti-apoptotic enzymes by activating Nuclear
factor erythroid-related factor 2 (Nrf2) (Zhang et al., 2021).
Moreover, it directly binds to cisplatin, inhibiting and
deactivating the metabolism of cisplatin by formation of
platinum (Pt)-STS complex. Cisplatin is metabolized and
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activated in the body through the process of hydrolysis. In this
process, each of activated cisplatin metabolites has different tumor
selectivity, finally causing normal cell damages. Since reducing the
level of activated form of cisplatin inhibit cytotoxicity of normal
cells, it is suggested that the amelioration of cisplatin-induced
cytotoxicity by STS could be explained in terms of the rapid
formation of inactive Pt-STS complex (Sooriyaarachchi et al.,
2012). Therefore, it is thought that STS can play a role as a
direct inhibitor of cisplatin, selectively reducing toxicity to
normal cells, rather than as an antioxidant.

3 Mitochondrial dysfunction caused by
ROS in acquired hearing loss

3.1 Oxidative stress-induced mitochondrial
damage triggers hair cell death signals

Mitochondria, referred to as the center of cellular energy
metabolism, are organelles that synthesize ATP through the TCA
cycle and oxidative phosphorylation processes. Because this aerobic
respiration unavoidably produces ROS, mitochondria are the
primary cellular source of ROS (Wei et al., 2001; Islam, 2017).
Mitochondria also play critical roles in maintaining cellular
homeostasis and contribute to homeostatic regulation of calcium
and iron concentrations (Contreras et al., 2010), autophagy (Scherz-
Shouval and Elazar, 2007), and cell death (Borutaite, 2010). Thus,
mitochondrial damage or dysfunction can directly activate cell death
signaling pathways. Noise- or cytotoxic drug-induced intracellular
responses, including ischemia/reperfusion, DNA damage, ER stress,

etc., increase ROS levels and DNA damage in mitochondria within
auditory cells. Even though mitochondrial ROS can be easily
scavenged by mitochondrial antioxidant systems under normal
physiological conditions, excessive ROS generation or failure to
remove mitochondrial ROS can cause oxidative stress leading to
mitochondrial dysfunction in multiple ways (Figure 2).

In mitochondria, free Ca2+ ions are the most likely to trigger
ROS elevation. Particularly after intense noise stimulation, Ca2+ is
released from the ER and translocated into mitochondria through an
ion transporter such as VDAC or MCU. Abnormal Ca2+ influx can
dysregulate Ca2+-regulated enzymes that are involved in ROS
metabolism, leading to increased mitochondrial ROS levels, free-
radical damage, and ultimately to mitochondrial dysfunction
(Tretter and Adam-Vizi, 2004; Bottger and Schacht, 2013).
Accumulated mitochondrial ROS can directly damage
mitochondrial DNA (mtDNA), causing mtDNA mutations.
Accumulation of mtDNA is responsible for dysfunction of
various mitochondrial proteins, which disrupts metabolic
homeostasis and induces mitochondrial dysfunction (Baker and
Staecker, 2012). Finally, mitochondrial damage caused by
increased mitochondrial ROS can depolarize mitochondrial
membrane potential, which increases mitochondrial membrane
permeability and initiates apoptosis or necrosis signaling
pathways. Increased ROS activates p53 in the cytosol, leading to
translocation of Bcl-2 associated X (BAX) from the cytosol to the
mitochondrial outer membrane. Mitochondrial ROS-induced
activation of the BAX pore and other mitochondrial pore
complexes, e.g., the mitochondrial permeability transition pore
(mPTP) and mitochondrial apoptosis-induced channel (mAC),
contributes to the release of pro-apoptotic factors (cytochrome C,

FIGURE 2
Mitochondrial ROS-induced damages causing mitochondrial dysfunction. Direct damages of mitochondrial DNA and antioxidant enzyme, or
disruption of ion homeostasis 1), or malfunction of the mitochondrial respiration system 2), can cause increase in mitochondrial ROS. It subsequently
leads to increase in mitochondrial membrane potential 3) with depolarization of membrane potential 4), causing osmotic swelling of mitochondria and
release of pro-apoptotic factors 5). Finally, cell death signaling pathways are activated by these apoptotic factors.
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EndoG, and AIF) from the mitochondrial matrix to the cytosol to
activate the apoptotic signaling pathway (Dejean et al., 2005; Briston
et al., 2017). By contrast, loss of mitochondrial membrane potential
activates the mPTP pore complex, allowing H2O and other small
molecules to enter the mitochondrial matrix, which induces
mitochondrial osmotic swelling and initiates the necrosis
signaling pathway (Briston et al., 2017).

