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The dysregulation of the biochemical pathways in cancer promotes oncogenic
transformations and metastatic potential. Recent studies have shed light on how
obesity and altered lipid metabolism could be the driving force for tumor
progression. Here, in this review, we focus on liver cancer and discuss how
obesity and lipid-driven metabolic reprogramming affect tumor, immune, and
stroma cells in the tumor microenvironment and, in turn, how alterations in these
cells synergize to influence and contribute to tumor growth and dissemination.
With increasing evidence on how obesity exacerbates inflammation and immune
tolerance, we also touch upon the impact of obesity and altered lipid metabolism
on tumor immune escape.
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1 Introduction

There is accumulating evidence of a link between environmental factors and cancer
incidence rates. Environmental factors related to lifestyle choices, which include high-
carbohydrate and high-lipid diets, have been strongly correlated with metabolic disruptions
leading to obesity, insulin resistance, and even metabolic syndrome. Obesity, a result of
excessive systemic adipose tissue accumulation leading to increased body weight, is strongly
associated with the development of a host of chronic diseases such as type 2 diabetes mellitus,
hypertension, cardiovascular disease, and hepatic steatosis. Furthermore, it has been
implicated as a risk factor in the initiation and progression of a wide variety of cancers
(Dobbins et al., 2013) which include breast, ovary (Liu et al., 2015), prostate, liver, colon, and
pancreatic cancers.

Cancer can be regarded as a metabolic disease. Despite obesity being a risk factor for
cancer development, the scientific link between obesity and tumor progression is not
apparent. In a meta-analysis of 33 studies across different cancer types, obesity is
revealed as a prognostic but not an independent predictor for the survival outcomes of
cancer patients (Parekh et al., 2012). Several obesity-associated molecular factors and
signaling pathways such as adipokine production, alterations in the insulin-like growth
factor 1 (IGF-1) signaling pathway, excessive steroidal sex hormone production, chronic
low-grade inflammation, oxidative stress, and gut dysbiosis were identified to influence
tumor cell biology, but the underlying mechanisms have not been fully elucidated (Parekh
et al., 2012; Park et al., 2014a; Avgerinos et al., 2019).
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FIGURE 1
Schematic summary of cells in the tumor microenvironment that are amenable to lipid-induced metabolic programming and their contributions to
aspects of cancer progression. The scope of this review covers various cell types within the tumor microenvironment (Left) and their involvement in four
key aspects of tumor progression (Right). Created with BioRender.com.

FIGURE 2
Altered lipid metabolism and lipotoxicity in oncogenesis. Depicted (Left) are various factors associated with lipid accumulation and are lipotoxicity
induced, eventually increasing overall cellular stress leading to oncogenesis and malignant transformations. (Right) Main altered pathways in lipid
metabolism associated with cancers. Abbreviations: ROS, reactive oxygen species; 4-HNE, 4-hydroxynonenal; SREBP1/2, sterol regulatory
element–binding proteins 1/2; PPARγ, peroxisome proliferator-activated receptor gamma; ACLY, ATP-citrate lyase; SCD1, stearoyl-CoA desaturase
1; ACSL, long-chain fatty acid–CoA ligase 1; FASN, fatty acid synthase; ACC, acetyl-CoA carboxylase; FABP, fatty acid–binding proteins; LDLR, low-
density lipoprotein receptor. Created with BioRender.com.

Frontiers in Pharmacology frontiersin.org02

Zhao et al. 10.3389/fphar.2023.1163160

http://BioRender.com
http://BioRender.com
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1163160


In this review, we cover how dysregulated lipid metabolism
could fuel cancer progression. Using hepatic steatosis and liver
cancer as a classic example, we discuss how obesity could lead to
metabolic disease and also oncogenesis. Finally, we will also
highlight the role of lipids as a metabolic immune checkpoint in
the stroma and immune compartments of the tumor
microenvironment (TME) (Figure 1).

