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Background: Idiopathic pulmonary fibrosis (IPF) is caused by aberrant repair
because of alveolar epithelial injury and can only be effectively treated with
several compounds. Several metabolism-related biomolecular processes were
found to be involved in IPF. We aimed to identify IPF subtypes based on
metabolism-related pathways and explore potential drugs for each subtype.

Methods: Gene profiles and clinical information were obtained from the Gene
Expression Omnibus (GEO) database (GSE70867 and GSE93606). The enrichment
scores for 41 metabolism-related pathways, immune cells, and immune pathways
were calculated using the Gene Set Variation Analysis (GSVA) package. The
ConsensusClusterPlus package was used to cluster samples. Novel modules
and hub genes were identified using weighted correlation network analysis
(WGCNA). Receiver operating characteristic (ROC) and calibration curves were
plotted, and decision curve analysis (DCA) were performed to evaluate the model
in the training and validation cohorts. A connectivity map was used as a drug
probe.

Results: Two subtypes with significant differences in prognosis were identified
based on themetabolism-related pathways. Subtype C1 had a poor prognosis, low
metabolic levels, and a unique immune signature. CDS2, LCLAT1, GPD1L, AGPAT1,
ALDH3A1, LAP3, ADH5, AHCYL2, and MDH1 were used to distinguish between the
two subtypes. Finally, subtype-specific drugs, which can potentially treat IPF, were
identified.

Conclusion: The aberrant activation of metabolism-related pathways contributes
to differential prognoses in patients with IPF. Collectively, our findings provide
novel mechanistic insights into subtyping IPF based on the metabolism-related
pathway and potential treatments, which would help clinicians provide subtype-
specific individualized therapeutic management to patients.
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1 Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic respiratory
disease characterized by the destruction of healthy pulmonary
tissue, which is replaced by fibrotic remodeling (Richeldi et al.,
2017). The incidence and mortality of IPF have increased
worldwide, placing a considerable burden on society
(Hutchinson et al., 2014; Maher et al., 2021). The prognosis of
IPF is poor, with a 5-year survival rate of 31% (Khor et al., 2020)
although some patients may live longer (Lederer and Martinez,
2018). Thus, there is an urgent need to identify the heterogeneity
of IPF prognosis and develop precise therapies.

Metabolomics has recently become a popular topic for
researchers exploring health conditions in humans (Surendran
et al., 2022). Metabolomics has reportedly helped elucidate the
pathological mechanism of IPF (Roque and Romero, 2021;
Gonzalez-Garcia et al., 2022; Wygrecka et al., 2023). Several
studies have demonstrated that lipidomic markers can be used
to diagnose IPF, indicating their involvement in lipid metabolism
(Yan et al., 2017; Rindlisbacher et al., 2018). Metabolic pathways
related to energy consumption, such as the tricarboxylic acid
cycle, are accelerated in the lungs of patients with IPF (Kang et al.,
2016; Zhao et al., 2017). Similar results have been obtained in
mouse models, demonstrating that metabolic pathways are
involved in IPF pathogenesis (Xie et al., 2015; Chung et al.,
2019). Based on these findings, researchers have explored
possible treatments. Small molecule-mediated 8-oxoguanine
DNA glycosylase-1 (OGG1) inhibition has a potential role in
pulmonary fibrosis and a modulatory effect on metabolic
syndromes (Tanner et al., 2023). Zhu et al. (2021) reported
that drug-targeted iron metabolism could inactivate fibroblasts
and attenuate pulmonary fibrosis. However, as a call for
personalized management based on treatable traits (Amati
et al., 2023), few studies have focused on distinguishing IPF to
provide individualized metabolic therapies. Therefore,
stratification of metabolic characteristics is potentially suitable
for identifying the subtypes of candidate treatments for patients
with IPF.

Accordingly, we aimed to classify patients into subtypes based
on their metabolism-related pathways that significantly alter the
prognosis. Furthermore, we investigated the hub genes to further aid
in distinguishing between the two subtypes. Finally, putative drugs
for precise treatment of different subtypes were probed.

