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Endoplasmic reticulum (ER) is an important organelle for protein translation,
folding and translocation, as well as the post-translational modification and
assembly of newly synthesized secreted proteins. When the excessive
accumulation of misfolded and/or unfolded proteins exceeds the processing
capacity of ER, ER stress is triggered. The integrated intracellular signal
cascade, namely the unfolded protein response, is induced to avoid ER stress.
ER stress is involved in many pathological and physiological processes including
myocardial diseases. For a long time, hydrogen sulfide (H2S) has been considered
as a toxic gas with the smell of rotten eggs. However, more and more evidences
indicate that H2S is an important gas signal molecule after nitric oxide and carbon
monoxide, and regulates a variety of physiological and pathological processes in
mammals. In recent years, increasing studies have focused on the regulatory
effects of H2S on ER stress in myocardial diseases, however, the mechanism is not
very clear. Therefore, this review focuses on the role of H2S regulation of ER stress
in myocardial diseases, and deeply analyzes the relevant mechanisms so as to lay
the foundation for the future researches.
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1 Introduction

1.1 Overview of endoplasmic reticulum stress

Endoplasmic reticulum (ER) is an organelle of eukaryotic cells, which is responsible for
the synthesis of proteins, carbohydrates and lipids, and regulates the intracellular calcium
concentration via the storage and release of calcium (Wu et al., 2018). In ER cavity, the newly
synthesized peptides are folded and modified to ensure their accurate conformation and
function. The dysfunction of this process induces the accumulation of misfolded or unfolded
proteins in ER, thus triggering the unfolded protein response (UPR) to result in ER stress
(Byrd and Brewer, 2012). UPR can restore ER homeostasis, however, if it fails, UPR will
trigger cell death (Almanza et al., 2019). A variety of physiological and pathological factors
can induce ER stress, including ER oxidative stress, nutritional deficiency, abnormal calcium
content, lipid overload, iron imbalance, hypoxia, cancer and infection (Kaufman et al., 2002;
Marciniak and Ron, 2006; Martins et al., 2016). The ER stress/UPR is mediated by three
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parallel signal pathways: the activated transcription factor 6 (ATF6)
mediated pathway; the pancreatic endoplasmic reticulum kinase
(PERK) mediated pathway and the inositol dependent enzyme 1
(IRE1) mediated pathway (Chen et al., 2022; Lu et al., 2022). When
there is no external stimulation, the binding immunoglobulin (BIP)
combines with PERK, IRE1 and ATF6 to inhibit their activation. The
external stimulation and unfolded/misfolded proteins promote the
separation of BIP from PERK, ATF6 and IRE, thus activating them.
Subsequently, the self-phosphorylated PERK inhibits the protein
synthesis and increases ATF4 expression by phosphorylating eIF2a.
The protease 1 (SP1) and protease 2 (SP2) in Golgi complex cut the
separated ATF6, and the self-phosphorylated IRE1 cleaves
XBP1 mRNA. The cut XBP1, ATF4, and ATF6 upregulate the
expression of ER chaperone gene, and further participate in the
elimination of the unfolded and misfolded protein in ER, and the
recovery of normal cell homeostasis (Figure 1) (Wang et al., 2020; Lv
et al., 2021a; Zhao et al., 2021b; Zhao et al., 2022a). ER stress plays a
key role in many types of physiological and pathological processes,
including cancer, diabetes, neurodegeneration, inflammation and
fibrosis, as well as the physiological events related to organ function
and development (Harada et al., 2021). In recent years, the
increasing evidences indicate that ER stress is involved in
myocardial diseases, however, the related mechanism is not fully
understood.

1.2 Overview of hydrogen sulfide

Hydrogen sulfide (H2S) is a flammable, volatile and colorless gas
with a smell similar to rotten eggs (Arif et al., 2021). Since
Bernardino Ramazzini firstly described hydrogen sulfide (H2S) as
a toxic gas in 1713, many studies on H2S have focused on its toxicity
(Reiffenstein et al., 1992). In 1989, Warnycia et al. confirmed the
existence of endogenous H2S in brain, which indicated that H2S may
have the physiological effects (Warenycia et al., 1989). Since then,
the researches have been mainly carried out to reveal its multiple
regulatory functions (Dilek et al., 2020). In recent years, with the

