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Background: Acute kidney injury (AKI), with an increase in serum creatinine, is a
common adverse drug event. Although various clinical studies have investigated
whether a combination of two nephrotoxic drugs has an increased risk of AKI using
traditional statisticalmodels suchasmultivariable logistic regression (MLR), theevaluation
metrics have not been evaluated despite the fact that traditional statistical models may
over-fit the data. The aimof the present studywas to detect drug-drug interactionswith
an increased risk of AKI by interpreting machine-learning models to avoid overfitting.

Methods: We developed six machine-learning models trained using electronic
medical records: MLR, logistic least absolute shrinkage and selection operator
regression (LLR), random forest, extreme gradient boosting (XGB) tree, and two
support vectormachinemodels (kernel = linear function and radial basis function).
In order to detect drug-drug interactions, the XGB and LLR models that showed
good predictive performance were interpreted by SHapley Additive exPlanations
(SHAP) and relative excess risk due to interaction (RERI), respectively.

Results: Among approximately 2.5million patients, 65,667 patients were extracted
from the electronic medical records, and assigned to case (N = 5,319) and control
(N = 60,348) groups. In the XGB model, a combination of loop diuretic and
histamine H2 blocker [mean (|SHAP|) = 0.011] was identified as a relatively
important risk factor for AKI. The combination of loop diuretic and H2 blocker
showed a significant synergistic interaction on an additive scale (RERI 1.289, 95%
confidence interval 0.226–5.591) also in the LLR model.

Conclusion: The present population-based case-control study using interpretable
machine-learning models suggested that although the relative importance of the
individual and combined effects of loop diuretics and H2 blockers is lower than that of
well-known risk factors such as older age and sex, concomitant use of a loop diuretic
and histamine H2 blocker is associated with increased risk of AKI.
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1 Introduction

Acute kidney injury (AKI) is one of four phenotypes of drug-
induced kidney disease (DIKD), and is diagnosed by serum
creatinine (SCr)-based definitions proposed in the Kidney
Disease: Improving Global Outcomes (KDIGO) 2012 guidelines
(Mehta et al., 2015; Ostermann et al., 2020). Various clinical
studies have been conducted to assess the effect of individual
drugs (e.g., platinum-based agents and antibiotics) on risk of AKI,
and those drugs associated with increased risk of AKI are listed as
nephrotoxic drugs (Usui et al., 2016; Huang et al., 2022). Recently,
Gray et al. (2022) have classified the nephrotoxic potential of
167 medications into seven phased nephrotoxicity categories
(ranging from “No potential” to “Definite”), and
41 medications (25%) had nephrotoxic potential (rating ≥ 1).
In Japan, society is aging rapidly because of the declining birth
rate, and while individuals aged 20–34 account for 4.9% of total
cases of polypharmacy, individuals aged 65 and older account for
69.0% (Onoue et al., 2018). Therefore, it is possible that multiple
drugs with nephrotoxic potential are prescribed to patients,
especially elderly patients. In fact, it has been reported that in
elderly patients, concomitant use of two drug classes with
nephrotoxic potential, for example, antibiotics and proton
pump inhibitors, is the 3rd leading cause of acute interstitial
nephritis (AIN), which is an important cause of AKI (Muriithi
et al., 2015; Pierson-Marchandise et al., 2017). Hence, it is
important to evaluate the combined effect of two drug classes
on the risk of AKI.

In 2000, a case report of two patients who had taken a
diuretic, angiotensin receptor blocker, and non-steroidal anti-
inflammatory drug (NSAID) in combination, so-called “triple
whammy,” and experienced a rise in SCr was published
(Thomas, 2000). Subsequently, a number of clinical studies
worldwide have investigated whether concurrent use of these
drug classes increases SCr level and decreases estimated
glomerular filtration rate (Loboz and Shenfield, 2005; Lapi
et al., 2013; Camin et al., 2015; Kunitsu et al., 2019; Imai
et al., 2022). Besides the triple whammy, clinical studies have
tried to detect drug-drug interactions between two or more drug
classes in acute kidney injury (Bird et al., 2013; Gandhi et al.,
2013; Gul et al., 2016; Inaba et al., 2019; Okada et al., 2019; Liu
et al., 2021; Salerno et al., 2021). However, most of these studies
used a multivariable logistic regression (MLR) model, which is a
traditional statistical model, and evaluation metrics such as
discrimination, calibration, and robustness of the regression
model have not been evaluated. Machine learning (ML) is an
alternative analytical approach that can handle complex
relationships between a number of variables in real-world big
data. ML algorithms have been used to predict AKI, and the
predictive performance of ML models is often superior to that of
traditional statistical models (Song et al., 2021; Peng et al., 2022;
Yue et al., 2022). Furthermore, interpretable ML has been
applied to detect variables affecting the development of an
outcome (Jiang et al., 2023). Hence, the aim of the present
study was to investigate whether there is a combination of
two drug classes that has combined effects on the increased
risk of AKI, by mining electronic medical records using
interpretable ML models.