2 Materials and methods

2.1 Data collection and processing

Gene expression data and related clinical information were
extracted from the Gene Expression Omnibus (GEO) database
(Supplementary Tables S1 and S2). The GSE70867 dataset was
used for training analysis, and normalized gene profiles were
mapped using the GPL14550 and GPL17077 probes. The
GSE93606 dataset was used for validation analysis, and
normalized gene profiles were mapped using
GPL11532 probes. Patients in these datasets were diagnosed
with IPF by matching their survival-related information.

Survival status was defined as death as the positive endpoint
and was censored as the negative endpoint. After removing the
batch effect using the SVA R package (Johnson et al., 2007), the
gene expression data were collected for further analysis.
Subsequent analyses were performed using R version 4.1.3 and
online tools.

2.2 Metabolism-related subtyping

Metabolism-related pathway gene sets were obtained using gene
set enrichment analysis (GSEA) (Mootha et al., 2003; Subramanian
et al., 2005). Single-sample GSEA (ssGSEA) was performed on the
training and validation cohorts to calculate the enriched fraction of
each pathway in the different samples using the GSVA R package
(Barbie et al., 2009). A total of 41 metabolism-related pathways were
used to construct a consistencymatrix using the ConsensusClusterPlus R
package (Wilkerson and Hayes, 2010). The PAM algorithm was selected
to perform 100 bootstraps, each of which ensured an 80% involvement of
the original dataset. The k-values of the clusters ranged from 2 to 6. After
classification, the view was mapped using the uniform manifold
approximation and projection (UMAP) method to reduce the space
dimension. The Kaplan–Meier method was used to calculate the median
survival time, and survival comparisons between different subtypes were
performed using the log-rank test, with p-values <0.05 considered
significant.

2.3 Immune-related analysis

Enriched fractions for immune pathways and cells were
obtained for each sample using ssGSEA. The immune-related
data were obtained from published literature (Charoentong et al.,
2017). The Wilcoxon rank-sum test was used to assess the
differences in immune cell infiltration and immune pathway
enrichment between metabolism-related subtypes. Pearson’s
correlation analysis was performed to visualize the relationships
between the metabolic and immune pathways in each subtype.

2.4 Weighted gene co-expression network
analysis

Weighted gene co-expression network analysis (WGCNA)
(Langfelder and Horvath, 2008; 2012) was performed on
143 samples using 1,723 metabolism-related genes obtained
from GSEA. An independence power value of approximately
0.85–0.9 was set to construct an unsigned topology matrix with a
minimum of 30 genes and a maximum of 0.75 similarities
between each module. Module–trait relationship analysis was
then performed to calculate the correlation between each
module and the features of the subtype. Module gene
enrichment analysis was performed using Metascape (https://
metascape.org/) (Zhou et al., 2019), and enrichment terms were
significant at p-values <0.01. Hub genes were identified using
Molecular Complex Detection (MCODE) (Bader and Hogue,
2003) in Metascape, and visualization was performed using
Cytoscape (Shannon et al., 2003).
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2.5 Diagnostic efficiency analysis of hub
genes

Logistic regression was used to construct a model with hub genes
to better predict the metabolism-related subtypes. A receiver
operating characteristic (ROC) curve was constructed using the
ROC R package (Sing et al., 2005) to assess the discriminatory ability
of the model. A calibration curve was applied to assess the predictive
accuracy of the model using the bootstrap method with 1,000 re-
samplings (Van Calster et al., 2019). The Hosmer–Lemeshow (HL)
test was added to the calibration curve, which recognized a

p-value >0.05 as a good model fitting and calibration. The
decision curve analysis (DCA) was applied to assess the clinical
applicability of the model (Vickers and Elkin, 2006). The training
and validation cohorts were subjected to these analyses.