2 Altered lipid metabolism in cancer

Given that lipids play an integral role in cellular metabolism
(Carracedo et al., 2013), signaling, and membrane structure, altered
lipid metabolism has been regarded as one of the more important
metabolic alterations associated with tumor cell growth and cancer
progression (Rohrig and Schulze, 2016). A systematic analysis of
omics data from TCGA has revealed that fatty acids (FAs),
arachidonic acid (AA), and cholesterol metabolism, together with
peroxisome proliferator-activated receptor (PPAR) signaling came
up as the top hits of altered lipid metabolism pathways (Hao et al.,
2019). Furthermore, the pathways involving altered lipid uptake,
storage, recycling, and de novo synthesis have been associated with
cancer progression and metastasis (reviewed in detail in Mehla and
Singh, 2019; Fu et al., 2020; Vasseur and Guillaumond, 2022),
making lipid metabolism enzymes potentially attractive targets
for cancer treatments (Figure 2).

The oncogenic activation of de novo synthesis of cholesterol and
FAs would allow tumor cells to rely less on exogenous uptake of
lipids (Pizer et al., 1996; Roongta et al., 2011; Menendez et al., 2016).
Multiple enzymes within the FA synthesis pathway which include
ATP-citrate lyase (ACLY) (Bauer et al., 2005; Hatzivassiliou et al.,
2005), acetyl-CoA carboxylases (ACC1/2) (Jones et al., 2017; Ye
et al., 2019), FA synthase (FASN) (Flavin et al., 2010; Fhu and Ali,
2020), and stearoyl-CoA desaturase (SCD1) (Roongta et al., 2011;
Mason et al., 2012; Chen et al., 2016; Luis et al., 2021) have all been
found to correlate strongly with tumor growth and have been
proposed as biomarkers for specific types of cancers. Modulating
expression levels of these enzymes are transcription factors from the
SREBP family (SREBP1/2), interacting with or modulated by key
oncogenic signaling nodes which include the PI3K/AKT signaling
axis (Ricoult et al., 2016; Yi et al., 2020) and c-Myc (Wu et al., 2016).
Importantly, SREBP1/2 upregulations have been observed in several
cancers (Bao et al., 2016; Ricoult et al., 2016), making these potential
therapeutic targets that globally downregulate de novo lipid
synthesis. Another transcription factor PPARγ controls the
expression levels of the mediators of lipid metabolism, playing
important roles in regulating FA oxidation (FAO), FA storage,
and cholesterogenesis (Grygiel-Gorniak, 2014). Its
downregulation has been implicated in a worse prognosis in
non–small-cell lung cancer (Sasaki et al., 2002), while its higher
expression is correlated with increased survival in colorectal cancer
(CRC) patients (Ogino et al., 2009) and reported as a favorable
prognosis marker in breast cancer (Abduljabbar et al., 2015).
Conversely, tumors could at the same time often upregulate the
expression of lipid uptake receptors (Kuemmerle et al., 2011). In
particular, the upregulation of fatty acid transporter CD36 has been
associated with many different cancer types such as oral, breast,
ovarian, cervical, and gastric cancers (Pascual et al., 2017; Luo et al.,

2021). Furthermore, CD36 overexpression has been associated with
faster tumor growth, cancer progression, and metastasis initiation
(Pascual et al., 2017; Luo et al., 2021; Guerrero-Rodriguez et al.,
2022; Ruan et al., 2022).

