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Osteoarthritis (OA) is one of the most common degenerative joint diseases, often
involving the entire joint. The degeneration of articular cartilage is an important
feature of OA, and there is growing evidence that the mitochondrial biogenesis
master regulator peroxisome proliferator-activated receptor γ coactivator 1α
(PGC-1α) exert a chondroprotective effect. PGC-1α delays the development
and progression of OA by affecting mitochondrial biogenesis, oxidative stress,
mitophagy and mitochondrial DNA (mtDNA) replication in chondrocytes. In
addition, PGC-1α can regulate the metabolic abnormalities of OA
chondrocytes and inhibit chondrocyte apoptosis. In this paper, we review the
regulatory mechanisms of PGC-1α and its effects on OA chondrocytes, and
introduce potential drugs and novel nanohybrid for the treatment of OA which
act by affecting the activity of PGC-1α. This information will help to further
elucidate the pathogenesis of OA and provide new ideas for the development
of therapeutic strategies for OA.
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1 Introduction

Osteoarthritis (OA) is the most common degenerative disease affecting the entire
joint. The global age-standardized incidence rate (ASIR) of OA is increasing by 0.32%
per year, an increase of about 9% in 28 years (Quicke et al., 2022), and its prevalence is
estimated to double in the next 30 years. There are approximately 500 million people
with OA worldwide, with an aging population and increasing obesity, more older adults
will be disabled by OA (Hunter et al., 2020). OA is primarily characterized by
pathological changes in articular cartilage, bone, synovium, ligaments, muscles and
periarticular fat, resulting in joint dysfunction, pain, and functional limitations (Katz
et al., 2021). Several drugs have shown therapeutic potential, but few have demonstrated
the ability to arrest or slow the progression of OA (Abramoff and Caldera, 2020).
Arthroplasty is an effective treatment for symptomatic end-stage OA, but suffers from a
poor functional prognosis following functional surgery and a limited prosthetic life span
(Glyn-Jones et al., 2015).

Healthy articular cartilage is a special type of hyaline cartilage, 2–4 mm thick,
without blood or lymphatic vessels or nerves (Sophia Fox et al., 2009). Chondrocytes are
the only cell type present in articular cartilage, infiltrating in the extracellular matrix
(ECM) (Liu et al., 2018), which is rich in type II collagen and proteoglycans, and
contributing to resisting compressive loads (Guilak et al., 2018). Loss of ECM and death
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of chondrocytes have been shown to be central features of
articular cartilage degeneration (Pascarelli et al., 2015).
Chondrocyte changes are an important feature in the
pathogenesis of OA, but the mechanisms of cartilage
destruction and loss of joint function in OA are not fully
understood (Pascarelli et al., 2015).

Normal metabolism is closely related to chondrocyte
physiology, in healthy joints, chondrocytes are in a state of
physiological and metabolic homeostasis (Bai et al., 2019). Since
articular cartilage is avascular, chondrocytes receive nutrients and
oxygen primarily through low-rate diffusion through the ECM
(Guilak et al., 2018; He et al., 2020). However, aerobic glycolysis
is known to coexist with anaerobic glycolysis in normal
chondrocytes (Hollander and Zeng, 2019). Chondrocytes take up
glucose via specific glucose transporter proteins to maintain a stable
energy metabolism. In addition, Cholesterol biosynthesis has been
demonstrated in animal experiments to be elevated during normal
growth plate cartilage formation in rats, and this effect has also been
found in human cartilage (Aguilar et al., 2009; Bernstein et al., 2010;
Yang et al., 2021a). Chondrocytes are also able to sense and
transport lipoproteins to regulate lipid homeostasis in cartilage
and maintain the ability of chondrocytes to perform their
physiological functions (Villalvilla et al., 2013).

The mitochondrial biogenesis master regulator peroxisome
proliferator-activated receptor ? cofactor 1α (PGC-1α) is a
91 kDa transcription factor (Cheng et al., 2018) that is
responsible for chondrocyte mitochondrial quality control
(MQC), mtDNA expression, oxidative stress and metabolism,
exerting a chondroprotective effect. Recent studies have shown
that the expression and activity of PGC-1α are decreased in OA
chondrocytes, whichmay be associated with degenerative changes in
these cells (Wang et al., 2015).

This paper reviews the research on the effects of PGC-1α on OA
chondrocytes, as well as the drugs and novel nanohybrid which may
be useful for the treatment of OA by affecting PGC-1α activity, thus
providing new ideas for further research into the pathogenesis,
prevention and treatment of OA.

2 Chondrocyte cell death and OA

Cell death can occur in different ways and can be divided into
programmed and non-programmed forms depending on the
regulatory process involved (Yang et al., 2021b). Apoptosis is
a highly-regulated, active process of programmed cell death and
is involved in development. Apoptosis is an important process in
the occurrence and development of OA, and the death of
chondrocytes caused by apoptosis is positively correlated with
the severity of OA (Komori, 2016). Recent studies have revealed
several other types of cell death, including autophagy and
ferroptosis (Sasaki et al., 2012). Ferroptosis, a newly
discovered mode of programmed cell death caused by iron-
dependent lipid peroxidation, has been shown to be involved
in the pathogenic process of OA (Yao et al., 2021; Miao et al.,
2022). In addition, most studies have proved that pyroptosis and
necroptosis may be related to cartilage damage in OA (Riegger
and Brenner, 2019; An et al., 2020), but the relationship between
these special cell death modes and OA needs further research.

3 Regulatory pathways and molecules
of PGC-1α in OA chondrocytes

3.1 AMPK/SIRT1 pathway

AMP-activated protein kinase (AMPK) is a heterotrimeric
complex comprising a catalytic subunit a and two regulatory
subunits ß and γ (Yan et al., 2018). As an important regulator of
energy homeostasis, AMPK responds to changes in the ratio of ATP
to AMP by regulating metabolic enzymes to promote ATP
production and inhibit ATP consumption (Herzig and Shaw,
2018). AMPK is a recognized upstream regulator of PGC-1α,
which can directly affect the activity of PGC-1α through
phosphorylation (Yao et al., 2023) (Figure 1). Silent information
regulator 1 (SIRT1) is a histone deacetylase that maintains cartilage
homeostasis by promoting chondrocyte proliferation,
differentiation and survival, and upregulating genes important for
cartilage function (Almeida and Porter, 2019). SIRT1 can affect the
activity of PGC-1α through acetylation, and AMPK enhances
SIRT1 activity by increasing cellular NAD+ levels, and further
affects the activity of PGC-1α (Cantó and Auwerx, 2009; Zheng
et al., 2020) (Figure 1). PGC-1α is a master regulator of
mitochondrial biogenesis and function (Wang et al., 2015), and
promotes mitochondrial transcription factor A (TFAM) expression
by increasing downstream transcription of nuclear respiratory factor
1 (NRF1) and nuclear respiratory factor 2 (NRF2), thereby exerting
the effects of TFAM in promoting mitochondrial biogenesis and
mtDNA replication (Zhang et al., 2018a).

