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Introduction: Corni Fructus (CF) is a Chinese herbal medicine used for medicinal
and dietary purposes. It is available commercially in two main forms: raw CF
(unprocessed CF) and wine-processed CF. Clinical observations have indicated
that wine-processed CF exhibits superior hypoglycemic activity compared to its
raw counterpart. However, the mechanisms responsible for this improvement are
not well understood.

Methods: To address this gap in knowledge, we conductedmetabolomics analysis
using ultra-performance liquid chromatography-quadrupole/time-of-flight mass
spectrometry (UPLC-QTOF-MS) to compare the chemical composition of
raw CF and wine-processed CF. Subsequently, network analysis, along with
immunofluorescence assays, was employed to elucidate the potential targets
and mechanisms underlying the hypoglycemic effects of metabolites in CF.

Results: Our results revealed significant compositional differences between raw
CF and wine-processed CF, identifying 34 potential markers for distinguishing
between the two forms of CF. Notably, wine processing led to a marked decrease
in iridoid glycosides and flavonoid glycosides, which are abundant in raw CF.
Network analysis predictions provided clues that eight compounds might serve as
hypoglycemic metabolites of CF, and glucokinase (GCK) and adenylate cyclase
(ADCYs) were speculated as possible key targets responsible for the hypoglycemic
effects of CF. Immunofluorescence assays confirmed that oleanolic acid and
ursolic acid, two bioactive compounds present in CF, significantly upregulated the
expression of GCK and ADCYs in the HepG2 cell model.

Discussion: These findings support the notion that CF exerted hypoglycemic
activity via multiple components and targets, shedding light on the impact of
processing methods on the chemical composition and hypoglycemic activity of
Chinese herbal medicine.
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1 Introduction

Corni Fructus (CF; shanzhuyu in Chinese), derived from the
dried mature fruits of Cornus officinalis Sieb. et Zucc., which had
been widely used in traditional Chinese medicine (TCM) in Asia to
treat multiple diseases (Cui et al., 2021). As a TCM, CF has been
extensively utilized in China to treat diabetes by nourishing the liver
and kidney, addressing kidney deficiency, regulating hypertension
and other related diseases (Gao et al., 2021). Moreover, CF is an
important medicinal component in many classic TCM
prescriptions, such as Liuwei Dihuang pill and Zuogui pill (Zhou
et al., 2020). Modern pharmacological studies have indicated that CF
exhibits a broad spectrum of pharmacological activities, including
hypoglycemic and hypolipidemic activity, liver and kidney
protection, and other activities (Huang et al., 2018).
Phytochemical research revealed that active components of CF
majorly include iridoids, flavonoids, and triterpenes, which are
employed for antioxidative, antidiabetic, and antineoplastic
activities (Ma et al., 2014; Dong et al., 2018).

Processing is an essential step in TCM preparation, which can
alter the properties of medicinal substances, reduce TCM
toxicity, and enhance TCM efficacy (Zhao et al., 2010). In
addition, as two commercial products, there are differences in
pharmacological activity between raw CF and wine-processed
CF. Long-term clinical practice has shown that compared to raw
CF, wine-processed CF has stronger effects on nourishing the
liver and kidney, and exhibits superior hypoglycemic activity
(Zhang et al., 2016; Bi et al., 2019). However, the bioactive
chemical changes occurring during the wine processing of CF
remain unclear.

Currently, several studies have been carried out to analyze the
changes in components between raw CF and wine-processed CF
(Cao et al., 2020; Han et al., 2022). Previous studies revealed that
several iridoids showed significant differences in raw CF and wine-
processed CF by HPLC-MS (Wang et al., 2018). However, these

previous studies were only low throughput analyses, fail to
systematically illustrate the chemical alteration involved in the
wine processing of CF, and it is difficult to screen wine-
processing associated markers due to the chemical complexity of
CF. LC-MS based metabolomics is a valuable approach for high-
throughput detection and analysis of secondary metabolites and
active ingredients in medicinal plants (Xie et al., 2022). Moreover,
with the aid of multivariate statistical analysis, metabolomics could
screen meaningful markers for reflecting chemical varieties caused
by TCM processing (Xia et al., 2020; Gao et al., 2022).

In the present study, an integrated strategy was established to
unveil the changes in hypoglycemice metabolites in raw CF and
wine-processed CF. Firstly, ultra-high performance liquid
chromatography-quadrupole time-of-flight mass spectrometry
(UPLC/Q-TOF-MS) based metabolomics was performed to
compare the plant metabolic profiling and metabolites changes of
20 batches CF samples, and differential metabolites responsible for
distinguishing raw CF and wine-processed CF was screened. Then,
the active ingredients of CF and their hypoglycemic potential targets
were predicted by network analysis. Finally, immunofluorescence
assays and quantitative analysis were applied to further verify the
hypoglycemic mechanism of CF in the HepG2 cells model
(Figure 1).