Increases in exogenous uptake and de novo synthesis of lipids
have to be complemented by concomitant increases in lipolysis,
particularly to capitalize on the increased availability of lipids as a
bioenergetic source. Consequently, FAO has been observed as
another metabolic adaptation in tumor cells that is necessary for
continued tumor growth and metastasis (aside from aerobic
glycolysis and increased reliance on glutaminolysis), especially
under unfavorable and possibly poorly vascularized and hypoxic
tumor microenvironments (Carracedo et al., 2013; Ma et al., 2018a).
Shifts in FAO reliance for the production of ATP and reducing
metabolites such as NADPH, classified as a “lipolytic phenotype”
(Ma et al., 2018a), can be attributed to the dysregulation of
expression levels of key FAO genes such as CD36 (discussed
above), carnitine palmitoyltransferase I/II (CPT1/2) (Xiong et al.,
2020), carnitine transporter 2 (CT2) (Wang et al., 2021), and various
classes of acyl-CoA synthetase long-chain family members (ACSLs)
(Padanad et al., 2016). This lipolytic phenotype provides the
metabolic flexibility of cancer cells to increase lipid availability,
whether it be for energy production, membrane synthesis, or cell
signaling. The reliance on FAO in cancer cells has been shown to be
necessary for tumor proliferation, survival, maintenance of
stemness, drug resistance, and even metastatic progression, as
reviewed by Ma et al. (2018a). Considering that tumor cells
could rely more on fatty acid oxidation to fuel their metabolic
needs, an in vitro study found that dampening lipid metabolism with
etomoxir treatment results in reduced metastatic potential and
growth arrest of bladder cancer cells (Cheng et al., 2019).
Notably, metastatic cells within lymph nodes are protected by
oleic acid within the tumor microenvironment, conferring
resistance to oxidative stress and ferroptosis that enable them to
subsequently form secondary tumors (Ubellacker et al., 2020).
Taken together, the various alterations to lipid metabolism in
cancers is clearly integral to multiple cellular and signaling
processes involved in continued tumor survival and cancer
progression.

3 NAFLD/NASH-HCC

Altered lipid metabolism has a significant influence in the
development of non-alcoholic fatty liver disease (NAFLD), non-
alcoholic steatohepatitis (NASH), and even hepatocellular
carcinoma (HCC). Fatty liver disease (hepatic steatosis) is the
hallmark of NAFLD/NASH and commonly the first step in the
tumorigenesis cascade. Epidemiology shows that one in four in the
world’s population has NAFLD at some point in their life and,
alarmingly, the prevalence of this global epidemic has risen by
almost 8% in the past 5 years (Younossi et al., 2019; Riazi et al.,
2022). NASH is a more severe form of NAFLD, where steatosis is
accompanied by inflammation and hepatocellular ballooning, with
or without fibrosis (Chalasani et al., 2018). NAFLD/NASH
represents a significant risk factor for HCC where 10%–20% of
NAFLD/NASH patients may eventually develop HCC, overtaking
viral hepatitis as the leading HCC etiology globally (Huang et al.,
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2021). Cancers like HCC are not simply driven by oncogenic
mutations or malignancy emerged from chronic inflammation,
HCC entails considerable metabolic reprogramming such as
altered lipid metabolism (Anstee et al., 2019). Gross
histopathology examination of resected HCC tumors often shows
irregular nodules that are more yellow and soft than the adjacent
normal (Schlageter et al., 2014), indicating steatosis and altered lipid
metabolism. A recent characterization of the NASH-HCC
transcriptome shows apparent upregulation of the pathways
involved in FA metabolism (Pinyol et al., 2021). The complex
metabolic and inflammatory aberrations lead to increased
proliferation of hepatobiliary progenitors (Gadd et al., 2014),
deranged genomic and epigenomic stability (Nishida et al., 2016),
and escape from immune surveillance (Pfister et al., 2021), which
ultimately drive tumorigenesis.