3.2 AMPK/SIRT3 pathway

Similar to SIRT1, silent information regulator 3 (SIRT3) is an
NAD + -dependent protein deacetylase that is activated when
translocated to mitochondria (Ansari et al., 2017). SIRT3 is an
important regulator of chondrocyte energy metabolism, and
SIRT3 enhances the antioxidant activity of superoxide dismutase
(SOD2) to protect mitochondria from oxidative stress, and to repair
mtDNA damage by deacetylating 8-oxoguanine DNA glycosylase-1
(OGG1) (Kincaid et al., 2013; Chen et al., 2021a).

In human knee chondrocyte experiments, it was found that
AMPK can regulate the level and activity of SIRT3 (Chen et al.,
2018). As mentioned above, AMPK can directly regulate the
expression of PGC-1α, and PGC-1α can promote the expression
of Sirt3 gene bymediating the binding of estrogen-related receptor-α
(ERRα) to the Sirt3 promoter (Ansari et al., 2017) (Figure 1). PGC-
1α can also promote SIRT3 expression directly or indirectly through
the interaction of SIRT1 and NRF2 (Kong et al., 2010). In addition,
SIRT3 also affects AMPK activity by promoting the expression of
liver kinase B1 (LKB1) (Li et al., 2022). LKB1 is the main kinase that
catalyzes the process of AMPK activation and energy production,
and the activation of AMPK further promotes the expression of
PGC-1α (Yao et al., 2023). Forkhead box class O 3 A (FoxO3A) is a
transcription factor of the FOXO family, and like PGC-1α, limits
cellular oxidative stress by upregulating antioxidant enzymes (Zhao
et al., 2014; Almeida and Porter, 2019). SIRT3 deacetylates FoxO3A
in the mitochondrial matrix and binds to mtDNA, promoting the
upregulation of all mitochondria-encoded genes (Zhao et al., 2014).

Frontiers in Pharmacology frontiersin.org02

Wang et al. 10.3389/fphar.2023.1169019

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1169019


SIRT3 may also cooperate with FoxO3A to mediate the anti-
oxidative stress effects of AMPK in chondrocytes.

In general, PGC-1α exerts its ability to resist oxidation and
repair DNA damage through the AMPK/SIRT3 signaling pathway
and its positive feedback mechanism (Chen et al., 2021a).
SIRT3 may reverse mitochondrial dysfunction in OA through
LKB1/AMPK signaling.

3.3 mTOR pathway

Mechanistic target of rapamycin (mTOR) is a serine-threonine
protein kinase that forms two distinct complexes, mTOR complex 1
(mTORC1) and mTOR complex 2 (mTORC2). mTORC1 is highly
sensitive to rapamycin and can be inhibited by tuberous sclerosis
complex 1/2 (TSC1/2) (Yang et al., 2020). mTORC1 regulates the
growth and proliferation of chondrocytes, osteoblasts and osteoclasts
and is therefore critical for bone metabolism (Huang et al., 2015; Zhang
et al., 2017a). Activation of mTORC1 can induce OA, whereas inhibition
of mTORC1 by rapamycin to activate autophagy is protective in human
chondrocytes (Zhang et al., 2017b). Furthermore, activation of
mTORC1 was found to induce abnormal subchondral bone formation
and promote OA in a mice model (Lin et al., 2019).

Mechanistically, the transcriptional level of PGC-1α is regulated by
mTORC1. In skeletalmuscle,mTORC1 regulates the oxidative capacity of
skeletal muscle by changing the expression level of PGC-1α (Bentzinger
et al., 2013). mTORC1 has also been shown to be involved in the
decreased expression of PGC-1α due to Endoplasmic reticulum (ER)
stress (Montori-Grau et al., 2022). InOA, development andDNAdamage
response-1 (REDD1), an endogenous inhibitor of mTOR, is reduced in
articular cartilage (Figure 1). REDD1 controlsmitochondrial biogenesis in
chondrocytes by regulating the transcriptional level of PGC-1α (Alvarez-

Garcia et al., 2017). Overall, although a direct link between PGC-1α and
mTORC1 has been found in other tissues, the link in OA still needs to be
further explored.

3.4 AMPK/PPAR-γ/PGC-1α pathway

Peroxisome proliferator-activated receptor-γ (PPAR-γ), a
ligand-activated nuclear receptor, is an important target for the
treatment of metabolic diseases (Wang et al., 2016). PPAR-γ-
knockout mice with OA have decreased numbers of
chondrocytes and increased expression of catabolic and
inflammatory markers, so PPAR-γ can be used as a potential
target for the treatment of OA (Vasheghani et al., 2015). PGC-
1α is a transcriptional coactivator of PPAR-γ, and PPAR-γ
stimulation promotes mitochondrial biogenesis by inducing
PGC-1α (Zhang et al., 2021) (Figure 1). In an experiment on
mice chondrocytes, it was found that the increased expression of
PGC-1α and PPAR-γ could alleviate the increased expression of
pro-inflammatory mediators and matrix metalloproteinases 13
(MMP-13) caused by high homocysteine (Ma et al., 2018a). The
disordered expression of homocysteine may lead to mitochondrial
dysfunction and oxidative stress in chondrocytes by inhibiting
SIRT1 (Kalani et al., 2014). The experimental results confirmed
that the disorder of homocysteine mitigated the activation of
nuclear factor κB (NF-κB) pathway and reduced the expression
of MMP-13, cyclooxygenase-2 (COX-2) and IL-8 in chondrocytes
through AMPK/SIRT1/PGC-1α/PPAR-γ signal transduction (Ma
et al., 2018a).