2 Materials and methods

2.1 Chemicals and reagents

Geniposide (Lot: 110749-201919), loganin (Lot: 110640-
201707), morroniside (Lot:111998-201703), rutin (Lot: 100080-
201811), quercetin (Lot: 100081-201610), kaempferol (Lot:
110861-202013), and caffeic acid (Lot: 110885-201703) were all
bought from China National Institutes for Food and Drug
Control (Beijing, China). Gallic acid (Lot: 190715-008), 5-

FIGURE 1
The strategy to discover potential hypoglycemic metabolites based on metabolomics and network analysis.
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hydroxymethylfurfural (Lot: 191015-037) and cornuside (Lot:
190917-066) were purchased from Beijing Ya Xi’er Technology
Co., Ltd. (Beijing, China). Astragalin (Lot: 19092602) was
purchased from Chengdu Herbpurify (Chengdu, China). LC-MS-
grade acetonitrile and methanol were supplied by Merck
(Darmstadt, Germany), and LC-MS-grade formic acid was
purchased from Acslabchem (ACS, United States). Ultrapure
water was supplied by Shenzhen Watsons Distilled Water Co., Ltd.

CF samples were purchased from five herbal pieces factories in
China and identified by Professor Zhiguo Zhang from The First
Hospital of Hunan University of Chinese Medicine. The specific
information is shown in Supplementary Table S1.

2.2 Sample preparation

According to the wine-processingmethods of CF recorded in the
Chinese Pharmacopoeia (National Commission of Chinese
Pharmacopoeia, 2020 version), the raw CF was mixed with wine,
saturated, and the temperature set up at 115°C, then steamed with
high-pressure wine for 1 h, dried for 4 h at 60°C. Finally, it is
removed for cooling, wine-processed CF was prepared.

Each batch of CF sample was weighed 100 g, extracted with
8 volumes of water and refluxed twice for 1 h each at 100°C. And the
CF water extracts was merged, concentrated in vacuum, and
subsequently lyophilized to prepare a CF extract powder. The 3 g
powder was weighed precisely, and then was dissolved in a 30 mL
50%methanol. The solution was sonicated for 30 min, centrifugated,

filtered and obtained the CF sample solution which was used for LC/
MS analysis.

Eleven reference standards, including gallic acid, geniposide,
loganin, morroniside, rutin, quercetin, kaempferol, 5-
hydroxymethylfurfural, caffeic acid, cornuside and astragalin,
were accurately weighed 10 mg, added in a 25 mL volumetric
bottle, and dissolved in methanol yielding a standard solution at
0.4 mg/mL.

2.3 UPLC-Q-TOF-MS conditions

LC-MS/MS (1290UPLC-6540-QTOF, Agilent, United States) was
applied to qualitatively analyze the metabolites in CF, a high-efficiency
C18 column (3.0 × 100 mm, 1.8 μm, Agilent) was used to separate
metabolites, the flow rate was set at 0.4 mL/min, and the separation was
subjected to gradient elutionmode. Themobile phase consisted of water
(included 0.1% formic acid, A) and acetonitrile (B), the elution
conditions are described in the Supplementary Materials. ESI
positive and negative ion mode were adopted in the mass spectrum,
LC-MS analysis methods were used according to our previously
published article (Wang et al., 2020b). Molecule Feature Extractor of
Masshunter Qualitative Analysis (Agilent, United States) was applied to
analyze the primary and secondary mass spectrometry data. The
identification of metabolites in CF were conducted through
comparison with standards and MS/MS fragmentation and GNPS
platform. UPLC-DAD was further performed to quantitatively
analyze metabolites.

FIGURE 2
UPLC fingerprints of different batches of CF extracts. (A) raw CF in positive ion mode; (B) wine-processed CF in positive ion mode; (C) raw CF in
negative ion mode; (D) wine-processed CF in negative ion mode.
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FIGURE 3
Metabolic phenotype differentiation between raw and wine-processed CF. (A) Positive ion mode of PCA score plot (R2X = 0.745, Q2 = 0.275). (B)
Negative ionmode of PCA score plot (R2X = 0.689, Q2 = 0.410). (C)HCAmodel of raw andwine processed CF in positive ionmode. (D)HCAmodel of raw
and wine-processed CF in negative ion mode.

FIGURE 4
Heat map of 34 metabolites of raw CF and wine-processed CF.
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2.4 Multivariate statistical analysis screened

The LC-MS raw data of raw CF and wine-processed CF
samples were imported to MassHunter Profinder (Agilent,
United States), and converted mass spectrometry data into the
matrix format of metabolite peak area, and peak alignment and
matching was performed. Moreover, multivariate statistical
analysis (Simca-p14.0 software, Umetrics AB, Sweden) was
adopted to analyze to all the resultant data matrix. Hierarchical
cluster analysis (HCA) and principal component analysis (PCA) as
unsupervised pattern recognition methods were used to cluster
analysis to distinguish metabolic phenotypes between raw CF and
wine-processed CF. To screen markers associated with wine
processing more effectively, OPLS-DA was used to observe the
main characteristic ingredient for the data variance. The variable
importance parameter (VIP > 1) value of the validated OPLS-DA
model and p < 0.05 in the Student’s test were taken as candidate
distinguishing markers. Finally, the structures of metabolites were
determined by analyzing the elemental compositions and MS/MS
fragmentation, and compared the retention time of samples with
authentic standards. GNPS (https://gnps.ucsd.edu/ProteoSAFe/
static/gnps-splash.jsp), PubChem (https://pubchem.ncbi.nlm.nih.

gov/) and references were used for the annotation of distinguishing
metabolites.