2 Materials and methods

2.1 Data source

The present study was based on a population-based case-control
study utilizing electronic medical records from the Nihon University
School of Medicine’s Clinical Data Warehouse (NUSM’s CDW)
between 1 April 2004 and 1 September 2021. NUSM’s CDW is a
centralized data repository that integrates separate databases,
including patient demographics, diagnoses, and laboratory data
of approximately 2.5 million patients, from the hospital
information systems at three hospitals affiliated with the NUSM;
Nihon University Itabashi Hospital, Nerima Hikarigaoka Hospital,
and Surugadai Nihon University Hospital. To protect patient
privacy, patient identifiers are replaced by anonymous identifiers
in all databases of the CDW.

2.2 Definition of acute kidney injury as binary
outcome

Sample size flow in this study is shown in Figure 1. Firstly,
74,016 Japanese patients who underwent kidney function tests at
least three times within 14 days (the interval between each
measurement date was 7 days or less) and whose serum
creatinine (SCr) showed a <50% change between the 1st and 2nd
measurement dates were extracted fromNUSM’s CDW, and the 2nd
measurement date was regarded as baseline. Among the
74,016 patients, those who met any of the following two
conditions were regarded as patients with acute kidney injury
complying with the KDIGO criteria: 1) SCr increased by 0.3 mg/
dL within 48 h from baseline, or 2) SCr increased to ≥1.5 times
higher than baseline within the prior 7 days. These patients with
acute kidney injury were assigned to the case group (N = 7,203;
outcome = 1) and the date that AKI occurred was regarded as the
event date. On the other hand, the remaining 66,813 patients were
assigned to the control group (outcome = 0), and the 3rd
measurement date was regarded as the reference date in the
control group. Next, patients who met the following exclusion
criteria were excluded: 1) under 18 years old, 2) baseline
SCr >5.0 mg/dL, and 3) patients with pre-existing kidney disease
[chronic kidney disease stage ≥3, diabetic nephropathy, other kidney
disease; International Classification of Disease 10 (ICD-10) codes
are shown in Supplementary Table S1A]. Then the clinical
information from 65,667 patients was used for training and
testing of ML models.

2.3 Features

In order to detect interactions between two drug classes for risk
of AKI, we obtained use or non-use of 32 therapeutic drug classes,
and 496 (=32C2) product terms of these drug classes as features
from the eligible patients. However, because none of the 88 product
terms included patients who developed AKI (i.e., these product
terms contained only “0”), the number of product terms reduced to
408. The drug classes were classified based on the Anatomical
Therapeutic Chemical (ATC) code published by the WHO
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Collaborating Centre for Drug Statistics Methodology
(Supplementary Table S2). AKI tends to occur within 7 days
from the initiation of a culprit drug, and sub-acute kidney injury
occurs within 4 weeks (Mehta et al., 2015). In fact, it has been reported
that several nephrotoxic drugs are more likely to induce acute kidney
injury within 7 days, and most cases of acute kidney injury occur
within 30 days from the initiation of the drug (Khalili et al., 2013;
Miano et al., 2018; Ide et al., 2019; Kunitsu et al., 2022; Wu et al.,
2022). Hence, if a drug class was newly started within 1–7 days before
the event date, the drug class was regarded as “use.” If a drug class was
newly started on the event date, the drug class was regarded as “non-
use,” to prevent reverse causality bias. A drug class newly started
within 8+ days before the event date was regarded as “non-use.”
When the included product term is “1,” it means that the two drug
classes were newly started at about the same time within 7 days before
the event date, whereas when it is “0,” it means that one of the two
drug classes was used or neither of themwas newly started. That is, the
present study detected whether any of the 408 combinations of the
32 drug classes had an interaction for increased risk of AKI.

Five demographic characteristics and medical history which
included seven diagnoses as features were obtained to adjust for
the effect of these features on the risk of AKI. The demographic
information was composed of age, sex, and three hospitals (Itabashi,
Hikarigaoka, and Surugadai; dummy variables). The medical history
was composed of hypertension, diabetes, heart failure, anemia,
sepsis, chronic kidney disease (stage ≤2), and chronic liver
disease, which are known risk factors for AKI (ICD-10 codes are

shown in Supplementary Table S1B) (Poston and Koyner, 2019;
Ostermann et al., 2020; Yu et al., 2020; Cullaro et al., 2022). A
diagnosis was regarded as “present” if there was a diagnosis before
baseline. We investigated 32 therapeutic drug classes commonly
associated with risk of acute kidney injury (Usui et al., 2016; Nast,
2017; Ostermann et al., 2020). Finally, a two-dimensional dataset
(65,667 patients × 452 features) for ML was generated. Data
imputation was not performed because all the observations in the
dataset had no missing values.

2.4 Construction of ML models and model
evaluation

The dataset for ML was randomly split into a training set for the
development of ML models (80%; N = 52,533) and a testing set for
evaluation (20%; N = 13,134). To evaluate the effects of individual
drug classes and their product terms on the risk of AKI, six ML
models were utilized in this study: 1) MLRmodel and 2) logistic least
absolute shrinkage and selection operator regression (LLR) model
which are linear algorithms, 3) random forest (RF) model and 4)
extreme gradient boosting (XGB) tree model which are tree-based
algorithms, and 5) and 6) two support vector machine models
[kernel = linear function (SVM-L) and radial basis function
(SVM-R)]. All the supervised ML models were developed using R
software (version 4.1.2; R Foundation for Statistical Computing,
Vienna, Austria).