The development of NAFLD/NASH follows the natural
trajectory of disease progression, and hyperinsulinemia (an
indication of insulin resistance) correlates with HCC incidence
(Chettouh et al., 2015). A high fat diet or high intake of
carbohydrates and calories, in general, can lead to insulin
resistance and subsequently to NAFLD/NASH or even metabolic
syndrome. Insulin resistance sits at the center of metabolic
syndrome, comprising abdominal obesity, hyperglycemia,
dyslipidemia, and hypertension—the co-occurrence of which
significantly predisposes to 2 diabetes (T2DM) and
atherosclerotic cardiovascular diseases (ASCVD). While the exact
causal relationships between insulin resistance and increased HCC
risk is not fully understood, insulin resistance leads to increased
circulating free FAs and glucose, as well as de novo lipogenesis in the
hepatocytes (Smith et al., 2020). It comes as no surprise that drugs
that increase insulin sensitivity, such as metformin, can improve
NAFLD/NASH histology and subsequently reduce the risk of HCC
(Plaz Torres et al., 2022). Synergistically, deranged free cholesterols
could potentially lead to malignant progression. The accumulation
of free cholesterols may be due to increased de novo synthesis
(Simonen et al., 2011; Min et al., 2012), as there is a high
substrate load and upregulation of HMG-CoA reductase. There
seems to be a decreased absorption of plasma cholesterol (Simonen
et al., 2011) and decreased LDL receptor expression (Min et al.,
2012) by the hepatocytes, which may explain the dyslipidemia and
increased ASCVD risk. To add on, a high fructose diet is also
notorious for its effect in driving NAFLD/NASH. Fructose drives de
novo lipogenesis, suppresses fatty acid oxidation, and damages
mitochondrial integrity in hepatocytes, hence increasing lipid
accumulation and hepatocellular damage (Yu et al., 2021a).
Interestingly, genetic predisposition has been indicated in the
development of lipotoxicity and hepatic steatosis. PNPLA3
polymorphism or mutation is probably the best-known genetic
predisposition to NAFLD/NASH, fibrosis, and HCC (Liu et al.,
2014; Dong, 2019). PNPLA3 encodes a triglyceride lipase that often
binds to intracellular lipid droplets. The altered forms of
PNPLA3 protein lead to impaired lipid metabolism and hence,
increased lipid droplet accumulation, resulting in lipotoxicity and
downstream cellular stresses (Dong, 2019). Experiments have also
shown a seemingly genetic predisposition of NAFLD/NASH when
abnormal hepatic differentiation is observed from patient-derived
iPSCs when compared with those from healthy individuals (Kimura
et al., 2022).

Further understanding of the molecular basis of NAFLD/NASH
has proven to be critical to better design potential therapeutic
interventions. Several transcription factors, enzymes, and
transporters have been implicated in the accumulation of lipid
via dysregulation of processes such as de novo lipogenesis,
circulating free FAs (e.g., from diet), and adipolysis. FXR agonists
(e.g., obeticholic acid) (Neuschwander-Tetri et al., 2015) and PPARγ
agonists (e.g., pioglitazone) (Chalasani et al., 2018) have been shown
to improve NAFLD/NASH histology, with both targets regulating
lipid uptake and metabolism. Sterol response element binding
protein 1c (SREBP-1c) is also a central transcription factor
controlling cellular FA metabolism (Wang et al., 2015). Induced
by insulin, it increases the expression of acetyl-CoA carboxylase
(ACC) (Lally et al., 2019) and fatty acid synthase (FASN) (Jones and
Infante, 2015), hence upregulating the production of malonyl-CoA
and FAs. SREBP-1c is upregulated in the hepatocytes during insulin
resistance, NAFLD/NASH, and HCC (Williams et al., 2013),
indicating that de novo lipogenesis represents an indispensable
source of lipid accumulation. In addition, interstitial FAs are
transported into hepatocytes by fatty acid binding protein 1
(FABP1), lipid scavenger receptors, and fatty acid transport
proteins (FATPs), depending on the length of the FAs. These
carrier proteins may directly influence lipid accumulation and
hence accelerate disease progression. While silencing of FABP1
directly ameliorates hepatic steatosis (Mukai et al., 2017), its
effect on HCC development seems to depend more on increased
secretion of vascular endothelial growth factor-A (VEGF-A) (Ku
et al., 2016), therefore promoting angiogenesis. Of note, one of the
scavenger receptor, CD36, is significantly expressed in higher levels
in HCC than in adjacent normal tissues (Nath et al., 2015), which
leads to increased FA uptake (Nath et al., 2015) and activates the
Warburg effect via the mTOR/PI3K/AKT pathways (Luo et al.,
2021).