2.6 Connectivity map analysis

To explore potential drugs for different subtypes, a Connectivity
Map (CMap) (https://clue.io/) was used for drug identification. The
L1000 method was used to identify perturbations in the mechanism

FIGURE 1
identification of metabolism-related subtypes of IPF. (A) Cumulative distribution function curves of the training cohort. (B) Sample clustering
heatmap of the training cohort. (C) Uniform manifold approximation and projection (UMAP) plot for the two subtypes in the training cohort. (D)
Kaplan–Meier curves displaying the overall survival of the two subtypes in the training cohort (median survival time of subtype C1: 586 days and C2:
1,055 days). (E) Heatmap of the differential enrichment scores of metabolism-related pathways for the two subtypes in the training cohort. (F)
Sample clustering heatmap of the validation cohort. (G) Kaplan–Meier curves depicting the overall survival of the two subtypes in the validation cohort
(median survival time of subtype C1: 495 days and C2: 960 days).
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of action (MoA) or biological functions caused by drug treatment of
cells, which helped assess the possibility of drug application for
different subtypes (Subramanian et al., 2017).

3 Results

3.1 The identification of the metabolism-
related subtypes

To better understand metabolism-related mechanisms in IPF,
we calculated the scores of the metabolism-related pathways

using ssGSEA in both the training and validation cohorts
(Supplementary Tables S3 and S4). Based on the
41 metabolism-related pathways, we chose k = 2 to cluster the
samples into two subtypes (Figures 1A,B). We then used UMAP
to project the samples into a two-dimensional space, and subtype
C1 was distinguished from C2 (Figure 1C). By constructing a
survival analysis, we observed that subtype C1 had a significantly
shorter survival time than C2 (Figure 1D). To provide an
overview of the differences between the two subtypes, we
generated a heatmap showing the landscape of the
metabolism-related pathway enrichment (Figure 1E).
Considering all enrichments, subtype C1 exhibited a lower

FIGURE 2
Immune landscape of metabolism-related subtypes in IPF. (A) Heatmap and (C) violin plots of differential enrichment scores of the immune cell
signatures of the two subtypes. (B) Heatmap and (D) violin plots of differential enrichment scores of immune pathway categories of the two subtypes.
Correlation betweenmetabolism-related and immune pathways in (E) subtype C1 and (F) subtype C2. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001;
ns, no significance.
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degree of metabolism than C2. In the validation cohort, we used
the same parameters to cluster the samples into two subtypes
(Figure 1F). Consistent with the results in the training cohort, the
metabolism-related subtypes were significantly different in the
validation cohort (Figure 1G). These results indicate that
metabolic heterogeneity exists in IPF, which manifests
differently according to metabolic status and can consistently
distinguish the prognosis of patients in different cohorts.

3.2 Immune analysis of metabolism-related
subtypes

Given that immune dysregulation plays a role in IPF (Shenderov
et al., 2021), we compared the immune landscapes of the two
subtypes. We analyzed immune cell infiltration and the immune
pathway enrichment using a heatmap (Figures 2A,B) and a
corresponding violin plot (Figures 2C,D). We observed that
effector memory CD8+ T cells, macrophages, and neutrophils
showed increased infiltration in subtype C1 than in C2.
Moreover, the antimicrobials, chemokines, cytokines, and
transforming growth factor beta (TGF-β) family members were
more enriched in subtype C1 than in subtype C2. Based on these
findings, we examined the correlation between metabolic and
immune pathways to investigate the potential crosstalk in each
subtype (Figures 2E,F). We observed more negative correlations
between metabolic and immune pathways in subtype C1 than in
subtype C2. Collectively, our results suggest that the immune

signature differs between the IPF subtypes C1 and C2, indicating
differences in the immune microenvironment.