deepening of researches on H2S, H2S has been considered to be the
third gas signal molecule with multiple biological functions after
nitric oxide (NO) and carbon monoxide (CO) (Paul and Snyder,
2018; Zaorska et al., 2020). In mammalian organisms, H2S can be
produced through the non-enzymatic and enzymatic pathways. The
non-enzymatic process is mainly produced by the decomposition of
the inorganic substances, which has a very small contribution to the
production of H2S (Xiao et al., 2021). Cystathionine-γ-lyase (CSE),
cystathionine-β-synthase (CBS) and 3-mercaptopyruvate
sulfurtransferase (3-MST) are the three important enzymes of the
mammalian enzymatic pathway to produce H2S (Luo et al., 2020).
The distribution of the three enzymes that catalyze the endogenous
H2S production has tissue and system specificity. CSE is mainly
distributed in the cardiovascular system. Recent studies have shown
that it is also expressed in kidney, lung and liver. CBS is the main
H2S synthetase in the central nervous system, kidney and liver. 3-
MST is widely expressed in liver, kidney, lung and vascular system
(Wang, 2012; Lv et al., 2021b). During the enzymatic pathway of H2S
production, CBS catalyzes the β substitution reaction of
homocysteine and serine, thus generating L-cystathionine. CSE
acts as a catalyst for L-cystathionine to eliminate α, γ -cysteine,
and in turn to generate L-cystenine. Next, CSE/CBS catalyzes
L-cystenine for the β elimination reaction to generate H2S.
Meanwhile, cysteine aminotransferase (CAT) also catalyzes
L-cystenine, which transfers the amine to α -ketoglutarate to
generate 3-mercaptopyruvate (3-MP). The 3-MP is then catalyzed
as H2S by 3-MST (Lv et al., 2021b; Zhao et al., 2021b; Zhao et al.,
2022b). The increasing evidence indicates that H2S participates in
many kinds of pathological and physiological processes, including
anti-inflammation (Zhao et al., 2019), anti-apoptosis (Li et al., 2019),
vasodilation (Greaney et al., 2017; Jin et al., 2017), anti-oxidative
stress (Tocmo and Parkin, 2019), cell differentiation, cell
proliferation/hypertrophy and cell survival/death (Zhang et al.,
2017a) (Figure 1). Therefore, H2S plays an important role in
multiple diseases by regulating ER stress (Ge et al., 2019; Chen
et al., 2021b), including myocardial diseases. However, the relevant
mechanism is not fully understood. In this review, we focused on the
progresses about the H2S regulation of ER stress in myocardial
diseases and deeply analyzed the relevant mechanisms to provide the
foundation for the future researches.

2 Hydrogen sulfide plays an important
role by regulating endoplasmic
reticulum stress in diabetes
cardiomyopathy

2.1 Exogenous hydrogen sulfide improves
diabetes cardiomyopathy through reactive
oxygen species (ROS)/endoplasmic
reticulum stress/autophagy/apoptosis
pathway

Diabetes cardiomyopathy (DCM) is a pathophysiological
condition caused by diabetes, which induces heart failure without
hypertension, coronary artery diseases and valvular heart diseases
(Dillmann, 2019; Lorenzo-Almorós et al., 2022; Nakamura et al.,
2022). Although there have been many studies on DCM in recent