FIGURE 1
Sample size flowchart. Abbreviations: NUSM’s CDW, Nihon University School of Medicine’s Clinical Data Warehouse; SCr, serum creatinine; CKD,
chronic kidney disease; CI, confidence interval; LLR, logistic least absolute shrinkage and selection operator regression; CV, cross-validation; ML,
machine-learning; MLR, multivariable logistic regression; RF, random forest; SVM-L, support vector machine (linear function); SVM-R, support vector
machine (radial basis function); XGB, extreme gradient boosting.
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The supervisedMLmodels were performed with AKI occurring as a
binary dependent variable and the 452 features as independent variables;
that is, 449 features excluding the individual effects of the two drug
classes of interest and their product terms were regarded as co-variables.
When constructing the four ML models except for the MLR model, we
ran 10-fold cross-validation to perform hyperparameter tuning. In the
LLR model, a lambda (λ) value, which is the penalty term in the loss
function, was determined to minimize misclassification error for the
training set and to avoid over-fitting to the training set using the R
“glmnet” package. A regularized logistic regression equation was
obtained using the optimized λ value (Supplementary Figure S1). The
RF model was constructed using the R “randomForest” package.
Hyperparameters such as the number of features randomly sampled
as candidates at each tree (mtry) and the number of trees to grow (ntree)
were optimized by grid search (Supplementary Table S3). The XGB
model was constructed using the R “xgboost” package. The
hyperparameters of the XGB model are roughly divided into the
following four parameters: general, booster, learning task, and
command line parameters. Of these parameters, booster parameters
were optimized by grid search. Finally, the XGB model with the
optimized hyperparameters was constructed (Supplementary Table
S4). The two SVM models were constructed using the R “e1071”
package, and the hyperparameters were optimized using a grid
search (Supplementary Table S5).

Area under the receiver operating characteristic curve (AUROC)
and area under the precision-recall curve (AUPR) were calculated to
evaluate the discrimination and robustness of each ML model. To
evaluate model calibration, the calibration slope and intercept were
calculated for each ML model from a calibration plot with actual
probabilities on the X-axis and log odds on the Y-axis. The
calibration slope and intercept have target values of 1 and 0,
respectively. A slope <1 indicates that predictive risk is too extreme,
i.e., too high for patients who are at high risk and too low for patients
who are at low risk, and an intercept <0 indicates overestimation of
predicted risk (Van Calster et al., 2019). Additionally, Brier score, which
is an evaluation metric to verify the accuracy of predicted probabilities,
was calculated for model calibration using the R “scoring” package. Brier
score is the mean squared error between the actual binary outcome and
the predicted probabilities, as shown in Formula 1 (Huang et al., 2020):

Brier score � ∑N
i�1 Ei − Oi( )

N
(1)

whereN is the number of patients, Ei is the predicted probability for
patient i, and Oi is the actual outcome for patient i. Brier score
ranged from 0 to 1, and a Brier score of 0 indicates the best possible
calibration. Sensitivity (recall), positive predictive value (PPV,
precision), specificity, negative predictive value (NPV), and F1-
score were also calculated as evaluation metrics. The R “pROC”
and “PRROC” packages were used to calculate these metrics.

2.5 Detection of drug-drug interactions for
risk of acute kidney injury

In the present study, the following two ML models were
interpreted to detect interactions between two drug classes for
increased risk of AKI: 1) the XGB model, which had the best
predictive performance, and 2) the LLR model, which had the

second-best predictive performance and can detect synergistic
interactions on an additive scale. Although the complexity of the
models of ML makes it hard to provide interpretability, some
interpretation algorithms such as SHapley Additive exPlanations
(SHAP) and Local Interpretable Model-Agnostic Explanations
(LIME) have been used (Hu et al., 2022). In this study, SHAP
values were calculated to detect features that affect the increased risk
of AKI using the R “SHAPforxgboost” package.

In the LLR model, relative excess risk due to interaction (RERI) was
used to evaluate synergistic interaction on an additive scale between two
drug classes. RERI has been used to detect whether there are combined
effects of two exposures on an outcome and can be calculated by
substituting coefficients in the regression equation into the following
Formulas 2, 3 (Knol et al., 2007; Knol and VanderWeele, 2012). RERI of
0 indicates no interaction on an additive scale. β̂1, β̂2, and β̂3 represent
regression coefficients for drug class 1, drug class 2, and a product term
of drug classes 1 and 2, respectively.

eβ̂1+β̂2+β̂3 − 1( ) ≠ eβ̂1 − 1( ) + eβ̂2 − 1( ) (2)
and

RERI � eβ̂1+β̂2+β̂3 − eβ̂1 − eβ̂2 + 1 (3)
However, in the LLR model built using the glmnet package, a

point estimate for each feature is calculated, but its standard error is
not. Hence, 95% confidence intervals (95% CIs) of regression
coefficients, adjusted odds ratio (OR), and RERI were estimated
with a percentile bootstrap method (Figure 1) (Jung et al., 2019). To
calculate 95% CIs, 2,000 bootstrap samples, each of which was the
same size as the training set, were generated by resampling with
replacement from the training set. After a parameter estimate was
calculated from each bootstrap sample, 2,000 parameter estimates in
all the bootstrap samples were sorted in ascending order. The
interval between the 50th and 1950th quantile values of the
2,000 parameter estimates was regarded as the 95% CI. In this
study, combinations that had a product term with a lower limit of
adjusted OR 95% CI > 1 and had a lower limit of RERI 95% CI >
0 were considered to have a positive interaction for the risk of AKI.
However, it is invalid to calculate RERI if the adjusted OR for at least
one of two drug classes in a combination is less than 1.