In addition, PPAR-γ also maintains the balance between
catabolic and anabolic factors in vitro by regulating the mTOR/
autophagy signaling pathway (Vasheghani et al., 2015). Given

FIGURE 1
Regulatory mechanisms and molecules of PGC-1α in chondrocytes. AMPK can directly phosphorylate and activate PGC-1α, and can also activate
SIRT1 by regulating NAD+/NADH, thereby acetylating and activating PGC-1α; PGC-1α can further promote the production of NRF1, NRF2 and TFAM;
REDD1 is an endogenous inhibitor of mTOR and can regulate the transcriptional level of PGC-1α; PGC-1α can positively regulate SIRT3, and can also
promote the expression of Sirt3 gene by mediating ERRα; SIRT3 can deacetylate FoxO3A in the mitochondrial matrix, and can also activate LKB1 to
form a positive feedback loop to promote the expression of AMPK. P, phosphorylate; AC, acetylation; DAC, deacetylation.
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that OA is strongly associated with obesity and energy
metabolism, the in vivo role of PPAR-γ in articular cartilage
homeostasis requires further investigation.

4 PGC-1α reverses mitochondrial
dysfunction in OA chondrocytes

4.1 PGC-1α promotes mitochondrial
biogenesis in chondrocytes

Mitochondrial biogenesis is a self-renewal process that
continuously provides new mitochondria through growth and
differentiation, and maintains mitochondrial homeostasis by clearing
damaged mitochondria (Liu et al., 2022). In OA chondrocytes, the
dysfunction of mitochondrial biogenesis is mainly manifested by
decreased mtDNA content, mitochondrial mass, oxygen
consumption, oxidative phosphorylation (OXPHOS), and
intracellular ATP levels (Wang et al., 2021a). PGC-1α is activated
through the AMPK/SIRT1 signaling pathway, and increased levels of
PGC-1α can promote the expression of NRF1, NRF2 and TFAM,
thereby promoting mitochondrial biogenesis (Zhang et al., 2018a)
(Figure 2). Omentin-1, a newly discovered metabolically regulated
adipokinine, promotes mitochondrial biogenesis in chondrocytes by

enhancing the expression of PGC-1α, NRF1, and TFAM (Li et al.,
2020). The cytokine fibroblast growth factors (FGFs) promote
mitochondrial biogenesis in a similar mode to Omentin-1, and
studies have shown that FGF19 enhances mitochondrial biogenesis
and fusion through upregulation of AMPKα signaling (Kan et al., 2023).
FGF19 increases the expression of p-AMPKα and PGC-1α, directly
promoting mitochondrial biogenesis through the AMPK/SIRT1/PGC-
1α axis (Herzig and Shaw, 2018) (Figure 2). Levels of PGC-1αwere also
associated with the molecule regulated in REDD1, which is a key factor
in AMPK-induced transcriptional activation of PGC-1α in
chondrocytes. REDD1 transcriptionally activates PGC-1α to promote
mitochondrial biogenesis. Conversely, OA chondrocytes lacking
REDD1 have reduced mitochondrial content, ATP levels,
mitochondrial biogenesis, and expression levels of PGC-1α and
TFAM (Sun et al., 2021a).

In addition, reduced mitochondrial biogenesis in chondrocytes
may be associated with pain in OA. NRF2, produced by PGC-1α
transcription, effectively relieves pain by regulating chondrocyte
mitochondrial biogenesis (Sun et al., 2021a). Sestrins are a family of
highly-conserved proteins induced by DNA damage and oxidative
stress, and Sestrin2 (Sesn2) is a member of the Sestrin family.
Overexpression of Sesn2 alleviates pain in monoiodoacetate-
induced OA rats through AMPK/PGC-1α-mediated
mitochondrial biogenesis (Sun et al., 2022) (Figure 2). Sesn2 also

FIGURE 2
The effect of PGC-1α on OA chondrocytes. PGC-1α enhances the expression of NRF1, NRF2 and TFAM, and promotes the biogenesis of
chondrocyte mitochondria; FGF19, REDD1 and Omentin-1 promote the biogenesis of chondrocyte mitochondria by promoting the expression of PGC-
1α; Sesn2 reduces the pain of OA by promoting the expression of PGC-1α and NRF2; PGC-1α and SIRT3 form a positive feedback loop to promote the
expression of autophagy factor MUL1 to promote mitophagy; the increase of PGC-1α expression can promote the expression of FoxO3A and
UCP2 to inhibit the production of ROS; In addition, the increase of PGC-1α can also inhibit the expression of NOX1/4 to inhibit oxidative stress; On the
contrary, PKR promotes the production of TNF-α by down-regulating the expression of PGC-1α to promote the production of ROS; REDD1 and
Omentin-1 through affect the level of PGC-1α to promote the expression of mtDNA; PGC-1α promotes the catabolism of fatty acids and cholesterol by
regulating the activity of ATGL and LXR, and CITED2 can also promote the expression of lipocalin by activating PGC-1α to regulate chondrocyte
metabolism; High levels of glucose in OA chondrocytes can down-regulate the level of PGC-1α to inhibit mitochondrial metabolism; PGC-1α can be
activated by REDD1 to down-regulate the level of inflammatory cytokine TNF-α to inhibit apoptosis. The effect of PGC-1α on inhibiting apoptosis can also
be realized by inhibiting ER stress. In addition, the level of PGC-1α can be regulated by AGEs, and the decrease of PGC-1α level in chondrocytes can
activate BNIP3 to promote apoptosis.
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activates NRF2 with the help of PGC-1α expression and reduces
ROS production, which may contribute to the relief of OA pain (Sun
et al., 2022). Therefore, PGC-1α alleviates mitochondrial
dysfunction in OA chondrocytes by promoting mitochondrial
biogenesis, and can reduce the pain of OA.

4.2 PGC-1α promotes mitophagy in
chondrocytes

Mitophagy is a specialized form of autophagy that functions to
regulate the turnover of dysfunctional mitochondria and maintain
mitochondrial homeostasis (Sun et al., 2021b). Additionally,
mitophagy reduces the production of ROS and inhibits the
activation of inflammatory factors in OA. The lack of mitophagy
is an important factor in the development of OA disease, leading to
chondrocyte death, imbalance of ECM homeostasis and cartilage
degeneration (Hu et al., 2020).