Apart from the bioenergetics fueled by alterations in lipid
metabolism, lipotoxicity could lead to intrinsic cellular stress that
may also drive the oncogenic progression of NAFLD/NASH to
HCC (Figure 2). Increased substrate loading, mitochondrial
metabolic activity, and inflammation inevitably led to increased
production of reactive oxygen species (ROS) and products of lipid
peroxidation (Begriche et al., 2013; Anstee et al., 2019). The
exhaustion of cellular antioxidant mechanisms in turn causes
increased lipid accumulation, forming a vicious cycle. It is also
well known that increased oxidative stress can lead to DNA
damage and genomic/epigenomic instability, which is more
prominent in NAFLD/NASH patients and those who have
progressed with HCC (Tanaka et al., 2013; Nishida et al., 2016).
Likewise, studies have elucidated the cross talk between
endoplasmic reticulum (ER) stress and lipid metabolism. Lipid
exposure leads to increased ER stress in hepatocytes and HCC cells
(Cao et al., 2012), which in turn causes increased ROS production
and hepatocellular damage. The MUP-uPA mouse model of
NASH-HCC relies on both a high fat diet and the
overexpression and ER accumulation of urokinase plasminogen
activator (uPA) in the hepatocytes for tumorigenesis (Febbraio
et al., 2019). ER stress also modulates lipid metabolism by
activating SREBP-1c and causing oxidative stress (Egnatchik
et al., 2014; Han and Kaufman, 2016). Such cross talk
complements the tumorigenic role of TNF upregulation and
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inflammation induced by ER stress (Nakagawa et al., 2014). In
addition, the accumulation of cholesterols also contributes to ER
stress and mitochondrial dysfunction, resulting in hepatocellular
damage and inflammation (Malhotra et al., 2020; Zhou and Sun,
2021). While the above discussion of hepatic steatosis focuses
primarily on hepatocyte metabolism, the complexity of NAFLD/
NASH and HCC involve an extensive remodeling of the liver
microenvironment with lipid-driven fibrosis and chronic
inflammation. Within the stroma, cholesterol can trigger the
metabolic reprogramming of Kupffer cells (KCs) and hepatic
stellate cells (HSCs) which in turn activate these cells into a
pro-inflammatory state (Arguello et al., 2015). Subsequent
sections of the review will further discuss the effects of lipid
dysregulation on adipocytes, cancer-associated fibroblasts,
immune myeloid cells, and lymphocytes.

4 Role of adipocytes in tumor
development

Within the lipid-laden tumor microenvironment, the
involvement of adipocytes could in part explain the
association between obesity and cancer progression. Of note,
adipocytes produce pro-inflammatory cytokines such as IL-6, IL-
8, and TNFα (Bruun et al., 2003; Ritchie and Connell, 2007), and
angiogenic factors such as VEGF, prostaglandins and
leukotrienes, which not only have pro-tumorigenic
correlations but have been associated with cancer progression,
metastasis, and even immune evasion (Wang and DuBois, 2016;
Tian et al., 2020). With obesity, the accumulation of adipocytes
within the breast tumor microenvironment could also result in
high collagen IV production implicating chronic inflammation
and tissue fibrosis (Park and Scherer, 2012). Inhibition of
hypoxia-inducible factor 1α (HIF1α) was demonstrated to
prevent the activation of adipocytes leading to reduced fibrosis
and inflammation during obesity (Sun et al., 2013). It was also
shown that excessive adipocyte accumulation, particularly in
visceral areas around tumor initiation sites, can induce a
hypoxic microenvironment (Park et al., 2014b), promoting
angiogenesis and contributing to cancer metastasis.

Cancer cells can secrete factors that modulate adipocyte FA
metabolism, forming a reciprocal interaction which enhances the
availability of FA, fueling cancer growth (Lengyel et al., 2018). For
example, breast cancer cells can secrete exosomes containing pro-
lipolytic factors such as miR-144 and miR-126, which stimulate
lipolysis within neighboring adipocytes through the activation of
AMPK and autophagy. As a result, enhanced lipolysis and the
release of FAs shift the metabolic dependencies of migrating
cancer cells toward increasing exogenous FA uptake and their
reliance on β-oxidation for energy supply (Balaban et al., 2017).
Likewise, inflammatory cytokines secreted by adipocytes were found
to enhance the metastatic potential of breast cancer cells (Dirat et al.,
2011). Interestingly, multiple cancers such as renal, gastric, breast
and colon cancers have been shown to preferentially grow in
adipocyte-rich environments. Furthermore, metastatic
prostate,breast, and ovarian cancer cells preferentially home
toward adipocyte tissues in the vicinity, including peri-glandular
regions and the visceral omentum.