2.6 Statistical analysis

To compare the patient characteristics between the case and
control groups and between the training and testing sets, unpaired
two-tailed Welch’s t-test or Wilcoxon rank-sum test for continuous
data and chi-squared test for categorical data were performed.
DeLong’s test and bootstrap test were performed to compare
AUROC and AUPR, respectively. The level of statistical
significance was set at 5.0% for all statistical analyses. All
statistical analyses were performed using R software.

2.7 Sensitivity analyses

Sensitivity analyses were performed to evaluate the robustness of
the detected potential drug-drug interactions. Since most cases of
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TABLE 1 Patients’ characteristics in case and control groups.

Characteristics Case group
(N = 5,319)

Control group
(N = 60,348)

p value

Age (years), median (IQR) 69 (59–78) 65 (51–74) <0.001

Male, n (%) 3,519 (66.2) 32,726 (54.2) <0.001

Hospital, n (%) <0.001

Itabashi 3,924 (73.8) 43,998 (72.9)

Surugadai 884 (16.6) 9,284 (15.4)

Hikarigaoka 511 (9.6) 7,066 (11.7)

Medical history, n (%)

Hypertension 1,379 (25.9) 8,544 (14.2) <0.001

Diabetes 1,602 (30.1) 13,994 (23.2) <0.001

Heart failure 1,079 (20.3) 4,830 (8.0) <0.001

Anemia 746 (14.0) 5,858 (9.7) <0.001

Sepsis 620 (11.7) 1,107 (1.8) <0.001

Chronic kidney disease 72 (1.4) 244 (0.4) <0.001

Chronic liver disease 109 (2.0) 625 (1.0) <0.001

Use of therapeutic drug classes, n (%)

Antibiotic drugs

Penicillins 462 (8.7) 2,731 (4.5) <0.001

Cephalosporins 500 (9.4) 8,144 (13.5) <0.001

Carbapenems 161 (3.0) 349 (0.6) <0.001

Aminoglycosides 37 (0.7) 37 (0.1) <0.001

Glycopeptides 228 (4.3) 86 (0.1) <0.001

Tetracyclines 13 (0.2) 87 (0.1) 0.107

Fluoroquinolones 105 (2.0) 844 (1.4) 0.001

Macrolides 97 (1.8) 591 (1.0) <0.001

Sulfamethoxazole/trimethoprim 58 (1.1) 104 (0.2) <0.001

Azoles 21 (0.4) 29 (0.0) <0.001

Amphotericin B 15 (0.3) 12 (0.0) <0.001

Anti–herpes virus drugs (nucleoside analogues) 20 (0.4) 175 (0.3) 0.330

Interferons 3 (0.1) 31 (0.1) 1.000

Antihypertensive drugs

Calcium channel blockers 495 (9.3) 4,628 (7.7) <0.001

ACE inhibitors 225 (4.2) 2,164 (3.6) 0.018

ARBs 104 (2.0) 519 (0.9) <0.001

α–adrenergic receptor blockers 35 (0.7) 185 (0.3) <0.001

β–adrenergic receptor blocker 107 (2.0) 584 (1.0) <0.001

Loop diuretics 516 (9.7) 1,170 (1.9) <0.001

(Continued on following page)
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AKI occur within 4 weeks regardless of drug class, we redefined new
exposures to the drug classes within 1–14 and 1–30 days from the
event date as “use” and reconstructed the XGB and LLR models
using the same procedure as above. SHAP and RERI values were
calculated from the two reconstructed models, and potential
interactions between two drug classes of interest were evaluated.

3 Results

3.1 Patients’ characteristics

A total of 65,667 eligible patients were extracted from NUSM’s
CDW and assigned to the case (N = 5,319) and control (N = 60,348)
groups. Their clinical characteristics are presented in Table 1. Age in
the case group was significantly older than that in the control group
(p < 0.001), and the case group contained significantly more male
patients than the control group (p < 0.001). All seven medical
diagnoses were significantly more prevalent in the case group than in
the control group (all p < 0.001). With regard to therapeutic drug
classes, most of the drug classes were significantly different between

the case and control groups. SCr levels on the event date were within
normal range (male, 0.65–1.07 mg/dL; female, 0.46–0.79 mg/dL) for
both male and female subjects in the control group. On the other
hand, most patients in the case group had SCr levels above the
normal range, and SCr levels in the case group were significantly
higher than those in the control group regardless of sex (p < 0.001,
respectively). Additionally, patients’ characteristics were
homogeneous between the training and testing sets in both the
case and control groups (Supplementary Tables S6, S7).