In recent years, several studies have shown a link between PGC-
1α and chondrocyte mitophagy. PGC-1α activates SIRT3 and
regulates mitophagy through an AMPK/SIRT3 positive feedback
loop (Chen et al., 2021a). In contrast, reduced expression levels of
PGC-1α in OA chondrocytes activate parkin RBR E3 ubiquitin
protein ligase (PRKN)-independent mitophagy via upregulation of
Bcl-2/adenovirus E1B 19-kDa interacting protein (BNIP3),
stimulating cartilage degradation and chondrocyte apoptosis
(Kim et al., 2021). Furthermore, overexpression of PGC-1α
suppresses FoxO3-mediated transcriptional activity, which further
promotes the expression of various autophagy factors such as
mitochondrial ubiquitin ligase 1 (MUL1) (Olmos et al., 2013)
(Figure 2). One study has shown that dysregulation of mitophagy
due to abnormalities in the AMPK/SIRT1/PGC-1α signaling
pathway is a causative agent of sarcopenic obesity (Ryu et al.,
2020), which may be associated with complications of OA, and
therefore decreased levels of PGC-1αmay induce and exacerbate OA
by affecting mitophagy.

4.3 PGC-1α reduces oxidative stress in
chondrocytes

Mitochondrial damage is associated with ROS production,
which can be increased by a variety of factors including
inflammatory cytokines, mechanical stress, and aging (Wang
et al., 2021a). Increased ROS production and downregulation of
SOD2 induce oxidative stress, which in turn leads to mitochondrial
damage (Loeser et al., 2016). Loss of mitochondrial membrane
potential in damaged mitochondria leads to decreased ATP
production and increased mitochondrial membrane permeability,
which is an important factor in chondrocyte senescence (Sun et al.,
2021b). In addition, ROS induce oxidative stress and impair
mitochondrial biogenesis, which has been shown to be associated
with the development of chronic pain (Gao et al., 2022).

The activity of PGC-1α is inhibited in OA, leading to increased
ROS production and oxidative stress. Double-stranded RNA-
dependent protein kinase R (PKR) is an interferon-inducible
kinase associated with cartilage degeneration that occurs in
arthritic disease (Ma et al., 2018b). Increased PKR mediates

activation of the inflammatory cytokine TNF-α by inhibiting the
expression of PGC-1α, leading to increased oxidative stress and
apoptosis in chondrocytes (Ma et al., 2018b). Activation of AMPK
and SIRT1 modulates the activity of PGC-1α, thereby reducing
oxidative stress and pro-metabolic responses in chondrocytes from
OA patients (Wang et al., 2020), and relieving pain in patients with
OA. PGC-1α and FoxO3A also limit cellular oxidative stress by
upregulating antioxidant enzymes, including SOD2 and catalase
(Zhao et al., 2014) (Figure 2). In addition, PGC-1α increases ATP
production and reduces ROS production by altering the structure of
the mitochondrial respiratory complex (Cunningham et al., 2007).
PGC-1α also reverses the loss of chondrocyte phenotype by
decreasing NADPH oxidase1/4 (NOX1/4) expression and
increasing uncoupling protein 2 (UCP2) expression (Miao et al.,
2017) (Figure 2). Consequently, PGC-1α has the ability to inhibit
oxidative stress by reducing ROS production in chondrocytes, which
is beneficial in delaying the further development of OA.

4.4 PGC-1α promotes the replication and
gene expression of mtDNA in chondrocytes

Alterations in mitochondrial genetics are an important
contributor to the development of OA. Increased ROS also leads
to damage of mtDNA, causing a severe imbalance in redox and
metabolic activity, which disrupts the homeostasis of articular
cartilage (He et al., 2020). Reduced PGC-1α activity in OA is
closely associated with decreased mitochondrial biogenesis and
mtDNA content. PGC-1α activates NRF1 and NRF2 and
promotes TFAM expression. Activation of PGC-1α, NRF1 and
TFAM contributes to transcription and replication of mtDNA
and the generation of new mitochondria (Kim et al., 2021). In
addition, Omentin-1 promotes the expression of mtDNA, mRNA
transcripts and mitochondrial proteins through the activation of
PGC-1α (Li et al., 2020) (Figure 2). In conclusion, altered
mitochondrial genetics is also a feature of OA, and like
mitochondrial dysfunction, mtDNA damage in OA can be
treated by affecting PGC-1α activity in chondrocytes.

5 Relationship between PGC-1α and
abnormal metabolism of chondrocytes
in OA

Abnormal chondrocyte metabolism is risk factor for OA and can
have a direct systemic impact on the joints (Zheng et al., 2021). In
the OA setting, themain components of the ECM, aggrecan and type
II collagen, are reduced due to inhibition of chondrocyte synthetic
activity (Wei et al., 2021). In OA cartilage, the rate of anaerobic
glycolysis is increased and changes in key enzymes and glycolytic
processes lead to the production and accumulation of excess lactic
acid by chondrocytes, creating an acidic microenvironment
(Maneiro et al., 2003). The acidic microenvironment has been
shown to inhibit matrix synthesis in chondrocytes and potentially
promote cartilage degeneration in OA (High et al., 2019). On the
other hand, OA chondrocytes exhibit intracellular lipid deposition
and the amount of lipid deposition is positively correlated with the
severity of OA (Zheng et al., 2021).
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Studies have shown PGC-1α regulates chondrocyte metabolism
through the AMPK/SIRT1/PGC-1α signaling pathway, and has the
ability to block chondrocyte pre-catabolic reactions (Zhao et al.,
2014). PGC-1α is involved in the inhibition of advanced glycation
end products (AGEs)-induced NF-κB activation and inflammatory
cytokine-induced catabolic responses in chondrocytes (Li et al.,
2021a; Yang et al., 2022). In contrast, decreased levels of PGC-1α
in OA chondrocytes, possibly due to high levels of glucose
promoting glycolysis and inhibiting oxidative phosphorylation,
lead to impaired mitochondrial metabolism and trigger
mitochondrial dysfunction (Minguzzi et al., 2018).