2.5 Network analysis

The targets of wine-processed CF metabolites were predicted
from the TCMSP database and the Swiss Target Prediction platform,
the species was set Homo sapiens (Dai et al., 2016; Gan et al., 2021).
Then, all targets of CF metabolites were merged, and standardized
into official gene names via the UniProt database (Pundir et al.,
2016). The disease-related genes were screened out by DisGeNET
(Piñero et al., 2020), GeneCards (Fishilevich et al., 2016), andOMIM
(Hamosh et al., 2021). Using the Venn diagram to obtain the
intersection targets between metabolites targets and diabetes
targets. The intersection targets were uploaded to the STRING
database (Szklarczyk et al., 2023) to construct the protein-protein
interaction (PPI) network. Cytoscape software (version 3.9.2) was
applied to analyze the PPI network, the hub hypoglycemic targets of
CF, according to the topological parameters of “degree”. The KEGG
pathway and Gene Ontology (GO) enrichments of potential targets
were analyzed by the DAVID database (Huang et al., 2007), “Homo

FIGURE 5
The relative content changes of 9 metabolic markers.

Frontiers in Pharmacology frontiersin.org05

Zhou et al. 10.3389/fphar.2023.1173747

https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp
https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1173747


sapiens” and p < 0.05 was selected as the standard of the KEGG
pathway.

2.6 Cell culture and treatment

HepG2 cells (Procell Life Science & Technology Co., Ltd., China,
CL-0103) were cultured at 37°C in 5% CO2, the medium contained
10% fetal bovine serum (FBS) supplemented with 100 U/mL
penicillin and 100 g/mL streptomycin (HyClone, United States)
in high glucose Dulbecco’s Modified Eagle Medium (DMEM)

(Gibco, United States), HepG2 cells in logarithmic phase were
seeded into 96-well plates for 24 h.

2.7 Effect of CF metabolites on the viability
of HepG2 cells

Cell viability was examined using the CCK-8 kit (Bioss, China).
Briefly, HepG2 cells in the logarithmic phase were cultured into 96-well
plates for 24 h. Then, the medium was replaced with DMEM culture
medium without FBS containing metabolites groups at different molar

FIGURE 6
Venn diagram of potential targets (A). PPI network diagram (B). A comprehensive metabolites-targets-pathway interaction network (C). GO
enrichment analysis of potential targets (D). KEGG pathway enrichment analysis (E).
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concentrations (10 μM, 1 μM, 0.1 μM, 0.01 μM) for 24 h. Ten tested
groups were divided into control group, 0.5% DMSO (vehicle),
kaempferol, oleanolic acid, loganin, quercetin, ursolic acid,
morroniside and active metabolites of CF (six standard solutions
were mixed in equal proportions). Next, 10 µL of CCK-8 was added
to each well and cultured at 37°C for 1 h. The optical density was
measured at 450 nm using a microplate reader (PerkinElmer, Enspire).

2.8 Glucose consumption for normal
HepG2 cells

HepG2 cells in logarithmic phase were seeded into 96-well plates for
24 h, DMEM culture medium without FBS was replaced and cultured
for 12 h, then the medium was discarded, and the culture medium of
drug groups was added for 24 h. Furthermore, the content of glucose in
the supernatant of the culture medium was tested with a glucose
detection kit (Robio, China), glucose consumption = glucose content
of blank group-glucose content of drug group.

2.9 Immunofluorescence assay and
quantitative analysis

Treated HepG2 cells were incubated for 24 h, washed with PBS
three times, fixed with fixative for 45 min, and treated with 0.25%
triton-100 for 15 min. Then, blocked with 5% bovine serum albumin
for 20 min, incubated with anti-GCK (1:100) and anti-ADCYs
(ADCY2, ADCY3, ADCY8 and ADCY9) (1:100) in the dark
overnight in a humidified container at 4°C. Following incubation
with sheep anti-rabbit IgG (H + L) secondary antibody, cells were
subsequently stained with DAPI. The protein expression level and
images were observed in laser scanning confocal microscopy.

2.10 Statistical analysis

Statistical analysis was performed by SPSS 25.0, and mean ±
standard deviation was used to express the data. The comparison
between groups was conducted by one-way analysis of variance

FIGURE 7
Protein expression of ADCYs (ADCY2, ADCY3, ADCY8, ADCY9) in ten tested groups by immunoluorescence staining and relative luorescence
intensity. Representative confocal images (A) and relative luorescence intensity of GCK (B). Mean ± SD, n = 3. **p < 0.01, *p < 0.05 vs. control group. a,
control; b, dimethylsulfoxide; c, kaempferol; d, oleanolic acid; e, loganin; f, quercetin; g, ursolic acid; h, morroniside; i, metformin; j, active components of
CF; DMSO, dimethylsulfoxide. Image magniication: ×200.
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(ANOVA). p < 0.05 indicated that the difference was statistically
significant.