3.2 Comparison of predictive performance
among six ML models

Discrimination, robustness, and calibration of each ML model are
shown in Figure 2, and other classification metrics are shown in Table 2.
Among the six ML models, the XGB model had the highest AUROC
(0.827, 95% CI 0.814–0.840), and the LLR model had the second highest
AUROC (0.801, 0.787–0.816) (Figure 2A). The XGB model had the
highest AUPR (0.384, 0.352–0.414) followed by the LLR (0.348,
0.319–0.379) and RF (0.336, 0.305–0.367) models (Figure 2B). The

TABLE 1 (Continued) Patients’ characteristics in case and control groups.

Characteristics Case group
(N = 5,319)

Control group
(N = 60,348)

p value

Aldosterone antagonists 246 (4.6) 658 (1.1) <0.001

Other diuretics 24 (0.5) 277 (0.5) 1.000

Antineoplastic drugs

Folate antimetabolites 16 (0.3) 11 (0.0) <0.001

Platinum–based agents 133 (2.5) 125 (0.2) <0.001
Immunosuppressive drugs

Calcineurin inhibitors 8 (0.2) 23 (0.0) 0.001

Sulfhydryl compounds (DMARDs) 1 (0.0) 27 (0.0) 0.595

Drugs for alimentary tract

Histamine H2 receptor blockers 637 (12.0) 7,391 (12.2) 0.577

Proton pump inhibitors 680 (12.8) 4,382 (7.3) <0.001

Drugs for dyslipidemia

Statins 142 (2.7) 1,966 (3.3) 0.022

Fibrates 11 (0.2) 203 (0.3) 0.143

Others

NSAIDs 706 (13.3) 9,491 (15.7) <0.001

SGLT2 inhibitors 5 (0.1) 52 (0.1) 1.000

Vitamin D3 preparations 2 (0.0) 100 (0.2) 0.036

Serum creatinine on event date (mg/dL), median (IQR)

Male 1.7 (1.3–2.3) 0.8 (0.7–0.9) <0.001

Female 1.3 (0.9–2.0) 0.6 (0.5–0.7) <0.001

Since continuous data such as age and serum creatinine level were not normally distributed, Wilcoxon rank–sum test was performed for differences in the features. Chi–squared test was

performed for categorical data. Abbreviations: DMARD, disease modifying anti–rheumatic drug; IQR, interquartile range; NSAID, non–steroidal anti–inflammatory drug; SGLT2, sodium

glucose cotransporter 2.
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FIGURE 2
Comparison of evaluation metrics among six machine-learning models. (A) Each point indicates area under the receiver operating characteristic
curve (AUROC) and error bar indicates 95% confidence interval (CI). There were significant differences between all six machine-learning models (p <
0.001, respectively). (B) Each point indicates area under the precision-recall curve (AUPR) and error bar indicates 95% CI. There were significant
differences between all machine-learningmodels (p < 0.01, respectively) except betweenMLR and SVM-Rmodels (p = 0.435), betweenMLR and RF
models (p=0.466), and between RF and LASSOmodel (p=0.222). Robustness of themachine-learningmodels in AUROC (C) and AUPR (D), respectively.
AUROC for each training sample size was calculated by increasing the sample size by 10%. Calibration slope (E) and intercept (F)were calculated from the
calibration curve, and error bar indicates 95% CI. (G) Brier score in each machine-learning model. Error bar indicates 95% CI and smaller Brier score
indicates a stronger fit of the model. Abbreviations: LLR, logistic least absolute shrinkage and selection operator regression; MLR, multivariable logistic
regression; RF, random forest; SVM-L, support vector machine (linear function); SVM-R, support vector machine (radial basis function); XGB, extreme
gradient boosting.

TABLE 2 Classification performance metrics of each machine-learning model.

Machine-learning models

Evaluation metrics MLR LLR RF XGB SVM-L SVM-R

Sensitivity (recall), % 72.2 76.6 64.8 77.4 46.5 67.6

PPV (precision), % 18.7 18.9 18.0 20.5 10.1 18.7

Specificity, % 71.7 70.3 73.3 72.9 62.6 73.5

NPV, % 96.6 97.1 95.8 97.3 92.8 96.2

F1-score 0.297 0.303 0.281 0.324 0.166 0.293

AUROC (95% CI) 0.786 [0.771, 0.802] 0.801 [0.787, 0.816] 0.730 [0.715, 0.746] 0.827 [0.814, 0.840] 0.509 [0.487, 0.530] 0.757 [0.741, 0.773]

AUPR (95% CI) 0.328 [0.300, 0.357] 0.348 [0.319, 0.379] 0.336 [0.305, 0.367] 0.384 [0.352, 0.414] 0.173 [0.151, 0.198] 0.306 [0.278, 0.335]