Conversely, the activation of brown adipose tissue (BAT) may
have opposing roles that are beneficial to the tumor-bearing host. A
recent study has demonstrated that the UCP1-dependent activation
of brown adipose tissue dampens the glycolytic pathways within
cancer cells to influence the growth of several cancer types as
demonstrated in mouse models and a human study (Seki et al.,
2022). Indeed, our current understanding is that there is an
interesting functional plasticity of adipocytes in their involvement
during cancer progression. Yet, the role of adipocytes remains
underappreciated in the field and should be further studied in
specific cancers.

5 Lipid metabolism and cancer-
associated fibroblasts

An emerging cell type that has been revealed to heavily
influence tumor progression and metastasis within the TME is
cancer-associated fibroblasts (CAFs). These cells are known to
modulate the TME through various mechanisms (reviewed by
Sahai et al., 2020; Ping et al., 2021) which include, but are not
limited to 1) extracellular matrix remodeling, 2) immune cross
talk through chemokine and cytokine production, 3) soluble
factor secretions which include angiogenic and growth factors
(VEGF and HGF), microRNAs (in exosomes), and lastly, the
most relevant to this discussion, 4) metabolic modulation
through lactate, alanine, and aspartate shuttling and amino
acid depletion (Wu et al., 2017). Apart from carbohydrate and
amino acid modulations within the TME, CAFs are also known to
modulate the bioavailability of lipids both directly and indirectly
to fuel the metabolism of cancer cells within the often nutrient-
starved TME. Of note, Santi et al. (2015) have revealed the direct
transfer of lipids from CAFs to cancer cells via ectosomes, fueling
cancer growth. Gong et al. (2020) also confirmed lipidomic
reprogramming of CAFs in CRC having enhanced de novo FA
synthesis and reduced lipid catabolism phenotype. The study
further reveals FASN upregulation in CAFs, which together with
CD36 upregulation in CRC cells, promotes this intimate
metabolic cross talk and facilitates both CRC cell migration
and growth. A complementary study done in lung cancer
revealed that CAF-derived lipids, particularly oleic acid, can
activate lipid metabolism in cancer cells via the upregulation
of SCD1 under glucose-starved conditions. Furthermore, oleic
acid transfer from CAFs could enhance cancer cell stemness
(Hwang et al., 2022). Further examples of metabolic
reprogramming occurring in CAFs to facilitate increased lipid
availability and transfer to cancer cells include the role of
pancreatic stellate cells, which upon activation, releases a wide
range of lipids, such as lysophosphatidylcholines (LPCs). These
LPCs go on to enhance phosphatidylcholine synthesis in
pancreatic ductal adenocarcinoma (PDAC) cells, activating
wound healing mediators which enhance PDAC cell
proliferation and migration (Auciello et al., 2019). The
emerging roles of CAFs as a lipid source fueling cancer cell
growth, proliferation, and metastasis place emphasis on the
requirement for further studies to dissect lipid cross talk
between CAFs and cancer cells and present an additional
interface of cancer therapeutic design.
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6 Metabolic reprogramming of myeloid
cells in cancer

6.1 Macrophages

Different macrophage populations possess distinct influences on
homeostasis and disease beyond phagocytosis, as discovered by Elie
Metchnikoff (PMID: 27477126). In 2004, the M1-M2 spectrum of
macrophage polarization was proposed (Mantovani et al., 2004;
Mantovani et al., 2013), and the concept of tumor-associated
macrophages (TAMs) was subsequently pioneered (Mantovani
et al., 2017). Indeed, macrophages can be a “friend” or “foe” in
almost every step of pathogenesis and disease progression for a vast
number of diseases (Mantovani et al., 2022; Wculek et al., 2022). A
recent study has demonstrated that CAF reprogramming of blood
monocytes converts them into lipid-associated macrophages with an
immune suppressive phenotype. These macrophages are STAB1+

and TREM2high and reported to be expanded in non-responders of
immune checkpoint therapy (Timperi et al., 2022).