In addition to glucose metabolism, PGC-1α is also involved in
the regulation of abnormal lipid metabolism in OA. PGC-1α is
activated by SIRT1 in response to adipose triglyceride lipase
(ATGL)-mediated increases in lipolysis (Khan et al., 2015).
Activation of PGC-1α by PPAR-γ promotes Liver X receptors
(LXR) expression, reduces cholesterol deposition on the joint
surface, and maintains normal joint function and bone
development (Ratneswaran et al., 2017). PGC-1α, which can be
activated by Glu/Asp rich carboxy-terminal domain 2 (CITED2),
plays a critical role in regulating load-induced adiponectin and
inhibiting adiponectin expression in human infrapatellar fat pad-
derived adipose stem cells/preadipocytes (Liu et al., 2019). In
conclusion, PGC-1α is associated with obesity-induced OA and is
involved in the regulation of abnormal glucose metabolism and lipid
metabolism in OA chondrocytes (Ryu et al., 2020) (Figure 2).

6 Relationship between PGC-1α and
chondrocyte apoptosis in OA

As mentioned above, increased ROS production and decreased
SOD2 levels in OA chondrocytes lead to mitochondrial damage.
Depolarization of mitochondria leads to the release of apoptotic
factors such as cytochrome c (Cyt-c), apoptosis-inducing factor and
capase-9 from the intermembrane space of mitochondria into the
cytoplasm, resulting in apoptosis (Ansari et al., 2018). Numerous
studies in recent years have revealed the relationship between
autophagy, ER stress and chondrocyte apoptosis, indicating that
autophagy may inhibit chondrocyte apoptosis by reducing ROS
production through clearance of damaged mitochondria (Nugent
et al., 2009). Increased ROS also induces ER stress, and sustained ER
stress triggers the apoptotic pathway (Kim and Kim, 2018).

PGC-1α inhibits oxidative stress by reducing ROS production,
blocking the activation of ER stress, and thus reducing chondrocyte
apoptosis (Feng et al., 2019) (Figure 2). PGC-1α may also alleviate
mitochondrial dysfunction in chondrocytes and reduce chondrocyte
apoptosis by promoting mitochondrial biogenesis and accelerating
the replication and expression of mtDNA. Conversely, decreased
levels of PGC-1α may contribute to TNF-α induces chondrocyte
apoptosis through the accumulation of oxidative stress via the PKR/
p38 MAPK/p53/AKT/PGC-1α signaling pathway (Goldring, 2000).
As an important mediator of OA, AGEs induce OA is by
downregulating PGC-1α levels leading to increased oxidative
stress, inflammation and apoptosis (Yu et al., 2022). Expression
of REDD1 is regulated by PGC-1α, and Redd1−/− mice have
increased rates of apoptosis and increased indicators of cell death
in knee chondrocytes (Alvarez-Garcia et al., 2017) (Figure 2). A

study on homocysteine and OA showed that homocysteine dose-
dependently inhibited the expression of AMPK/SIRT1/PGC-1α
signaling in chondrocytes to promote chondrocyte apoptosis (Ma
et al., 2018a). PGC-1α also has a role in promoting cartilage
formation and differentiation, which may be achieved through
interaction with the transcription factor sry-related high mobility
group-box 9 (SOX9) (Kawakami et al., 2005). SOX9 is a key
transcription factor in chondrocytes, co-expression of SOX9 and
PGC-1α also induces the expression of other chondrogenic genes
(Kawakami et al., 2005).

7 Potential drugs and strategies to treat
OA by affecting the activity of PGC-1α

PGC-1α is important to the mitochondrial function and energy
metabolism of chondrocytes, and also delays the degeneration of
articular cartilage by regulating the process of cell death. Improving
the antioxidant capacity of chondrocytes and reversing
mitochondrial dysfunction in OA chondrocytes by affecting
PGC-1α levels may be a potential therapeutic strategy for OA.
Therefore, it is necessary to develop new drugs and novel
nanohybrid based on altering the activity of PGC-1α to improve
the function of OA chondrocytes (Figure 3) (Table 1).

7.1 Natural products

7.1.1 Quercetin
Quercetin (3,3′,4′,5,7-pentahydroxyflavone) is a naturally

occurring flavonoid found in many types of fruits and vegetables
with anti-inflammatory, antioxidant, and anti-osteoporotic effects
(Li et al., 2021b). In addition, quercetin alleviates cartilage
degradation and thus OA by modulating chondrocyte autophagy
(Lv et al., 2022), inflammation (Wang et al., 2021b), oxidative stress
(Hu et al., 2019a), and apoptosis (Li et al., 2021b). Quercetin reduces
the production of ROS and increases the expression levels of
glutathione and glutathione peroxidase in OA rats. Quercetin
also upregulates SOD and tissue inhibitor of metalloproteinase
1 while downregulating MMP-13 to attenuate oxidative stress
and inhibit the degradation of cartilage extracellular matrix (Wei
et al., 2019). Another animal study suggested that quercetin affects
the characteristics and composition of the gut microbiota and
metabolism of OA rats (Lan et al., 2021). Taken together, these
data suggest that quercetin alleviates the deterioration of OA
through multiple mechanisms.

In a rat model study of OA, researchers found that ROS
production was reduced and mitochondrial biogenesis was
improved after quercetin administration. In addition, the
expression of p-AMPK, SIRT1, PGC-1α, NRF1, NRF2, and
TFAM was also enhanced after quercetin application. Therefore,
the antioxidative and mitochondrial dysfunction-reversing effects of
quercetin may be achieved through the AMPK/SIRT1/PGC-1α
signaling pathway (Qiu et al., 2018). Another animal study found
that quercetin can also inhibit ER stress by activating the AMPK/
SIRT1 signaling pathway, thereby inhibiting chondrocyte apoptosis,
alleviating and eliminating articular cartilage degeneration, and thus
treating OA (Feng et al., 2019). As mentioned above, quercetin may
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FIGURE 3
Targets of action of drugs with therapeutic effects on OA by affecting the activity of PGC-1α. Quercetin, FA, MAG, geraniin, and Br in RB@MPMW
promote PGC-1α expression and delay the deterioration of OA by activating the AMPK/SIRT1/PGC-1α signaling pathway; Apple Procyanidins and catalpol
can affect PGC-1α activity and ameliorate mitochondrial damage in OA chondrocytes; Ginsenoside Rg3 and DHM exert anti-inflammatory and
chondrocyte homeostatic effects through the PGC-1α/SIRT3 pathway; SRT1720, an activator of SIRT1, exerts chondroprotective effects by
activating SIRT1 and PGC-1α; DMF enhances NRF2 expression to promote mitochondrial biogenesis in chondrocytes.