3 Results

3.1 Chemical profiling of CF

The fingerprint of raw CF and wine-processed CF was
established, as depicted in Figures 2A–D. A total of

20 batches of CF samples were analyzed using the software
Chinese Medicine Fingerprint Similarity Evaluation (2012A
version) to calculate the similarity values between raw CF
and wine-processed products, The similarity index ranged
from 0.745 to 0.984, indicating substantial differences
between raw CF and wine-processed CF. By comparing with
reference standards, a total of 11 metabolites were identified.
This suggests that the chemical composition of CF varies among
different batches. The results are presented in Supplementary
Table S2.

FIGURE 8
Protein expression of ADCYs (ADCY2, ADCY3, ADCY8, ADCY9) in ten tested groups by immunoluorescence staining and relative luorescence
intensity. Representative confocal images (A) and relative luorescence intensity of ADCY2 (C). Representative confocal images (B) and relative
luorescence intensity of ADCY3 (D). Representative confocal images (E) and relative luorescence intensity of ADCY8 (G). Representative confocal images
(F) and relative luorescence intensity of ADCY9 (H). Mean ± SD, n = 3. **p < 0.01, *p < 0.05 vs. control group. a, control; b, dimethylsulfoxide; c,
kaempferol; d, oleanolic acid; e, loganin; f, quercetin; g, ursolic acid; h, morroniside; i, metformin; j, active components of CF; DMSO, dimethylsulfoxide.
Image magniication: ×200.
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TABLE 1 Identification of metabolites in raw CF and wine-processed CF samples by UPLC-QTOF-MS/MS.

Peak ID Rt (min) Identification Molecular Molecular Theoretical Error MS/MS fragment VIP P Trend

Formula Ions Exact mass (ppm)

1 1.15 Daphnin C15H16O9 [M + Na]+ 363.0697 −3.60 +: 346.9664, 333.7759,282.2018 2.0453 3.98E-08 ↓

2 1.45 3-Phenylpropanal C9H8O [M + NH4]+ 150.0915 −1.11 +: 122.0542, 109.0287, 97.0282 2.0210 2.56E-07 ↓

3 1.67 Naringenin C15H12O5 [M − H]− 271.0604 2.09 −: 179.8501,151.0150,119.0602 1.3224 0.019737 ↓

4 2.67 Gallic acid C7H6O5 [M + H]+ 171.0282 3.27 +: 139.0424,111.0438,93.0341 1.4870 0.048389 ↑

5 3.86 Theogallin C14H16O10 [M + H]+ 345.0806 1.09 +: 257.0238,153.0186,125.0321 1.9985 1.04E-06 ↓

6 4.22 2,3-di-O-galloyl-D-glucose C20H20O14 [M − H]− 483.0785 −0.81 −: 331.0788,271.0599,169.0259 1.4300 0.000065 ↓

7 5.91 Loganic acid C16H24O10 [[M − H]− 375.1295 −2.07 −: 213.0891,169.0986,113.0354 1.3784 0.001739 ↓

8 6.57 Neoisoastilbin C21H22O11 [M + CH3COO]
- 509.1316 −3.17 −: 329.0771,271.0578,205.0262 1.3913 0.013253 ↓

9 6.72 Sarracenin C11H14O5 [M + H]+ 227.0917 −2.28 +: 177.0551,155.0343,139.0394 1.6624 0.000040 ↓

10 6.80 Morroniside C17H26O11 [M − H]− 405.1409 −1.56 −: 243.1020,155.0463,101.0352 1.2161 0.009525 ↑

11 7.54 Geniposide C17H24O10 [M + H]+ 389.1445 0.12 +: 227.1225,161.0623,111.0394 1.4721 0.011809 ↑

12 8.53 3,4-di-O-galloylquinic acid C21H20O14 [M + H]+ 497.0945 −3.4 +: 416.7445,291.0499,153.0178 1.2052 0.031532 ↑

13 9.85 Cornuside Ⅲ C21H30O14 [M − H]− 505.1566 −0.60 −: 389.1476,227.1046,101.0349 1.2801 0.017282 ↓

14 10.69 Naringenin-7-O-glucoside C21H22O10 [M + COOH]− 479.1202 −1.30 −: 317.0740,205.0262,151.0180 1.4963 0.000680 ↓

15 10.75 Tartaric acid C4H6O6 [M − H]− 149.0092 0.31 −: 105.0312,87.0190,73.0020 1.6374 4.16E-06 ↑

16 10.88 Loganin C17H26O10 [M + Na]+ 413.1420 −0.40 +: 229.1070,179.0695,151.0744 1.5386 0.000064 ↓