3.3 Identification of novel modules and hub
genes

To investigate the key genes in the metabolism-related subtypes,
we performed WGCNA. First, we used a hierarchical clustering
algorithm to cluster the samples using an average calculation
(Figure 3A). To obtain a balance between independence and
connectivity, we chose six participants to create a scale-free
network (Figures 3B,C) based on which a topological matrix was
constructed. We obtained yellow, brown, blue, and turquoise
modules, each of which contained clustered genes (Figures 3D,E).
To identify the key genes, we first analyzed the module-trait
relationships for modules and subtypes (Figure 4A). The
turquoise and yellow modules (Supplementary Tables S5 and S6)
exhibited apparent differences in their correlations with subtypes.
Both were positively correlated with subtype C2 and negatively
correlated with subtype C1, indicating that patients with a higher
fraction of the two modules were more likely to have subtype C2.
The smaller the fraction of the two modules, the more likely it was
for the possible subtype to be C1. Notably, both the turquoise and
yellow modules were highly enriched in lipid-related metabolism
(Figures 4B,C). We then detected the hub genes in each correlated
module using the MCODE algorithm (Figures 4D,E). Thus, we
identified the hub genes CDS2, LCLAT1, GPD1L, AGPAT1,

FIGURE 3
Identification of metabolism-related gene modules. (A) Sample clustering. (B) Scale-free fit index for various soft-thresholding powers. (C) Mean
connectivity for various soft-thresholding power values. (D) Dendrogram of metabolism-related genes clustered using the one-step method. (E) Gene
numbers for each module.
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ALDH3A1, LAP3, ADH5, AHCYL2, and MDH1 in turquoise and
PGM2L1, UGP2, AGL, AK3, ENTPD1, NME7, POLR2B, ACSL3,
and DLD in yellow. These hub genes might play pivotal roles in the
metabolic microenvironment of IPF and could be potential
biomarkers for distinguishing the two subtypes of IPF.

3.4 Diagnostic efficiency of hub genes

We used the identified hub genes to efficiently diagnose the
metabolism-related subtypes. To simplify the diagnosis, we selected
the hub genes in the turquoise module, which were more closely
related, for further analysis. We constructed a diagnostic model
based on nine genes in the turquoise module to distinguish between
subtypes C1 and C2. We evaluated the discriminatory ability of the
model by generating a ROC curve (Figures 5A,B). The AUCs were
0.82 and 0.73 in the training and validation cohorts, respectively,
indicating that the model can efficiently discriminate the two
subtypes. Additionally, we constructed a calibration curve to
evaluate the accuracy of the model (Figures 5C,D). The
calibration curves in the training and validation cohorts revealed
good predictive accuracy, with a p-value >0.05 for HL tests.
Furthermore, we performed DCA to analyze the clinical benefits
of the model (Figures 5E,F). As shown in the figures, the model
could identify the positive benefits of clinical intervention.

Collectively, the model constructed using hub genes could be an
effective tool for distinguishing the different subtypes of IPF.

3.5 Drug probe of different subtypes

Since there are limited treatment options available for IPF, we
screened drug probes for the metabolism-related subtypes using
CMap. We identified 30 compounds targeting 30 molecular
pathways and 30 compounds targeting 28 pathways for subtypes
C1 and C2, respectively (Figures 6A,B). No molecular pathways
were shared between the two subtypes for drug probes. Notably,
some mechanisms of action involved more than one compound,
such as an adenosine receptor agonist and a calcium channel blocker
for subtype C1. Conversely, topoisomerase inhibitors exhibited a
potent mechanism of action against subtype C2. Therefore, these
findings indicate that the drugs suitable for the two subtypes may
differ and may require further consideration for future treatment.

4 Discussion

In our study, we identified two subtypes based on
41 metabolism-related pathways that showed significant
differences in prognosis between the training and validation

FIGURE 4
Identification of metabolism-related hub genes in IPF. (A) Heatmap of the correlation between modules and metabolism-related subtypes. (B)
Enrichment analysis of the turquoise module. (C) Enrichment analysis of the yellow module. (D)Hub genes in the turquoise module. (E)Hub genes in the
yellow module.
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cohorts. Furthermore, nine genes (CDS2, LCLAT1, GPD1L,
AGPAT1, ALDH3A1, LAP3, ADH5, AHCYL2, and MDH1) were
investigated to construct a model to distinguish between the two
subtypes, with good discrimination and calibration. Notably,
subtype C1, which displayed a low metabolic level, demonstrated
a shorter survival time than subtype C2, which exhibited a high
metabolic level. These findings suggest that metabolism-related
pathways may help predict the prognosis of patients with IPF. To
our knowledge, this is the first study to classify patients with IPF
based on multiple metabolic pathways and screen potential
treatments for each subtype.