FIGURE 1
Three parallel signal transduction pathways in endoplasmic
reticulum stress. PERK, pancreatic endoplasmic reticulum kinase;
IRE1, inositol dependent enzyme 1; ATF6, activate transcription factor
6; XBP1, X-box binding protein 1; ER, endoplasmic reticulum.
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years, its pathogenesis still needs to be further clarified (Zhao et al.,
2022c; Jia et al., 2022). The evidence indicates that DCM is related to
oxidative stress and apoptosis (Thandavarayan et al., 2011; Kumar
et al., 2013). Rui Yang and colleagues used the method of
intraperitoneal injection of streptozotocin to prepare the rat
model of diabetes. The results showed that in diabetes rats the
left ventricular function and the activity of superoxide dismutase
(SOD) and glutathione peroxidase (GSH-Px) were significantly
decreased, the myocardial structure was notably damaged, the
content of malondialdehyde (MDA) in myocardial tissue was
increased, and the mRNA expressions of GRP78, CHOP and
caspase 12 were significantly upregulated, which were reversed by
NaHS (a donor of H2S). It could be deduced that exogenous H2S
protected myocardial injury by reducing oxidative stress injury and
inhibiting ER stress, which needed to be futher confirmed (Yang
et al., 2016). Reactive oxygen species (ROS) are the main substances
that induce oxidative stress in body (Tu et al., 2021). Moreover, ROS
can induce ER stress (Feng et al., 2022), and H2S can improve
cardiomyopathy by eliminating ROS (Zhang et al., 2017b).
Therefore, it can be deduced that exogenous H2S can inhibit ER
stress through reducing ROS/oxidative stress to improve DCM
(Yang et al., 2016). Another study by FANG LI et al. confirmed
the above conclusion that exogenous H2S improved DCM by
inhibiting ER stress. The results revealed that exogenous H2S had
no effects on body weight (BW), heart weight (HW), the ratio of
HW/BW and the blood glucose concentration of STZ-induced DCM
rat model. In STZ-induced DCM rat model, hyperglycemia led to
myocardial fibrosis evidenced by the loose and disordered
myocardial tissue, and induced myocardial collagen fibrosis
evidenced by the significantly increased collagen with tissue
disorder, which were reversed by NaHS. Moreover, NaHS
downregulated ER stress induced by hyperglycemia through
decreasing the expression levels of ERS markers caspase-12,
GRP-78 and CHOP, indicating that exogenous H2S might
ameliorate DCM through suppressing ER stress (Li et al., 2016).
It has been reported that the myocardial apoptosis is upregulated in
STZ-induced DCM rat model and plays an important role in DCM
(Yu et al., 2014; Zhenzhong et al., 2015). Furthermore,
cardiomyocyte apoptosis is closely related with ER stress (Zhang
et al., 2020; Ren et al., 2022). Therefore, it can be deduced that
exogenous H2S may inhibit myocardial apoptosis through
suppressing ER stress in DCM (Li et al., 2016). The research by
Fan Yang and colleagues is consistent with the above deduction.
Their results showed that NaHS mitigated the mitochondrial
swelling and the cardiomyocyte apoptosis in rats with DCM. The
in vitro experiments showed that GYY4137 (a donor of H2S)
significantly reduced hyperglycemia-induced intracellular ROS
level, and NAC (ROS scavenger) attenuated hyperglycemia-
induced cardiomyocyte apoptosis, indicating that exogenous H2S
inhibited HG-induced cardiomyocyte apoptosis by reducing ROS
production in DCM. Further experiments showed that
GYY4137 and NAC treatment significantly reduced the
expression levels of ER stress marker proteins induced by HG in
myocardial cells, suggesting that exogenous H2S inhibited ER stress
in cardiomyocyte of DCM through decreasing ROS production.
Collectively, exogenous H2S improved DCM by inhibiting
cardiomyocyte apoptosis and ER stress through decreasing ROS
level (Yang et al., 2017a). The evidence indicates that exogenous H2S

protects against DCM via the regulation of autophagy (Yang et al.,
2017b; Wu et al., 2017), and autophagy and ER stress are involved in
DCM (Pei et al., 2018). Furthermore, ER stress regulates autophagy
(Wang and Tang, 2020; Zhao et al., 2021a) which in turn regulates
apoptosis in DCM (Wu et al., 2020). Therefore, it can be inferred
from the above that exogenous H2S improves DCM through ROS/
ER stress/autophagy/apoptosis pathway (Yang et al., 2017a), which
needs to be further confirmed. Maojun Liu and co workers obtained
the similar results as above, and proved that the inhibition of janus
kinase/signal transducer and activator of transcription (JAK/STAT)
signaling pathway is involved in H2S inhibition of oxidative stress
and ER stress in improvement of DCM (Liu et al., 2018). The
signaling pathways involved in H2S improvement of DCM through
regulating ER stress need to further studied.

Collectively, exogenous H2S may ameliorate DCM through
ROS/ER stress/autophagy/apoptosis by inhibiting JAK/STAT
signaling pathway (Figures 2, 3).