[M + COOH]− 435.1518 −: 227.1046,127.0511,101.0348

17 11.31 1,2,3-tri-O-galloyl-β-D-glucose C27H24O18 [[M − H]− 635.0896 −0.74 −: 465.0778,313.0686,169.0259 1.0093 0.001452 ↑

18 12.09 Caffeic acid C9H8O4 [M + H]+ 181.0493 0.59 +: 168.0809,153.0556,139.0375 1.9099 0.003414 ↑

19 13.08 2-hydroxycinnamic acid C9H8O3 [M − H]− 163.0395 3.56 −: 145.0352,119.0608,93.0450 1.4905 0.002891 ↑

20 13.61 Cornuside C24H30O14 [M − H]− 541.1564 0.05 −: 379.1038,183.0296,169.0150 1.0203 0.044270 ↓

21 13.73 Quercetin-3-O-arabino-glucoside C26H28O16 [M − H]− 595.1307 −0.79 −: 417.2429,300.0262,209.0527 1.6979 6.54E-09 ↑

22 13.78 Quercetin-3-D-xyloside C20H18O11 [M + COOH]− 479.1202 −0.77 −: 299.0678,255.0786,161.0356 1.6304 3.61E-07 ↑

23 14.01 Betulalbuside A C16H28O7 [M + Na]+, [M + COOH]− 355.1727 −1.47 +:254.0916,201.1956,153.8828 1.869 0.000001 ↓

377.1819 −:282.1093,242.1579,169.0120

24 14.46 Rutin C27H30O16 [M + H]+, [M − H]− 611.1611 −0.75 +: 493.0648, 303.0476,153.0173 1.5921 0.000009 ↓

(Continued on following page)
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TABLE 1 (Continued) Identification of metabolites in raw CF and wine-processed CF samples by UPLC-QTOF-MS/MS.

Peak ID Rt (min) Identification Molecular Molecular Theoretical Error MS/MS fragment VIP P Trend

Formula Ions Exact mass (ppm)

609.1462 −:465.1028,303.0520,163.0413

25 14.92 Quercetin-3-O-glucoside C21H20O12 [M + H]+, [M − H]− 465.1026 −3.50 +:303.0566,195.0987,153.0176 1.4367 8.18E-09 ↓

463.0900 −:311.0535,179.0465,149.0205

26 15.08 Quercetin 3-O-glucuronide C21H18O13 [M + H]+, [M − H]− 479.0829,477.0686 −0.76 +: 303.0504, 257.0456,201.0549 1.6558 2.47E-08 ↓

−: 301.0359,151.0035,113.0246

27 15.31 Kaempferol-3-O-α-L-rhamnose-(1→6)-O-β-D-
glucopyranoside

C27H30O15 [M − H]− 593.1516 −0.81 −: 477.0664,301.0446,135.0181 1.6413 3.61E-06 ↑

28 16.00 Kaempferol-3-O-glucoside C21H20O11 [M − H]− 447.0930 0.72 −: 285.0388,163.0400,149.0074 1.5800 1.39E-07 ↑

29 16.39 5-hydroxymethylfurfural C6H6O3 [M + H]+ 127.0379 8.91 +: 109.0320,97.0240,85.0272 1.9019 7.67E-07 ↑

30 16.57 Salviaflaside methyl ester C25H28O13 [M + H]+ 537.1581 3.63 +: 331.1531, 221.1172,177.0902 1.7635 0.003971 ↑

31 20.19 Quercetin C15H10O7 [M + H]+ 303.0505 −1.74 +: 257.0484,229.0452,153.0178 1.2554 0.000271 ↓

32 25.07 Kaempferol C15H10O6 [M + H]+ 287.0538 3.88 +: 199.9672,153.0196,121.0280 1.3529 9.92E-12 ↓

33 27.56 Ursolic acid C30H48O3 [M + H]+ 457.3670 0.59 +: 407.3275,282.0463,152.9912 1.2952 0.005619 -

34 29.35 Oleanolic acid C30H48O3 [M + H]+ 457.3678 0.70 +: 407.3300,304.0126,162.8334 1.6028 6.51E-05 ↑
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3.2 Multivariate statistical analysis screened
the distinguishing markers between raw CF
and wine-processed CF samples

To visualize metabolic differences between raw CF and wine-
processed CF, we conducted unsupervised principal component
analysis (PCA) in both positive and negative ion modes. As
shown in Figures 3A, B, the PCA score plot clearly segregated
the raw CF and wine-processed CF samples into distinct clusters in
both ion modes, indicating that the processing methods induce
chemical transformations in CF. The PCA model parameters were
R2X = 0.745 and Q2 = 0.275 in the positive ion mode, and R2X =
0.689 and Q2 = 0.410 in the negative ion mode, suggesting the
adequacy of the constructed model. Hierarchical cluster analysis
(HCA) was used to evaluate the similarity of the differential markers
(Figures 3C, D). The results demonstrated that all experimental
samples were effectively separated into two main clusters in negative
ion mode, whereas in the positive ion mode, S5 and P10 exhibited
complete clustering with no distinguishable differences. Both HCA
and PCA model suggested that processing altered chemical
composition of CF.