TABLE 1 Treatment of OA by affecting the activity of PGC-1α.

Potential
drugs

Type Mechanism Effects References

Quercetin Natural
Products

AMPK/SIRT1/PGC-1α Mitochondrial biogenesis↑; Apoptosis↓ (Feng et al., 2019), (Qiu et al., 2018)

MAG Natural
Products

AMPK/SIRT1/PGC-1α; Inhibit
IL-1β

Oxidative stress↓; Mitochondrial dysfunction↓ Liu et al. (2020)

FA Natural
Products

AMPK/SIRT1/PGC-1α; Inhibit
IL-1β

ECM degradation↓; Oxidative stress↓ (Du et al., 2021), (Zhou et al., 2021)

Puerarin Natural
Products

AMPK/PGC-1α Mitochondrial biogenesis↑ (Chen et al., 2021b), (Wang et al., 2018a), (Tak
and Firestein, 2001)

Apple Procyanidin Natural
Products

Enhance PGC-1α; Inhibit TNF-α,
MMP-13

Mitochondrial biogenesis↑; Integrity of
mtDNA↑; SOD2↑

Masuda et al. (2018)

Ginsenoside Rg3 Natural
Products

SIRT1/PGC1α/SIRT3; Inhibit
TNF-α

ROS↓; Mitochondrial dysfunction↓ Ma et al. (2021)

Catalpol Natural
Products

Enhance phosphorylation of
CREB

Mitochondrial biogenesis↑ Chen et al. (2022a)

DHM Natural
Products

AMPK/PGC-1α/SIRT3 Mitochondrial fusion↑; Mitophagy↑ (Wang et al., 2018b), (Mao et al., 2020)

DMF Chemical Drugs Enhance NRF2 IL-1β↓; Mitochondrial biogenesis↑, Type II
collagen degradation ↓

(Gao et al., 2022), (Li et al., 2014)

SRT1720 Chemical Drugs SIRT1/PGC-1α LEF-1↓; Apoptosis↓; ECM expression↑ (Hu et al., 2021), (Liu et al., 2016)

RB@MPMW Novel
Nanohybrid

AMPK/SIRT1/PGC-1α ROS↓; Apoptosis↓; Regulate energy
metabolism

Xue et al. (2021)
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increase the expression of PGC-1α through the AMPK/
SIRT1 signaling pathway, exerting the potential of treating OA in
the mitochondrial pathway. However, most of the current studies on
quercetin and OA use rat models, and further research is needed to
explore its therapeutic potential and safety on human OA
chondrocytes.

7.1.2 Magnolol (MAG)
Magnolol (MAG) is extracted from a Chinese medicinal herb

named Magnolia officinalis. A study on the link between MAG and
OA showed that MAG exerted chondroprotective effects by
inhibiting the production of inflammatory mediators as well as
the degradation of OA chondrocyte proteoglycans and type II
collagen (Hu et al., 2019b).

The effect of MAG on PGC-1α activity may be another mediator
of its effects in OA. MAG increased PGC-1α expression in human
chondrocytes in a dose-dependent manner and also alleviated IL-1β-
induced mitochondrial dysfunction, oxidative stress and
inflammation through the AMPK/SIRT1/PGC-1α signaling
pathway and maintained the balance of ECM synthesis and
catabolism in human chondrocytes (Liu et al., 2020). Therefore,
MAG can be extracted and developed as a potential drug for OA.

7.1.3 Ferulic acid (FA)
Ferulic acid (3-methoxy-4-hydroxycinnamic acid; FA), a

phenolic substance widely found in plants (Klepacka and Łiu,
2006), is one of the most common natural products found in
vegetable, and is an important active ingredient in many
traditional Chinese medicines (Chaudhary et al., 2019). FA plays
a role in the response to oxidative stress, inflammation, vascular
endothelial damage, fibrosis, apoptosis and platelet aggregation, and
is involved in the treatment of various diseases throughout the body
(Chaudhary et al., 2019; Li et al., 2021c).

One of the mechanisms of FA treatment for OA is the inhibition
of IL-1β-induced chondrocyte degeneration through the AMPK/
SIRT1/PGC-1α signaling pathway. FA inhibits the production of IL-
6, prostaglandin E2, nitrite, Collagen I, runt-related transcription
factor 2, MMP-1, MMP-3 and MMP-13, suppresses oxidative stress,
attenuates IL-1β-induced OA chondrocyte degeneration, and
enhances expression of type II collagen and aggrecan through
activation of PGC-1α (Du et al., 2021). Moreover, FA also
prevents degradation of the ECM, inhibits the inflammatory
response, and delays the onset and progression of OA (Zhou
et al., 2021). The current study confirmed that FA, as a
nutritional supplement for patients with OA, may have a
potential therapeutic effect on OA by inhibiting inflammation
(Du et al., 2021), but its clinical application value needs to be
further explored.

7.1.4 Puerarin
Puerarin (C21H20O9) is the main bioactive component isolated

from the plant Pueraria montana var. Lobata (Zhou et al., 2014).
Puerarin has antioxidant, anti-inflammatory, neuroprotective and
anti-apoptotic activities, as well as lowering blood sugar and
improving microcirculation. In OA, Puerarin has been shown to
inhibit ECM degradation, relieve pain, and reduce cartilage
destruction (Peng et al., 2019; Chen et al., 2021b; Li et al.,
2021d). In addition, Puerarin was found to inhibit the

production of the inflammatory factors IL-1β, IL-6 and TNF-α
and increase type II collagen content in a rat OA model
established by anterior cruciate ligament transection (Ma et al.,
2020).