2.2 Endogenous hydrogen sulfide/
exogenous hydrogen sulfide regulates
endoplasmic reticulum stress in diabetes
cardiomyopathy

In addition to exogenous H2S, endogenous H2S also participates
in DCM by regulating ER stress. Runmin Guo and colleagues found
that the level of H2S in the serum of DCM patients and DCM rats,
and the levels of H2S and CSE protein in the heart tissue of DCM rats
decreased significantly. The level of H2S in the supernatant of
cardiomyocytes, the cell viability and the lipid deposition of
cardiomyocytes induced by palmitic acid (PA) also decreased
significantly. The above indicated that deficiency of endogenous
H2S participated in diabetes-induced myocardial injury. The in-
depth research demonstrated that NaHS downregulated ER stress of
myocardial cells. Furthermore, the treatment of diabetes rats with
NaHS or 4-PBA (an inhibitor of ER stress) alleviated heart
lipotoxicity evidenced by the decrease of lipid accumulation,
TUNEL positive cells and the cleaved caspase-3 expression,
indicating that ER stress participated in DCM. Collectively,
endogenous H2S was involved in DCM, and exogenous H2S
ameliorated DCM by inhibiting ER stress (Guo et al., 2017).
Whether the mechanism of endogenous H2S regulating ER stress
is the same as that of exogenous H2S remains to be clarified. In
addition, our previous studies showed that exogenous H2S inhibited
the lipid toxicity damage of hepatocytes mediated by oleic acid-
induced NLRP3 inflammasome by upregulating autophagy (Wang
et al., 2019a). Therefore, whether autophagy and
NLRP3 inflammasome participate in H2S inhibition of ER stress
in improving myocardial lipotoxic injury remains to be clarified.

3 Hydrogen sulfide plays an important
role by regulating endoplasmic
reticulum stress in ischemic/hypoxic
myocardial disease

Chronic intermittent hypoxia (CIH) is the main characteristic of
the obstructive sleep apnea and an important risk factor of
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myocardial diseases (Zhu et al., 2020; Hu et al., 2021). CIH induces
myocardial injury mainly by promoting oxidative stress and
inflammation (Wang et al., 2021). In order to study the influence
of DL-propargylglycine (PAG, an inhibitor of endogenous H2S

production) on CIH-induced myocardial injury, Xiufang Zhou
et al. established a rat model of CIH and found that PAG
significantly alleviated CIH-induced myocardial injury by
increasing left ventricular fractional shortening (LVFS) and left

FIGURE 2
Diagram of endogenous hydrogen sulfide production process and its biological effects. CSE, cystathionine-γ-lyase; CBS, cystathionine-β-synthase;
3-MST, 3-mercaptopyruvate sulfurtransferase.

FIGURE 3
Schematic diagram of mechanism of exogenous H2S improving diabetes cardiomyopathy. DCM, diabetes cardiomyopathy; ERS, endoplasmic
reticulum stress; JAK/STAT, janus kinase/signal transducer and activator of transcription.
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ventricular ejection fraction (LVEF), and decreasing left ventricular
end-systolic dimension (LVDs), left ventricular end-diastolic
dimension (LVDd), left ventricular end-systolic volvume
(LVESV) and left ventricular end-diastolic volume (LVEDV).
Moreover, PAG also improved the pathological changes of
myocardium (disordered arrangement of cardiomyocyte and
broken myocardial fibers) induced by CIH. The cooperation of
PAG and CIH significantly reduced the expression of CSE gene in
myocardial tissue and the level of H2S in serum and myocardial
tissue. Furthermore, PAG alleviated the increase of the levels of
apoptosis index (AI), cleaved caspase-3, and Bax, and the decrease of
Bcl-2 level induced by CIH, indicating that PAG inhibited CIH-
induced cardiomyocyte apoptosis. In addition, PAG inhibited CIH-
induced oxidative stress by decreasing the levels of LPO and ROS
and increasing SOD level in cardiomyocytes. CIH increased the
expression of ER stress marker proteins in cardiomyocyte, which
was reversed by PAG, indicating that PAG alleviated ER stress
induced by CIH. These results suggested that PAG has protective
effects on CIH-induced myocardial injury by reducing myocardial
apoptosis, oxidative stress and ER stress. PAG is an inhibitor of
endogenous H2S production, implying that endogenous H2S is
involved in the protection of CIH-induced myocardial injury by
reducing myocardial apoptosis, oxidative stress and ER stress (Zhou
et al., 2018). In the above study, PAG provides cardiac protection in
rats with CIH, but has the opposite effect in the control group. The
mechanism needs in-depth studies to clarify. Further, PAG alleviates
CIH-induced oxidative stress and ER stress, which contradicts the
previous studies that exogenous H2S alleviates oxidative stress
induced by myocardial ischemia/reperfusion (I/R) (Li et al., 2015;
Lv et al., 2021c). The reasons for contradiction need to be further
studied.