To screen distinctive markers between raw CF and wine-
processed CF, we employed OPLS-DA for further analysis. The
OPLS-DA score plots demonstrated a clear separation of raw CF and
wine-processed CF samples in both positive ion mode (R2Y = 0.995,

Q2 = 0.938, Supplementary Figure S5) and negative ion mode (R2Y =
0.993, Q2 = 0.935, Supplementary Figure S5). Moreover, the
metabolites accountable for the differences in CF processing were
analyzed using the variable projection (VIP) value in the OPLS-DA
model. Metabolites with VIP >1 in the model, along with a
significant difference in Student’s t-test (p < 0.05), were selected
as criteria to identify differential markers. Finally, the molecular
mass, MS/MS data, and standards were used to determine the
chemical structures of the identified metabolites, leading to
19 markers in the positive ion mode and 20 markers in the
negative ion mode (Table 1).

3.3 Alteration of distinguishing markers
between raw CF and wine-processed CF
samples

To assess the differences between raw CF and wine-processed
CF samples, a heatmap was generated for the aforementioned
potential biomarkers (Figure 4). The color variations observed in
Figure 4 between the groups of raw CF and wine-processed CF
indicate alterations in metabolites following wine-processing. As
shown in Figure 5, four metabolites (geniposide, morroniside, rutin,
and cornuside) experienced a significant decrease in wine-
processed CF, while five other metabolites (loganin, gallic acid,

TABLE 2 The content of 9 markers in different bathes of Corni Fructus samples (mg/g).

Compounds Gallic
acid

Geniposide Morroniside Loganin Cornuside Quercetin Kaempferol Ursolic
acid

Oleanolic
acid

S1 0.678 0.155 5.548 3.650 0.757 0.017 0.002 0.020 0.083

S2 0.692 0.160 5.314 3.570 0.761 0.017 0.002 0.010 0.096

S3 0.731 0.134 5.491 3.693 0.733 0.013 0.002 0.013 0.022

S4 0.743 0.146 5.506 3.717 0.747 0.014 0.002 0.018 0.040

S5 0.538 0.140 5.172 3.757 0.747 0.005 0.001 0.023 0.050

S6 0.538 0.139 5.218 3.785 0.764 0.005 0.001 0.024 0.054

S7 0.664 0.165 5.121 3.497 0.727 0.012 0.002 0.042 0.150

S8 0.686 0.192 5.222 3.625 0.712 0.013 0.002 0.039 0.114

S9 0.662 0.186 4.940 3.861 0.781 0.005 0.001 0.034 0.094

S10 0.681 0.190 4.179 3.654 0.701 0.004 0.002 0.031 0.008

P1 1.557 0.070 3.441 5.143 0.618 0.013 0.008 0.005 0.004

P2 1.505 0.073 3.218 5.177 0.671 0.014 0.008 0.007 0.004

P3 1.538 0.094 3.506 5.141 0.503 0.018 0.006 0.005 0.003

P4 1.587 0.097 3.471 5.267 0.556 0.014 0.005 0.006 0.006

P5 1.156 0.078 3.631 4.140 0.541 0.014 0.006 0.007 0.006

P6 1.083 0.076 3.474 4.118 0.561 0.014 0.009 0.006 0.012

P7 1.525 0.069 3.756 4.084 0.628 0.165 0.005 0.017 0.023

P8 1.538 0.071 3.459 4.029 0.638 0.174 0.008 0.015 0.025

P9 1.503 0.070 3.640 4.090 0.632 0.014 0.005 0.016 0.029

P10 1.571 0.095 3.111 4.006 0.692 0.017 0.009 0.006 0.027
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quercetin, 5-hydroxymethylfurfural, and kaemperfol) increased
(Table 2). The remaining 25 markers change plots were shown
in Supplementary Figure S4. This phenomenon may be attributed
to the compound’s poor stability, as they underwent hydrolysis and
aglycon bond breakage under high temperatures. For example,
morroniside can transform into sarracenin by losing one sugar
moiety. As the wine-processing progresses, the structure of
morroniside would be disrupted. Notably, the levels of gallic acid
increased in wine-processed CF samples, suggesting a potential
transformation of cornuside into gallic acid.

3.4 Network analysis of chemical
composition

To further investigate the potential targets and mechanisms of
hypoglycemic markers, a total of 34 markers were predicted as
431 targets from the TCMSP database and the Swiss Target
Prediction. Subsequently, 1936 diabetes-related targets were
collected by the DisGeNET, GeneCards, and OMIM databases. A
total of 205 targets were found to be mutual between markers-
related targets and diabetes-related targets (Figure 6A). Among
these, 205 targets were used to construct a PPI network using the
STRING website. The “Analyze Network” tool in Cytoscape
3.9.1 was used to screen the targets in PPI according to the
degree values. As a result, 73 hub targets were selected, and the
core PPI network consisted of 73 nodes and 1,106 edges (Figure 6B).
The hub targets are presented in Supplementary Table S3.