Although Puerarin has the ability to treat a variety of diseases, its
molecular mechanisms and targets are not fully understood. There is
evidence that the effect of Puerarin on OA rats may be achieved
through the AMPK/PGC-1α pathway (Wang et al., 2018a).
Experimental results in rat models have shown that puerarin can
promote chondrocyte mitochondrial biogenesis through the AMPK/
PGC-1α pathway, restore mitochondrial dysfunction in OA
chondrocytes (Wang et al., 2018a), while reducing mechanical
nociceptive hypersensitivity and cartilage damage in OA rats. In
addition, in Puerarin-fed OA mice chondrocytes, the researchers
found that Puerarin may inhibit the activation of NF-κB pathway
and the degradation of ECM by regulating the level of NRF2 (Chen
et al., 2021b). The activation of NF-κB pathway can enhance the
inflammatory response of cells, leading to inflammatory injury and
apoptosis (Tak and Firestein, 2001). Therefore, Puerarin is a dietary
supplement with potential for the treatment of OA, but its role in the
treatment of OA in humans needs further clinical verification.

7.1.5 Apple procyanidin
Apple polyphenols (apple Procyanidin) are compounds of

several polyphenols obtained from unripe apples and have been
shown to have cardioprotective (Cicero et al., 2017), anti-
inflammatory and anti-proliferative properties. An animal study
showed that apple polyphenols reduced the severity of OA by
inhibiting oxidative stress and the expression of TNF-α and
MMP-13. Apple polyphenols also inhibited synovial
inflammation in OA by enhancing cell proliferation and
hyaluronic acid production (Kobayashi et al., 2022). Oral
administration of apple polyphenols to mice was also shown to
prevent articular cartilage degeneration caused by mitochondrial
dysfunction. In addition, apple polyphenols were able to promote
mitochondrial biogenesis and proteoglycan biosynthesis in
chondrocytes and enhance aggrecan upregulation in primary
chondrocytes, which may be achieved by affecting PGC-1α
activity (Masuda et al., 2018). Mechanistically, apple polyphenols
enhance mitochondrial dehydrogenase activity and mitochondrial
DNA copy number, and promote PGC-1α expression to promote
mitochondrial biogenesis. Apple polyphenols also improve
mitochondrial depolarization impaired by SOD2 loss by affecting
PGC-1α activity (Masuda et al., 2018). These results demonstrate
that apple polyphenols may be food components with effects on
maintaining joint cartilage health.

7.1.6 Ginsenoside Rg3
Ginsenoside Rg3 is a steroidal saponin isolated from ginseng and

is the main active component of ginseng (Liu et al., 2021). Recent
studies have shown that Rg3 has various biological activities such as
anti-inflammatory and anti-cancer (Xia et al., 2022). In the
experimental model of human OA aging chondrocytes,
Ginsenoside Rg3 has the effect of anti-aging and protecting
cartilage (So et al., 2013). A new study suggests that activation of
the SIRT1/PGC-1α/SIRT3 pathway by Rg3 inhibits TNF-α-induced
cyclophilin D acetylation, reduces mitochondrial dysfunction and
ROS accumulation, thereby ameliorating TNF-α-induced apoptosis
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(Ma et al., 2021). Additionally, Rg3 suppresses TNF-α-stimulated
p38 MAPK phosphorylation and NF-κB activation through SIRT1/
PGC-1α/SIRT3 signaling, and inhibits TNF-α-induced increases in
production of IL-8 and MMP-9 (Ma et al., 2021). The SIRT1/PGC-
1α/SIRT3 pathway may be the main mechanism via which Rg3 acts
to inhibit expression of the inflammatory cytokine TGF-α, so
Ginsenoside Rg3 has the potential to alleviate the inflammatory
response and cartilage degeneration in OA patients.

7.1.7 Catalpol
Catalpol, an active ingredient from the traditional Chinese

herbal medicine Di-Huang (Rehmannia glutinosa Libosch or
Chinese foxglove), has potential antioxidant and hypoglycemic
effects (Bhattamisra et al., 2021). Previous studies have shown
that in chondrocytes, catalpol can attenuate IL-1β-induced
inflammatory response and apoptosis in rat chondrocytes by
inhibiting the NF-κB pathway (Zeng et al., 2019). In addition,
catalpol was also found to enhance mitochondrial biogenesis in
human chondrocytes through a dose-dependent increase in
phosphorylation of cAMP/response element-binding protein
(CREB) to promote the expression of PGC-1α, NRF1 and
TFAM (Chen et al., 2022a). In addition, catalpol improves
mitochondrial ATP production, Cyt-c oxidase activity, and
respiratory rate. Although the current study shows that
catalpol has chondroprotective effect, further detailed
mechanism is needed before it can be used for the treatment
and prevention of OA.

7.1.8 Dihydromyricetin (DHM)
DHM is a flavonoid with modulatory metabolic, anti-

inflammatory, antioxidant, antitumor, pyroptosis-reducing and
cardioprotective effects (Zhang et al., 2018b; Cheng et al., 2020;
Sun et al., 2020). DHM increases SIRT3 and PGC-1α levels in a
dose-dependent manner through the AMPK/SIRT3/PGC-1α
signaling pathway, improves antioxidant capacity and
mitochondrial fusion in chondrocytes, increases the levels of
aggrecan and type II collagen, maintains chondrocyte
homeostasis and prevents chondrocyte degeneration (Wang
et al., 2018b). The level of PGC-1α is positively correlated
with the activity of SIRT3, and DHM also activates SIRT3 by
increasing the level of PGC-1α to regulate the mitochondrial
dynamics and mitophagy in chondrocytes (Mao et al., 2020),
providing a new idea for the treatment of OA.

7.2 Chemical drugs

7.2.1 Dimethyl fumarate (DMF)
Dimethyl fumarate (DMF) is a fumarate ester with

cytoprotective, anti-inflammatory and antioxidant properties,
induces protein succinylation, which leads to inactivation of
cysteine-rich proteins (Saidu et al., 2019). As mentioned
above, PGC-1α can activate NRF2 to regulate mitochondrial
biogenesis, and DMF mainly plays a role by regulating the
level of NRF2. Experimental animal studies have shown that
DMF improves renal injury and cognitive deficits by activating
NRF2 to prevent ferroptosis (Yang et al., 2021c; Yan et al., 2021).
For OA, DMF inhibits IL-1β expression by activating NRF2,

thereby attenuating destabilization of the medial meniscus-
induced OA in mice (Chen et al., 2022b). Furthermore, DMF
induced mitochondrial biogenesis and attenuated pain-related
behaviors in a rat model of OA by activating NRF2 (Gao et al.,
2022). In human chondrocytes, experiments have shown that
DMF can inhibit OA-induced degradation of type II collagen,
suggesting that DMF treatment may be a potential
chondroprotective strategy (Li et al., 2014).