Abbreviations: AUPR, area under precision-recall curve; AUROC, area under receiver operating characteristic curve; CI, confidence interval; LLR, logistic least absolute shrinkage and selection

operator regression; MLR, multiple logistic regression; NPV, negative predictive value; PPV, positive predictive value; RF, random forest; SVM-L, support vector machine with linear function

kernel; SVM-R, support vector machine with radial basis function kernel; XGB, extreme gradient boosting.
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XGBmodel had the highest classification performance, with sensitivity of
77.4%, PPV of 20.5%, specificity of 72.9%,NPVof 97.3%, and F1-score of
0.324 (Table 2). After this model, the LLRmodel had sensitivity of 77.6%,
PPV of 18.9%, specificity of 70.3%, NPV of 97.1%, and F1-score of 0.303.
As for model robustness, the XGB and LLR models maintained high
AUROC and AUPR even with small training sample sizes (10%–30% of
the training set). The MLR model had low AUPR for very small training
sample sizes, such as 10% of the training set, and the SVM-L model
showed a lack of robustness (Figures 2C, D). With regard to model
calibration, the LLR and SVM-L models had a good calibration slope
(1.06, 1.00–1.12; 0.99, 0.86–1.13, respectively), and the latter also had a
good calibration intercept (0.01, −0.32 to 0.35). On the other hand, the
MLR, RF, XGB, and SVM-R models had slopes less than 1, and these
three models other than the RF model had intercepts less than 0 (Figures
2E, F). The XGB model had the lowest Brier score (0.063, 0.059–0.066),
followed by the LLR model (0.065, 0.061–0.068) (Figure 2G). Therefore,
the XGB and LLRmodels, which had the best and second-best evaluation
metrics, were interpreted to detect interactions between two drug classes
with increased risk of AKI.

Supplementary Figure S2 shows the effect of the 408 product
terms on model discrimination of the six ML models. AUROC
values of the five models, except for the MLR model, with these

product terms were significantly higher than those of the models
without them. AUPR values of the LLR, SVM-L, and SVM-Rmodels
with these product terms in the training set were significantly higher
than those of the models without them. That is, the product terms
between two drug classes affected model discrimination.

3.3 Evaluation of features affecting
increased risk of AKI in XGB model

A SHAP summary plot of the XGB model was made to identify
features that affect the risk of AKI in the prediction model, and the top
30 important features are shown in Figure 3. All 110 features with non-
zero mean (|SHAP|) values are shown in Supplementary Figure S3. This
plot shows how strongly or weakly the features were related to the SHAP
values. For example, the older the patient, themore purple it becomes. As
another example, in the case of binary features such as sex and use or non-
use of the drug classes, “male” and “use” are shown in purple. Age, male,
hypertension, heart failure, and sepsis were detected as the most
important predictors of increased risk of AKI, and their feature
importance scores, as measured by mean (|SHAP|), were 0.309, 0.225,
0.166, 0.140, and 0.114, respectively. In particular, the locally-weighted

FIGURE 3
Effect of features on increased risk of AKI in XGB model (SHAP summary plot). * indicates product term of two drug classes. When a feature is
continuous, the higher the feature value, the more purple it is. When a feature is binary, it is represented in purple if the feature is present. Each dot
represents one patient on the line for each feature. Mean absolute SHAP value is shown to the right of a feature. Abbreviations: ARB, angiotensin receptor
blocker; H2 blocker, histamine H2 receptor blocker; HOS, hospital; MH, medical history; NSAID, non-steroidal anti-inflammatory drug; PPI, proton
pump inhibitor; SHAP, SHapley Additive exPlanation; SMX/TMP, sulfamethoxazole/trimethoprim.
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scatterplot smoothing curve exceeded the SHAP value of 0 for ages from
60 to 93 years according to the SHAP dependence plot (Supplementary
Figure S4). Regarding the individual drug classes, loop diuretics,
glycopeptides, aldosterone antagonists, platinum-based agents, and
sulfamethoxazole/trimethoprim were identified as important predictors
of increased risk ofAKI.Of thefive product terms in the top 30 important
features, the product term of loop diuretics and histamine H2 blockers
[mean (|SHAP|) = 0.011], and that of cephalosporins and proton pump
inhibitors (0.010) were identified as relatively important risk factors for
AKI because SHAP values of most of the patients with these product
terms were positive.

Supplementary Figure S5 shows the SHAP values of the
reconstructed XGB models in which the drug classes newly started
within 1–14 and 1–30 days were considered “use.” The product term
of loop diuretics and H2 blockers was consistently included in the top

30 important features in the reconstructed models, and rather the SHAP
values tended to be higher than those in the originalmodel.Moreover, the
individual effects of these drug classes on increased risk of AKI in the
reconstructed models were also greater than those in the original model:
mean (|SHAP|) of loop diuretics = 0.083 within 1–7 days, 0.116 within
1–14 days, and 0.161within 1–30 days; that ofH2 blockers = 0.045, 0.051,
and 0.071, respectively.