Furthermore, the hub targets were subjected to Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses using the DAVID database. The results are
presented in Figure 6D, where the top 10 categories for biological
process (BP), cellular component (CC), and molecular function
(MF) are visually depicted. Biological process analysis revealed that
CF primarily regulated glucose metabolic processes, glucose
homeostasis, and cellular responses to vascular endothelial
growth factor stimulus. The molecular function analysis
suggested that CF mainly influenced transcription factors,
enzymatic binding, and energy-related activities. In terms of
cellular component, the targets regulated by CF predominantly
involved in the cytoplasm, plasma membrane, and nucleus. The
KEGG pathway enrichment analysis of these shared targets
highlighted the significant regulation of CF on the PI3K-Akt
signaling pathway, Rap1 signaling pathway, and endocrine
resistance pathway (Figure 6E; Supplementary Table S4. To
display the interplay between CF metabolites, targets, and
pathways, a comprehensive metabolites-targets-pathway network
was constructed using Cytoscape software. This network consisted
of twenty-nine metabolites, eight targets, and five pathways
(Figure 6C). To further screen the core components, we
conducted the network topology analysis. Speculatively, eight
potential active metabolites, including kaempferol, quercetin,
oleanolic acid, ursolic acid, loganin, geniposide, morroniside,
cornuside, were implied as key bioactive constituents, EGFR,
AKT1, ADCY2, ADCY3, ADCY8, ADCY9, and GCK were
possible to be the core targets which played important roles in
CF against diabetes. Collectively, these results hinted that CF might

exert its hypoglycemic effect through the modulation of endocrine
metabolism.

3.5 Effect of active ingredients on
HepG2 cells viability

To investigate the hypoglycemic activity of the active
ingredients on HepG2 cells, we evaluated the cytotoxicity of
these compounds (kaempferol, quercetin, oleanolic acid,
ursolic acid, loganin, and morroniside) on HepG2 cell growth.
The results showed that these tested compounds exhibited
significant cytotoxicity towards HepG2 cells at concentrations
ranging from 0.01 μM to 10 μM (Supplementary Figure S6).
Subsequently, glucose consumption experiments were
conducted within this concentration range.

3.6 Effect of active ingredients on glucose
consumption in HepG2 cells

The glucose consumption effect of the active ingredients was
evaluated. Compared to the control group, the positive drug group
treated with metformin showed a significant increase in glucose
consumption in HepG2 cells. These tested compounds also
demonstrated the ability to promote glucose consumption in
HepG2 cells, with a stronger effect observed at higher
concentrations. Specifically, at a concentration of 10 μM, these
tested compounds showed the strongest promotion effect on
glucose consumption (Supplementary Figure S7). These findings
suggest that all these tested compounds have the potential to
enhance glucose consumption in HepG2 cells.

3.7 Protein expression of GCK and ADCYs

Network analysis revealed that these tested compounds of
CF potentially exert a hypoglycemic effect by regulating the core
proteins GCK and ADCYs, thereby affecting multiple pathways.
According to the literature, glucokinase (GCK) and adenylate
cyclases (ADCYs) proteins are considered important targets for
diabetes treatment, glucokinase (GCK) serves as the initial and
rate-limiting step in pancreatic and hepatic glycolysis (Li et al.,
2022), while adenylate cyclases (ADCYs) are involved in the
development of diabetes (Abdel-Halim et al., 2020). To elucidate
the hypoglycemia molecular mechanism of the active
ingredients in HepG2 cells, we investigated the effects of six
compounds on the expression of proteins associated with GCK
and ADCYs. As shown in Figure 7, oleanolic acid, quercetin,
ursolic acid, and metformin groups exhibited higher levels of
GCK protein compared to the control group. Likewise, in
Figure 8, oleanolic acid, ursolic acid, and metformin
treatments led to significant upregulation the proteins of
ADCYs, and quercetin specifically upregulated the protein
expression of ADCY2. These results showed multi-component
of CF may exert hypoglycemic activity via upregulation of GCK
and ADCYs.
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4 Discussion

Currently, the hypoglycemic effect of CF’s active ingredients is
influenced by various factors, such as processing time, processing
methods, and extraction methods (Fan et al., 2022; Huo et al., 2017).
Despite extensive research about the hypoglycemic activity of CF,
there are still knowledge gaps relating to hypoglycemic metabolites,
factors influencing the hypoglycemic effect, and the hypoglycemic
mechanism before and after CF wine processing (Qian et al., 2022).
Therefore, our study employed metabolomics combined with
network analysis to discover bioactive metabolites in raw CF and
wine-processed CF, and to explore the underlying hypoglycemic
mechanisms.