Derricks et al. (2013) demonstrated that metabolic agents such
as ascorbate could upregulate the synthesis of elastin and collagen,
which could promote the deposition of the extracellular matrix
(ECM). Lipidmetabolism is a critical component in this process. In a
mouse model, a lack of lipid synthesis increased endoplasmic
reticular stress, which aggravated the remodeling of lung tissue

(Romero et al., 2018). Similarly, dysfunction of apolipoprotein A
could result in cholesterol deposition in alveolar macrophages,
leading to the formation of foam cells, fibrosis, and remodeling
of the lung tissue (Wygrecka et al., 2023). Ivanova et al. (2013)
demonstrated promising results that liposomal prostaglandin
E2 attenuated the extent of bleomycin-induced fibrosis in mice.
Moreover, in clinical research, lipid metabolism-related products,
such as amyloid A and adiponectin, are prognostic markers in
clinical research (Vietri et al., 2019; d’Alessandro et al., 2020).
Additionally, the activation of hypoxic response elements can
modify glycolysis to promote the proliferation and differentiation
of myofibroblasts during IPF progression (Dabral et al., 2019;
Contreras-Lopez et al., 2020). Overall, subtyping based on
metabolism-related pathways is an effective way of determining
the prognosis of patients with IPF.

To determine the differences between the two subtypes, we
performed an immune-related analysis. There was a negative

FIGURE 5
Diagnostic efficiency of themodel based on hub genes. ROC curves of the diagnostic model in the (A) training and (B) validation cohorts. Calibration
curves of the diagnostic model in the (C) training (HL test, p = 0.228) and (D) validation cohorts (HL test, p = 0.109). DCA of the diagnostic model in the (E)
training and (F) validation cohorts.
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correlation between metabolism and immunity in subtype C1.
Owing to the low metabolism level in subtype C1, it may reach a
more pronounced immune signature than subtype C2. This was
demonstrated by the significant infiltration of immune cells and
enrichment of immune pathways in subtype C1. Therefore, we
hypothesized that metabolic dysregulation might correlate with
immune status and promote pulmonary fibrosis by causing
aberrative activation of immune cells. Researchers have
previously used single-cell sequencing to identify an increase in
CD8 effector memory T cells and alveolar macrophages with
interferon-gamma (IFN-γ) enrichment in lung tissues affected by
IPF, indicating the activation of adaptive immunity (Serezani et al.,
2022). Additionally, monocyte-derived alveolar macrophages
reportedly promote fibrosis, indicating the heterogeneity of

macrophages in the IPF (Misharin et al., 2017). Furthermore,
metabolic reprogramming in macrophages has been extensively
studied, which contributes to the metabolic dysregulation of
cholesterol and fatty acids (Batista-Gonzalez et al., 2019;
Ahangari et al., 2023). Cholesterol deposition in macrophages
results in the formation of foam cells. The accumulation of these
leads to the activation of inflammatory response and increased
oxidative stress in lung tissue, thereby promoting fibroblast
differentiation and collagen deposition; this contributes to the
progression of IPF (Wygrecka et al., 2023). The utilization and
oxidation of fatty acids can provide energy for M2 macrophages to
perform their biological functions, promoting fibrosis via TGF-β in
IPF (Odegaard and Chawla, 2011; He et al., 2016; Rui et al., 2022).
Meanwhile, a previous study found that M2 cells have glucose
utilization properties, which can activate M2 polarization (Huang
et al., 2016). Therefore, the aberrant metabolism-related pathway
activation promotes fibrotic functions in macrophages. Neutrophils
release neutrophil extracellular traps (NETs), which play a pro-
fibrotic role in response to chronic inflammatory stimulation by
activating the proliferation and differentiation of fibroblasts to
promote collagen deposition (Chrysanthopoulou et al., 2014;
Suzuki et al., 2020). Furthermore, mitochondrial inner membrane
proteins, which participate in mitochondrial energy metabolism and
maintain the stability of metabolic pathways, are essential for
forming and releasing extracellular trapping nets from
neutrophils (Amini et al., 2018). Thus, the relationship between
metabolism and immunity may result in a high level of immunity in
subtype C1, leading to the progression of pulmonary fibrosis and a
poor prognosis.