In addition to hypoxic cardiomyopathy, H2S regulation of ER
stress also plays an improving role in ischemic cardiomyopathy.
Myocardial I/R injury is a serious injury to the ischemic
myocardium after blood flow recovery. At present, there is an
urgent need to find an effective way to treat myocardial I/R
injury clinically (Zheng et al., 2021; Dong et al., 2022). Increasing
evidences indicate that miRNAs play an important role in
myocardial I/R injury (Zhang et al., 2021; Bei et al., 2022).
However, the relevant mechanism is not completely clear. In
order to study the role and mechanism of miR-133a in
myocardial I/R injury, Lin Ren and colleagues established in vivo
and in vitro models of myocardial I/R injury and found that
exogenous H2S reduced I/R-induced cardiomyocyte apoptosis
and ER stress. Meanwhile, the expression level of miR-133a in
cardiomyocyte was significantly inhibited by I/R, which was
reversed by exogenous H2S. Further, the co-treatment of H2S and
the overexpression of miR-133a had stronger inhibitory effects on
ER stress and the apoptosis of cardiomyocytes induced by hypoxia-
reoxygenation (H/R) than that of the treatment of H2S or miR-133a
overexpression. However, the co-treatment of H2S and miR-133a
inhibitor had the opposite effects. These indicated that exogenous
H2S inhibited H/R-induced ER stress and apoptosis of
cardiomyocytes through upregulating miR-133a expression. In
addition, H/R inhibited the proliferation, migration and invasion
of cardiomyocytes, which was reversed by overexpression of miR-
133a and H2S treatment. While the co-treatment of H2S and miR-
133a inhibitor had the opposite effects. The similar results were

obtained in vivo experiments. Collectively, exogenous H2S improved
myocardial I/R injury through inhibiting I/R-induced ER stress and
apoptosis of cardiomyocytes. and enhancing the proliferation,
migration, and invasion of cardiomyocytes inhibited by I/R by
upregulating miR-133a expression (Ren et al., 2019). The
evidence indicates that miR-133a relieves oxidative stress (Guo
et al., 2021). In the above study, whether miR-133a can inhibit
ER stress by inhibiting oxidative stress remains to be confirmed. The
mechanism of H2S inhibiting ER stress through miR-133a in MIRI
remains to be clarified.