The combination of metabolomics and systems
pharmacology has proven to be a successful strategy for
discovering the markers of TCM (Jiang et al., 2022). Used
metabolomics and network pharmacology to analyze the
quality markers of Sophora flavescent Alt., and successfully
screened, quantified, and verified six potential markers as the
most influential compounds (Chen et al., 2020). Used
metabolomics and network pharmacology to examine the
effects of Frankincense processing (Ning et al., 2018). In our
results, a total of 34 markers were identified, with significant
changes observed in iridoids during the processing process.
During wine processing, the C-7 position in the iridoids
chemical structure could be readily cleaved, the C-4 position
could be easily substituted with hydroxyl groups, and the
formation of glycosides by the disaccharide group becomes
favorable under high temperatures and enzymatic action.
Previous studies have reported that iridoids have the potential
to enhance insulin resistance and ameliorate lipid metabolism
disorders in vivo (Wang et al., 2020a; Gao and Feng 2022).
Additionally, they exhibited blood glucose-lowering effects and
effectiveness in combating diabetic complications (Kong et al.,
2021). Moreover, significant changes in the composition of
flavonoids were observed after wine processing of CF.
Specifically, kaempferol-3-O-α-L-rhamnoside was firstly
discovered to generate during wine processing, while the
presence of kaempferol-3-O-α-L-rhamnose-(1→6)-O-β-D-
glucopyranoside was nearly undetectable based on our
findings. Furthermore, through the analysis of downstream
metabolites, we compared the levels of the kaempferol
glycoside in raw CF and wine-processed CF, and observed a
significant increase in kaempferol content following wine
production. Thus, we cautiously propose that flavonoid
glycosides might underwent deglycoside during the wine-
process, converting into flavonoid aglycon. Further
investigation is needed to determine the potential correlation
between these changes in chemical composition and the variation
in hypoglycemic effects.

Network analysis showed that the significance of iridoids,
flavonoids, and triterpenoids might be hypoglycemic active
compounds. Flavonoids have been reported to enhance
glucose uptake, inhibit aldose reductase, and stimulate insulin
secretion (Kappel et al., 2013). Additionally, two triterpenoids,
oleanolic acid, and ursolic acid, exhibited significant inhibitory
effects on α-glucosidase, resulting in delayed intestinal glucose
absorption and subsequent hypoglycemic effects (Ding et al.,

2018). In accorded with our findings, metabolomics and network
analysis implied that iridoids, flavonoids, and triterpenoids
might serve as potential markers associated with hypoglycemic
effects during wine processing. Furthermore, GCK and ADCYs
have been reported to play an important role in regulating the
endocrine metabolism (Hughes et al., 2021; Tengholm and Gylfe,
2017). GCK, a pivotal enzyme in glucose metabolism (Sternisha
and Miller, 2019), plays a vital role in maintaining glucose
homeostasis, and GCK mutations can contribute to various
monogenic glucose disorders in humans (Osbak et al., 2009).
Studies have reported that CF exhibit blood glucose-lowering
effects, restore hepatic GCK activity, and enhance insulin
sensitivity in peripheral tissues (Moede et al., 2020). ADCYs
are membrane-bound enzymes that catalyze the conversion of
adenosine triphosphate to cyclic adenosine monophosphate
(Tong et al., 2016). Studies suggest that ADCYs may influence
glucose metabolism through glucose-coupled insulin secretion,
and are useful targets for improving insulin secretion in human
(Seed Ahmed et al., 2012). Meanwhile, these results showed CF
metabolites significantly upregulated GCK and ADCYS

expression, compared to the control group, indicating that the
interaction of the metabolites in a Chinese herbal concoction
during the processing impelled the transformation of chemical
metabolites, the efficacy of Chinese herbal medicine does not
depend on one component entirely. It is the result of the
combined action of a variety of indicator metabolites.

Collectively, our findings indicate that wine processing
alterated chemical composition and hypoglycemic activity, the
hypoglycemic of wine processed CF were correlated with the
alterations of iridoids, flavonoids, and triterpenoids. Through the
integration of network analysis, cell viability evaluation, and
immunofluorescence assays, we have established the
correlation between targets and small molecules. Nevertheless,
while we acknowledging the limitations of network analysis,
including uncertainty and unreliability in predicted outcomes,
experimental validation is crucial to ensure result reliability.
Hence, in future experiments, we aim to assess these targets
using in vivo studies and gain deeper insights into the underlying
molecular mechanisms of action.

5 Conclusion

In summary, a strategy by integrating network analysis and
plant metabolomics was developed, to uncover the alteration of
active metabolites of CF during wine processing and the potential
hypoglycemic effects. Initially, 34 markers in CF were tentatively
identified using UPLC-Q-TOF-MS. Subsequently, the OPLS-DA
model revealed that iridoids were the primary differential
metabolites during wine processing. According to the network
analysis, eight compounds, namely, kaempferol, quercetin,
oleanolic acid, ursolic acid, geniposide, loganin, morroniside,
and cornuside, were speculated to be potential hypoglycemic
metabolites of CF. Additionally, GCK and ADCYs were inferred
as hypoglycemic targets. Immunofluorescence assays verified
that oleanolic acid and ursolic acid could upregulate the
expression of GCK and ADCYs in the HepG2 cells model,
suggesting the synergistic hypoglycemic mechanism of CF via
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multicomponent and multitarget interactions. This research
contributes to a novel understanding of the impact of
processing on the metabolites and hypoglycemic activity of
Chinese herbal medicine.
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