3.4 Detection of drug-drug interactions for
increased risk of AKI in LLR model

One hundred and thirty-four features were selected in the LLR
model, with an optimized value λ of 0.0015275. All the selected
features are shown in Supplementary Table S8. Of the

FIGURE 4
Combined effects of two drug classes on increased risk of AKI. (A) Adjusted odds ratio for six individual drug classes and their four product terms.
Blue and red circles represent estimated adjusted odds ratio in the original training set and median of adjusted odds ratio in 2,000 bootstrap replicates,
respectively. Red horizon indicates adjusted odds ratio 95% confidence interval calculated by a percentile bootstrap method. (B) Relative excess risk due
to interaction (RERI) between histamine H2 blockers and loop diuretics. Gray bar indicates background (i.e., non-use of H2 blockers and loop
diuretics). White and green bars indicate relative excess risk due to H2 blockers (eβ̂1 − 1) and loop diuretics (eβ̂2 − 1), respectively. Orange bar indicates RERI
(eβ̂1+β̂2+β̂3 − eβ̂1 − eβ̂2 + 1). Abbreviations: CI, confidence interval; NSAID, non-steroidal anti-inflammatory drug.
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408 combinations, four combinations had a product term with a
lower limit of adjusted OR 95% CI > 1 (Figure 4A):
penicillins*cephalosporins (adjusted OR 2.414, 95% CI
1.453–5.425), cephalosporins*loop diuretics (1.880, 1.339–4.100),
loop diuretics*H2 blockers (1.639, 1.047–3.159), and aldosterone
antagonists*non-steroidal anti-inflammatory drugs (NSAIDs; 1.599,
1.053–3.672). Among the four combinations, only the combination
of loop diuretics and histamine H2 blockers had a lower limit of
RERI 95% CI > 0 (RERI 1.289, 95% CI 0.226 to 5.591 in Figure 4B):
individual effect of loop diuretics, eβ̂1 = 2.018; that of histamine H2

blockers, eβ̂2 = 1.000; product term, eβ̂3 = 1.639; combined effect of
these drug classes, eβ̂1+β̂2+β̂3 = 3.307. On the other hand, RERIs could
not be calculated for the remaining three combinations because the
adjusted ORs for the individual drug classes that were included in
the product terms were less than 1 (e.g., NSAIDs; adjusted OR 0.668,
95% CI 0.504–0.758) (Knol and VanderWeele, 2012).

Supplementary Figure S6 shows the adjusted ORs for the four
combinations of the six individual drug classes in the reconstructed
LLR models. Similarly to the XGB model, the product term of loop
diuretics and histamine H2 blockers and the individual effect of loop
diuretics were consistently associated with increased risk of AKI in
the reconstructed models. Moreover, exposure to H2 blockers within
1–30 days before the event date was significantly associated with
increased risk of AKI (adjusted OR 1.485, 95% CI 1.089, 1.790).

4 Discussion

In the present study, six ML models were constructed for the
prediction of AKI. Although the XGBmodel tended to overestimate the
risk of AKI, this model had the best discrimination and the lowest Brier
score among the six ML models. After the XGB model, the LLR model
showed good discrimination and low Brier score. On the other hand,
AUROC and AUPR of the SVM-L model were the lowest among these
MLmodels. The reason for this is thought to be that the sample size was
extremely large compared to the number of features, making it difficult
to calculate a hyperplane that can clearly discriminate the presence or
absence of AKI in the feature space. In fact, the SVM-R model, which
maps the 452-dimensional feature space (input space) to a higher-
dimensional feature space by using the radial basis function kernel, had
significantly greater AUROC and AUPR than the SVM-L model.
Therefore, we detected the combined effect of two therapeutic drug
classes on increased risk of AKI by interpreting the XGB and LLR
models, with good predictive performance.

In the XGB model, well-known risk factors for AKI such as older
age (Xu et al., 2021), male sex (Neugarten, et al., 2018), and sixmedical
diagnoses (Poston and Koyner, 2019; Ostermann et al., 2020; Yu et al.,
2020; Cullaro et al., 2022) were included in the top 30 important
predictors. Especially, the risk of AKI increased in Japanese elderly
patients aged 60–93 years (Supplementary Figure S4). Similarly to the
XGB model, age, male, and five diagnoses except for diabetes and
chronic kidney disease were significantly associated with increased
risk of AKI in the LLR model (Supplementary Table S8). Since life
expectancy at birth in Japan is 81.1 years for men and 87.1 years for
women (Tsugane, 2021), the range from 60 to 93 years associated with
increased risk of AKI covers most of the Japanese elderly population;
that is, Japanese elderly patients are at high risk of AKI. Regarding
individual drug classes, five drug classes (loop diuretics, glycopeptides,

aldosterone antagonists, platinum-based agents, and
sulfamethoxazole/trimethoprim) were associated with increased
risk of AKI in the XGB model. Furthermore, all of these drug
classes associated with the risk of AKI in the XGB model were
also significantly associated with the risk of AKI in the LLR
model. The five drug classes associated with increased risk of AKI
are known to be nephrotoxic drug classes (Usui et al., 2016; Nast,
2017; Ostermann et al., 2020). On the other hand, NSAIDs were
associated with decreased risk of AKI in both the XGB and LLR
models. Although NSAIDs are well-known risk factors for DIKD,
recent studies suggest that the coexistence of other risk factors in
patients who take NSAIDs contributes to the development of AKI. For
example, the risk of NSAID-induced AKI in patients with CKD and
elderly people tended to be higher than that in the general population
(Zhang et al., 2017). Moreover, adding NSAIDs in patients with
hypertension further increases blood pressure due to reduction of
renal vasodilator prostanoids such as prostaglandin E2 (PGE2) and
PGI2, which are formed predominantly by cyclooxygenase (COX)-2,
leading to renal vascular damage (Drożdżal et al., 2021; Spence et al.,
2022). Because these factors that modify the risk of NSAID-induced
AKI were adjusted in this study, NSAIDs may not be associated with
increased risk of AKI. Therefore, it is conceivable that the ML models
constructed using electronic medical records can successfully explain
the factors that affect the increased risk of AKI reported in various
clinical studies to date.