4 Hydrogen sulfide plays an important
role by regulating endoplasmic
reticulum stress in acute myocardial
infarction

Acute myocardial infarction (AMI) refers to the acute
myocardial injury found in the clinical environment of
myocardial ischemia (Occhipinti et al., 2021; Badat and Rangiah,
2022). Myocardial reconstruction often occurs after myocardial
infarction (Castelvecchio et al., 2019). The evidence indicates that
apoptosis, oxidative stress, ER stress and autophagy are involved in
myocardial remodeling after AMI (Tabas, 2009; Park et al., 2017).
However, the specific mechanism is not fully clear. In order to
investigate the relationship among the myocardial remodeling after
AMI, ER stress, autophagy and the induced apoptosis, Yaling Li and
colleagues established a rat model of AMI (intraperitoneal injection
of high-dose isoproterenol Iso) and the cobalt chloride (CoCl2)
induced hypoxia model of H9c2 myocardial cells. The results
showed that in the rat model of AMI, the cardiac function was
significantly reduced, the myocardial cells were disordered, the
myocardial type III collagen, interstitial collagen fibers, TGF-β
and other fibrosis-related factors in myocardial tissue was
significantly increased, which were reversed by NaHS treatment.
In the myocardial tissue of rats with AMI, the expressions of
caspase-3, caspase-9 and Bax increased significantly, while Bcl-2
expression decreased notably, which were reversed by NaHS
treatment. These results indicated that H2S could improve the
cardiac function, suppress myocardial reconstruction, and reduce
myocardial cell apoptosis in rats with AMI. The mechanism study
showed that in rats with AMI, the ER stress-related proteins (BIP/
GRP78, CHOP and EIF2α) and the expression of autophagy-related
proteins (ATG5, Beclin and ATG16L1) were significantly increased,
and the PI3K/AKT signal pathway was inhibited, which were
reversed by NaHS treatment. In vitro, the agonist of ER stress or
autophagy reversed the inhibitory effect of H2S on apoptosis of AMI
cell model, indicating that the inhibition of cardiomyocyte apoptosis
by exogenous H2S may be related to the inhibition of ER stress and
autophagy. In conclusion, exogenous H2S inhibited cardiomyocyte
apoptosis by regulating ER stress-autophagy axis, thus improving
myocardial remodeling after AMI (Li et al., 2020). This was
consistent with the previous conclusion that the excessive
cardiomyocyte apoptosis facilitates the deposition of extracellular
matrix to promote myocardial fibrosis, thus inducing myocardial
reconstruction (Shiraishi et al., 2022), and the excessive autophagy
can induce cardiomyocyte apoptosis (Liang et al., 2022). Because the
level of ER stress/autophagy is different in different types of cells and
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different pathological processes, sometimes H2S can inhibit ER
stress/autophagy, sometimes it is the opposite (Wang et al.,
2019b; Wang et al., 2020), so whether H2S can promote ER
stress/autophagy in AMI remains to be studied. In addition, the
detailed mechanism of H2S regulating ER stress/autophagy in AMI
needs further study.

5 Hydrogen sulfide plays an important
role by regulating endoplasmic
reticulum stress in sepsis-induced
myocardial dysfunction

Myocardial dysfunction, including systolic and diastolic
dysfunction, is one of the main symptoms of septicemia.
However, the underlying mechanism of sepsis-induced
myocardial dysfunction (SIMD) remains unclear (Yang et al.,
2019; Lin et al., 2020). In order to study the role of H2S and ER
stress in SIMD, Yu-hong Chen and colleagues used
lipopolysaccharide (LPS) to construct SIMD model. The results
demonstrated that LPS-treated mice showed characteristic
manifestations of the acute myocardial injury and inflammation,
including tissue edema, inflammatory cell infiltration and nuclear
swelling, and the decrease of the expressions of CBS, CSE and 3-
MST. Moreover, CSE KO aggravated the above myocardial lesions,
suggesting that the lack of endogenous H2S enhanced LPS-induced

myocardial dysfunction. The intraperitoneal injection of NaSH in
LPS-treated mice significantly improved myocardial function,
decreased the plasma levels of cardiac troponin I (cTnI) and
creatine kinase (CK), and alleviated the myocardial cell damage
and inflammation. In addition, for the mice treated by LPS and CSE
KO, the higher concentration of NaSH was required to obtain the
similar results, indicating that endogenous H2S deficiency
contributed to SIMD, and exogenous H2S supplementation
alleviated LPS-induced myocardial dysfunction. The mechanism
research showed that LPS increased the levels of tumor necrosis
factor-α (TNF-α), IL-1β and toll-like receptor 4 (TLR4) in the heart
and plasma, and the expressions of ER stress marker proteins in
heart, which were reversed by NaSH, indicating that H2S reduced
the level of inflammation and ER stress (Chen et al., 2021b). It has
been reported that the inflammation and ER stress can be regulated
via TLR4 pathway (Chen et al., 2021a; Xie et al., 2023). Therefore, it
can be deduced that exogenous H2S suppresses inflammation and
ER stress by inhibiting TLR4 pathway, thus improving LPS-induced
SIMD (Chen et al., 2021b). These findings revealed the potential role
of H2S in regulating ER stress in the treatment of SIMD.

6 Conclusion

Increasing evidence indicates that H2S participates in myocardial
diseases by regulating ER stress. In this review, we summrized as

TABLE 1 The role of hydrogen sulfide (H2S) regulation of endoplasmic reticulum stress in myocardial diseases.