7.2.2 SRT1720
SRT1720 is a synthetic compound that activates

SIRT1((Minor et al., 2011; Svensson et al., 2015)) and has
been implicated in the regulation of neurogenesis (Iwata et al.,
2020) and angiogenesis (Dadwal et al., 2021) through activation
of SIRT1. It has also been shown that SRT1720 can reduce pain
due to bone cancer (Li et al., 2019) and intervertebral disc
degeneration (Zhang et al., 2020) by activating SIRT1. In OA,
intraperitoneal injection of SRT1720 has been shown to slow the
progression of experimental OA in mice (Nishida et al., 2018).
SRT1720 also exerts a chondroprotective effect by increasing the
level of SIRT1 to regulate the expression of lymphoid enhancer-
binding factor 1 (LEF-1) and related inflammatory factors in OA
(135). In addition, an animal study on rabbit chondrocytes
suggested that SRT1720 inhibited OA cell apoptosis by
activating SIRT1 and PGC-1α, thereby protecting
chondrocytes and promoting the expression of cartilage matrix
(Liu et al., 2016). In conclusion, the mechanism of action of
SRT1720 is not fully understood so far, but its chondroprotective
effect provides a new strategy for the treatment of OA.

7.3 Novel nanohybrid

7.3.1 Cartilage-targeting peptide-modified dual-
drug delivery nanoplatform with NIR laser (RB@
MPMW)

Cartilage-targeted drug delivery is an effective strategy for the
treatment of OA, and the design of novel drug delivery systems
has been an important direction of OA treatment research in
recent years (Xiong et al., 2021). As mentioned above, PGC-1α
has a role in regulating mitochondrial function and chondrocyte
energy metabolism. Cartilage-targeted peptide-modified near-
infrared laser dual drug delivery nanoplatform is a recently
reported novel material for the treatment of OA that regulates
chondrocyte energy metabolism through sustained
phosphorylation of AMPK by bilirubin (Br) (Idelman et al.,
2015; Vítek, 2020) and thus promotes activation of PGC-1α.
The platform loads rapamycin in mesopores, Br on the metal
organic framework shell, and type II collagen-targeting peptide
bound to the above nanocarrier surface. Near-infrared laser
stimulation releases both rapamycin and Br drugs
continuously. Br acts as an activator of AMPK and activates
PGC-1α by activating the AMPK/SIRT1/PGC-1α signaling
pathway, exerting the ability of PGC-1α to scavenge ROS and
inhibit apoptosis (Xue et al., 2021). Activation of PGC-1α also
inhibits the action of the inflammatory cytokine IL-β and
regulates the energy metabolism of chondrocytes (Xue et al.,
2021), thus preventing cartilage degeneration in vivo.
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8 Discussion

Results of recent studies suggest that PGC-1α, as a master
regulator of mitochondrial biogenesis and metabolism, may be a
candidate target for the treatment of OA. PGC-1α is activated by
multiple pathways and signaling molecules in chondrocytes to
regulate mitochondrial biogenesis, mitophagy, and mtDNA
replication and expression. In addition, PGC-1α can inhibit
oxidative stress and chondrocyte apoptosis to maintain
cartilage homeostasis. PGC-1α is also involved in the
regulation of abnormal energy metabolism and lipid
metabolism in OA chondrocytes, and inhibits the catabolic
reactions of chondrocytes. The chondroprotective effect of
PGC-1α has also been demonstrated in drug experiments, and
multiple effectors have shown beneficial effects in experimental
models of OA by activating PGC-1α in chondrocytes. However,
the value of target-activating PGC-1α effectors and novel
nanohybrids in clinical applications needs further
investigation. The role of PGC-1α on other metabolic
pathways of chondrocytes and other pathological changes of
OA is still unclear. Therefore, in the future experimental
research and clinical treatment of OA, PGC-1α and its related
pathways and regulatory molecules deserve special attention.
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Glossary

PGC-1α peroxisome proliferator-activated receptor γ cofactor 1α
mtDNA mitochondrial DNA

OA osteoarthritis

ASIR age-standardized incidence rate

ECM extracellular matrix

MQC mitochondrial quality control

AMPK AMP-activated protein kinase

SIRT1 silent information regulator 1

TFAM mitochondrial transcription factor A

NRF1 nuclear respiratory factor 1

NRF2 nuclear respiratory factor 2

SIRT3 silent information regulator 3

SOD2 superoxide dismutases 2

OGG1 8-oxoguanine DNA glycosylase-1

ERRα estrogen-related receptor-α
LKB1 liver kinase B1

FoxO3A forkhead box class O 3A

mTOR mechanistic target of rapamycin

mTORC1 mTOR complex 1

mTORC2 mTOR complex 2

TSC1/2 tuberous sclerosis complex 1/2

ER endoplasmic reticulum

REDD1 regulated in development and DNA damage response 1

PPAR-γ peroxisome proliferator-activated receptor-γ
MMP-13 matrix metalloproteinase-13

NF-κB nuclear factor κB
COX-2 cyclooxygenase-2

OXPHOS oxidative phosphorylation

FGFs fibroblast growth factors

Sesn2 Sestrin2

PRKN parkin RBR E3 ubiquitin protein ligase

BNIP3 Bcl-2/adenovirus E1B 19 kDa interacting protein 3

MUL1 mitochondrial ubiquitin ligase 1

PKR double-stranded RNA-dependent protein kinase R

NOX1/4 NADPH oxidase1/4

UCP2 uncoupling protein 2

AGEs advanced glycation end products

ATGL adipose triglyceride lipase

LXR liver X receptor

CITED2 CBP/p300 interacting transactivator with Glu/Asp rich
carboxy-terminal domain 2

Cyt-c cytochrome c

SOX9 sry-related high mobility group-box 9

MAG magnolol

FA ferulic acid

CREB cAMP/responsive element-binding protein

DHM dihydromyricetin

DMF dimethyl fumarate

LEF-1 lymphoid enhancer-binding factor 1

RB@MPMW cartilage-targeting peptide-modified dual-drug
delivery nanoplatform with near-infrared laser

Br bilirubin
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