In the LLR model, four product terms were significantly
associated with increased risk of AKI. However, of these product
terms, since three included a drug class with an adjusted OR <1 (e.g.,
NSAIDs and cephalosporins), RERI could not be calculated,
suggesting that these three combinations are unlikely to have an
interaction for the risk of AKI. In the XGBmodel, two product terms
were identified as relatively important risk factors for AKI: loop
diuretics * H2 blockers and cephalosporins * proton pump
inhibitors. Although the product term of cephalosporins and
proton pump inhibitors tended to be associated with increased
risk of AKI, the individual effects of cephalosporins were
suggested to reduce the risk, contrary to the product term.
Therefore, this combination may not have an interaction for the
risk of AKI. The product term of loop diuretics and H2 blockers was
identified as an important predictor in both the XGB and LLR
models, and the latter model suggested that concomitant use of these
drug classes has a potential drug-drug interaction for AKI.
Furthermore, the individual and combined effects of these drug
classes on the risk of AKI were robust in the sensitivity analyses. To
our knowledge, no clinical studies have evaluated the association
between H2 blockers and AKI in a large population, but Fisher et al.
have summarized more than 20 case reports of H2 blocker-induced
AIN (Fisher and Le Couteur, 2001). Since drug-induced AIN is a
common cause of AKI (Perazella and Markowitz, 2010), it is not
surprising that H2 blockers are one of the risk factors for AKI.
According to the drug-drug interaction checker by DrugBank, the
combination of loop diuretic and H2 blocker is suggested to have a
drug-drug interaction that affects organic anion transporter 3
(OAT3), and its severity is moderate. SCr is excreted into urine
through renal drug transporters such as OAT2, organic cation
transporter 2 (OCT2), OCT3, multidrug and toxin extrusion
protein 1 (MATE1), and MATE2-K (Nakada et al., 2019). Loop
diuretics including furosemide and torasemide are known to be
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human OAT1 (hOAT1), hOAT3, and hOAT4 inhibitors
(Vormfelde et al., 2006; Jeong et al., 2015; Gharibkandi et al.,
2022), and it has been reported that uptake of H2 blockers such
as famotidine and cimetidine into hOAT3-expressing cells decreases
in the presence of an hOAT3 inhibitor (Tahara et al., 2005). That is,
concomitant use of loop diuretics, which are OAT inhibitors, with
H2 blockers may increase the concentration of H2 blockers in the
blood. H2 blockers including famotidine, cimetidine, and nizatidine
are known as in vitro OAT2-, OCT2-, OCT3-, MATE1-, and
MATE2-K-inhibitors, and these drugs increase SCr in healthy
subjects (Nakada et al., 2019). For these reasons, we speculate
that loop diuretics reduce renal excretion of H2 blockers, and
then OATs and OCTs expressed at the basolateral membrane of
proximal tubule cells of the human kidney are inhibited by these
drugs, resulting in elevated SCr. Therefore, although the relative
importance of the individual and combined effects of loop diuretics
and H2 blockers in the XGB model was lower than that of well-
known risk factors such as older age, sex, and medical history, it was
suggested that the interaction between loop diuretics and H2

blockers can increase the risk of AKI.
The present study has several limitations. First, there is a possibility

of sampling bias because this study was a case-control study design using
non-randomized data. Second, this study controlled potential
confounding factors that were available and measurable, but failed to
adjust for non-observed risk factors. For example, AKI is a common
complication after cardiac surgery, and percutaneous coronary
intervention is a known risk factor for AKI, and the incidence of
cardiac surgery-induced AKI in Japanese patients is similar to that in
other countries (Marenzi et al., 2013; Karrowni et al., 2016; Ikemura
et al., 2020). However, no surgical information is recorded in NUSM’s
CDW. As another example, acute physiologic assessment and chronic
health evaluation (APACHE) Ⅱ, which is a scoring system for assessing
the severity of ICU inpatients, is a risk factor for AKI in patients with
severe sepsis (Chawla et al., 2007). Unfortunately, since there are no
APACHE 2 scores recorded in our database, it is very difficult to adjust
for APACHE II score as a covariate in this study. Finally, the database
cannot access clinical information stored at othermedical institutions. In
this study, drug classes that were newly started within 1–7 days from the
event date in the three hospitals were considered as suspected drug
classes for AKI, but the drug classesmay have been previously prescribed
by another medical institution. However, the two ML models showed
better predictive performance than the traditional statistical model, and
the clear drug-drug interactions detected by interpreting these models
may be useful for drug prescribing decision making.
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