The type of myocardial diseases The role of hydrogen sulfide (H2S)
regulation of endoplasmic reticulum

stress

Experimental model References

diabetes cardiomyopathy (DCM) exogenous H2S improves DCM by inhibiting ER
stress through reducing ROS/oxidative stress

rat model of DCM Yang et al. (2016)

DCM exogenous H2S may inhibit myocardial apoptosis
through suppressing ER stress

rat model of DCM Li et al. (2016)

DCM exogenous H2S may ameliorate DCM through ROS/
ER stress/autophagy/apoptosis by inhibiting JAK/

STAT signaling pathway

rat model of DCM Liu et al. (2018)

DCM endogenous H2S was involved in DCM, and
exogenous H2S ameliorated DCM by inhibiting ER

stress

rat/AC 16 cells model of DCM Guo et al. (2017)

ischemic/hypoxic myocardial disease endogenous H2S protects against chronic
intermittent hypoxia (CIH)-induced myocardial

injury by reducing myocardial apoptosis, oxidative
stress and ER stress

rat model of CIH Zhou et al. (2018)

ischemic/hypoxic myocardial disease exogenous H2S improved myocardial I/R injury
through inhibiting I/R-induced ER stress and
apoptosis of cardiomyocyte. and enhancing the

proliferation, migration, and invasion of
cardiomyocytes inhibited by I/R by upregulating

miR-133a expression rats

H9C2 cells model of hypoxia-reoxygenation
(H/R)

Ren et al. (2019)

acute myocardial infarction (AMI) exogenous H2S ameliorates myocardial remodeling
after AMI by suppresseing cardiomyocyte apoptosis

through regulating ER stress-autophagy axis

rat/H9C2 16 cells model of AMI Li et al. (2020)

sepsis-induced myocardial dysfunction
(SIMD)

endogenous H2S deficiency contributed to SIMD,
and exogenous H2S improves LPS-induced SIMD
through suppressing inflammation and ER stress by

inhibiting TLR4 pathway

mice model of SIMD Chen et al. (2021b)
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follows: 1) exogenous H2S improves DCM by inhibiting ER stress
through reducing ROS/oxidative stress; 2) exogenous H2S may inhibit
myocardial apoptosis through suppressing ER stress in DCM; 3)
exogenous H2S may ameliorate DCM through ROS/ER stress/
autophagy/apoptosis by inhibiting JAK/STAT signaling pathway; 4)
endogenous H2S is involved in DCM, and exogenous H2S ameliorates
DCMby inhibiting ER stress; 5) endogenous H2S protects against CIH-
induced myocardial injury by reducing myocardial apoptosis, oxidative
stress and ER stress; 6) exogenous H2S improves myocardial I/R injury
through inhibiting I/R-induced ER stress and apoptosis of
cardiomyocyte. and enhancing the proliferation, migration, and
invasion of cardiomyocytes inhibited by I/R by upregulating miR-
133a expression; 7) exogenous H2S ameliorates myocardial remodeling
after AMI by suppresseing cardiomyocyte apoptosis through regulating
ER stress-autophagy axis; 5) endogenous H2S deficiency contributes to
SIMD, and exogenous H2S improves LPS-induced SIMD through
suppressing inflammation and ER stress by inhibiting
TLR4 pathway (Table 1). It can be seen from the above that
apoptosis, oxidative stress, autophagy and inflammation are
involved in the role of H2S regulation of ER stress in myocardial
diseases. Therefore, clarifying the interaction between ER stress and the
other physiological and pathological processes including apoptosis,
oxidative stress, autophagy and inflammation inmyocardial disease can
well explain the mechanisms of H2S improving myocardial diseases. In
addition, microRNAs have been reported to mediate H2S protection of
myocardium (Hu et al., 2020; Su et al., 2021), however, the underlying
mechanism is not fully understood. Hence, in the future, the role of
microRNAs in H2S regulation of ER stress in cardiomyopathy is a
subject worthy of study, which will provide a new target for the
treatment of cardiomyopathy. The signal pathways involved in H2S
regulation of ER stress in myocardial disease have rarely been studied.
In addition to JAK/STAT pathway and TLR4 pathway, whether there

are other signaling pathways participating in H2S regulation of ER
stress in myocardial disease requires further research. Furthermre,
some acute myocardial diseases, such as SIMD, need high
concentration of H2S in a short time to improve the effect.
However, there is still a lack of agents that can efficiently release
H2S in a short time in clinical research. Therefore, exploring new and
efficient H2S release agents will promote the treatment of myocardial
diseases with H2S-related drugs.
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