We constructed a nine-gene diagnostic model to efficiently
distinguish between the two subtypes. One of the genes in this
model, CDS2, is involved in synthesizing phosphatidylinositol and
plays a novel role in the progression of inflammation and fibrosis via
mitochondrial dysfunction (Xu et al., 2022). Similarly, LCLAT1,
which regulates linoleic acid levels, affects mitochondrial function
and reactive oxygen species (ROS) generation, contributing to
pulmonary fibrosis (Huang et al., 2014). Another gene, GPD1L,
is involved in fibroblast proliferation and collagen synthesis in the
atrium (Hao et al., 2022). Other genes, including AGPAT1,
ALDH3A1, LAP3, and ADH5, have been shown to have different
functions in fibrosis in various diseases (Tang et al., 2013; Niu et al.,
2019; Irungbam et al., 2020; Talpan et al., 2023). Notably, we
identified the novel role of AHCYL2 and MDH1 in IPF;
however, further validation is required.

The nine-gene model demonstrated statistically robust results,
with significant discrimination and calibration in both the training
and validation cohorts, suggesting its potential clinical value.
Furthermore, a drug probe was developed to distinguish between
the two subtypes. It utilizes the gene expression signatures in
different subtypes to connect with similar expression signatures
in CMap, suggesting that the corresponding drugs that had caused
these CMap signatures may confer related biological effects.
Therefore, in this study, the corresponding CMap drug was the
potential drug we explored for treating each IPF subtype. Drugs for
subtype C1 focus on adenosine receptor activation, which can
inhibit macrophage profibrotic function and abnormal metabolic
activation (Csoka et al., 2014). Drugs for subtype C2, such as those
targeting the inhibition of CDK, affect glucose and lactic acid

FIGURE 6
Candidate drugs and their mechanism in different subtypes of
IPF. (A) 30 compounds and 30 molecular pathways in subtype C1. (B)
30 compounds and 28 molecular pathways in subtype C2.
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metabolism, which might be treatable for patients (Carvalhal et al.,
2003). The drugs and mechanisms of action in the two subtypes
suggest that different metabolism-related subtypes might have
different treatable traits.

Our study has several limitations. First, the subtyping validation
was performed in only one cohort, which might limit the
generalizability of the results. Therefore, further validation using
larger cohorts is required to increase the reliability of the results.
Second, the lack of experimental verification in this study limits our
understanding of the metabolic differences between the two
subtypes. Thus, future studies should focus on verifying the
metabolic levels in animal models and evaluating immune cell
infiltration in vivo to further understand the biological
mechanisms underlying IPF. Third, our study only identified
markers for subtyping IPF; their efficiency in clinical practice still
needs to be tested in human subjects. Therefore, further studies are
needed to examine the efficiency of these markers and their value in
clinical practice.

5 Conclusion

In conclusion, our findings confirmed that metabolic heterogeneity
exists in patients with IPF. Furthermore, metabolic dysregulation
contributes to the progression of pulmonary fibrosis, and different
metabolic levels could result in different prognoses. Our diagnostic
model, with two IPF prognosis-related subtypes based on
41 metabolism-related pathways, can aid clinicians in efficiently
identifying patients with a poor prognosis, thereby facilitating
individualized therapeutic management and shorter follow-up periods.
Furthermore, the potential drugs identified in our study could aid in
treating patients based on their distinctive subtypes. Further investigation
is required to validate the clinical efficacy of the identified drugs and their
potential to target metabolic pathways and treat IPF. Nonetheless, our
findings provide novel insights into distinguishing patients with IPF
based on metabolism-related pathways and developing individual
treatment strategies for patients in different subtypes.
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