Aminoglycosides tend to accumulate in the hair cell
mitochondria, and oxidative stress-induced mitochondrial
damage and subsequent cell death by antibiotics are also
observed consistently in cochlear hair cells (Hobbie et al., 2008).
Gentamicin directly inhibits mitochondrial protein synthesis, which
triggers opening of the mPTP pore complex that can then release
pro-apoptotic factors (Dehne et al., 2002). Cisplatin administration
increases mitochondrial ROS, leading to loss of mitochondrial
membrane potential and BAX expression, which causes increased
cleaved caspase-3 expression and hair cell apoptosis in mouse
cochlear explants (Kim et al., 2018).

3.2 Prevention of hair cell death through
intensive targeting of mitochondrial ROS

Because mitochondria act as a pathological link between
intracellular oxidative stress and apoptotic cell death, inhibiting
mitochondrial oxidative stress or decreasing mitochondrial
membrane permeability using mitochondria-targeted molecules,
could be an effective approach to alleviating noise- and drug-
induced hearing loss. Thus, mitochondria-specific targeting of potent
compounds has been considered important tomaximize effectiveness of
the compounds. Especially Lipophilic cation-based modification of
compounds is one of the most successful mitochondria-targeting
techniques, due to improved ability to cross polarized mitochondrial
membrane. Triphenylphosphonium (TPP), a kind of lipophilic cation,
has been conjugated to various potent antioxidants (Wang et al., 2020),
and numerous TPP-tagged mitochondria-targeted antioxidants
including MitoQ, SkQ1, SkQR1, MitoVitE, and MitoPeroxidase,
have been tested to prevent or alleviate acquired hearing loss
(Zielonka et al., 2017; Fujimoto and Yamasoba, 2019).

We previously used a mitochondria-targeted antioxidant, MitoQ,
to evaluate the therapeutic potential of mitochondria-specific
antioxidants in oxidative stress-induced hair cell damage. In
mouse cochlear explants, H2O2 treatment increased mitochondrial
ROS leading to loss of mitochondrial membrane potential, which was
attributed to decreased expression of the mitochondrial respiratory
chain complex I, III, and V. When MitoQ was administered 1 h prior
to H2O2 treatment, the mitochondrial oxidative stress responses were
almost completely neutralized, thus protecting hair cells from
apoptotic cell death (Kim et al., 2019). Other studies on drug-
induced ototoxicity also suggested that both MitoQ and
SkQR1 significantly reduce aminoglycoside- and cisplatin-induced
hearing loss in cultured cells and animal models (Jankauskas et al.,
2012; Ojano-Dirain and Antonelli, 2012; Ojano-Dirain et al., 2014;
Tate et al., 2017; Dirain et al., 2018).

4 Conclusion

Extensive scientific evidence strongly suggests mitochondria
as a key target to protect auditory cells and maintain hearing
function. Although a number of previous studies have shown
that general antioxidants can provide protection against drug-
induced ototoxicity, there are two significant limitations. First,
since the general antioxidants are not highly selective for
specific target molecules and can affect multiple signaling
pathways simultaneously with low specificity, it is difficult to
determine drug efficacy and safety at low concentrations.
Second, general antioxidants have the potential to cause
unintended side effects when co-administered with other
medicines. For instance, antioxidants such as α-lipoic acid
can inhibit the death of cancer cells as well as normal cells,
thereby inhibiting the anticancer effect. Thus, α-lipoic acid
cannot be administered in combination with the anticancer
drugs such as cisplatin.

To overcome these limitations, it will be important to discover
and develop novel therapeutic agents that interact with specific
mitochondrial factors that contribute to mitochondrial redox
homeostasis, such as antioxidant enzymes or mitochondrial pore
proteins. This will be essential information for developing common
drugs that are widely effective in different types of acquired
hearing loss.
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