A reciprocal relationship exists between macrophage phenotype
and metabolism. On one hand, the macrophage activation pattern
leads to its metabolic reprogramming. M1 macrophages adopt a
glycolytic metabolic profile downstream of LPS/IFN-γ activation of
toll-like receptors (TLRs) and interferon gamma receptors, along
with increased induced nitric oxide synthase (iNOS) activity (Viola
et al., 2019; Liu et al., 2021; Wculek et al., 2022). This is to facilitate
the rapid turnover of metabolites during phagocytosis and
production of pro-inflammatory cytokines and NO. FAs are
rapidly synthesized and deployed for eicosanoid synthesis, while
fatty acid oxidation (FAO) is blocked (Batista-Gonzalez et al., 2019;
Yan and Horng, 2020). Together with lipid overload and triglyceride
synthesis, there is increased intracellular lipid accumulation in the
M1 state (Xiang et al., 2018; Rosas-Ballina et al., 2020; Morgan et al.,
2021). By contrast, M2 macrophages activated by IL-4 primarily
utilize oxidative phosphorylation (OXPHOS) and FAO (Viola et al.,
2019; Wu et al., 2020; Liu et al., 2021; Wculek et al., 2022). IL-4
stimulation activates STAT6, which in turn increases the expression
of lysosomal acid lipase (LAL) and scavenger receptors like CD36
(Huang et al., 2014) and MARCO (Georgoudaki et al., 2016),
upregulating lipoprotein/FA uptake and lipolysis. However, FAO
is not required for M2 polarization (Nomura et al., 2016), suggesting
compensatory metabolic pathways that may be induced by AMPK
or PPARγ (Namgaladze and Brune, 2016).

On the other hand, metabolic derangements can alter
macrophage phenotype, which depends on the local environment
which includes its biochemical (metabolic) environment (Mehla and
Singh, 2019). The overload of saturated fatty acids (SFAs) can
directly bind to TLRs and cause M1 polarization (Namgaladze
and Brune, 2016). The increased accumulation of lipids
(Heymann et al., 2015), ROS (Yan and Horng, 2020), and lactic
acid (Colegio et al., 2014) will in turn cause cellular damage and
death, causing further M1 activation. However, a lipid-/lactate-rich
environment can cause both a transient “burst” of M1 polarization
as well as the selection of M2 for survival (Camell and Smith, 2013;
Colegio et al., 2014), which may explain the discrepancy between a
pro-inflammatory secretome and an anti-inflammatory cellular
profile. High glucose (Pavlou et al., 2018) and fructose (Yu et al.,
2021a) exposure may also shift macrophage phenotypes. While it

causes an increase in both pro-inflammatory cytokines in M1 and
anti-inflammatory cytokines in M2, there is also an aberrant
macrophage metabolism with reduced glycolytic capacity,
implying a decrease in phagocytosis and NO production (Pavlou
et al., 2018). Abnormal cholesterol metabolism has also been
indicated in different disease settings but generally leads to pro-
inflammatory macrophage phenotypes (Malhotra et al., 2020;
Morgan et al., 2021). Finally, hypoxia may alter macrophage
functioning as well, yet the precise action remains elusive (Sadiku
and Walmsley, 2019).

It has been shown that macrophages in vivo adopt a spectrum of
pro- and anti-inflammatory phenotypes, where a dichotomy of
M1 versus M2 is an oversimplification (Liu et al., 2021). Indeed,
much evidence has suggested that macrophages can possess surface
markers classically defined for both M1 and M2, and their
phenotypes contribute to disease progression or improvement in
a spatiotemporally dependent manner. In cancer, it is recognized
that these global biochemical and metabolic aberrations generally
lead to a pro-inflammatory polarization at the pro-tumor
necroinflammation stage, and an anti-inflammatory polarization
in the full-blown tumor (Lee-Rueckert et al., 2022). The same also
applies to ASCVD development (Lee-Rueckert et al., 2022), where
chronic inflammation leads to M1-like cholesterol ester
accumulation and foam cell formation, followed by M2-driven
remodeling before acute plaque rupture and thrombosis via
inflammation again (Sukhorukov et al., 2020; Wculek et al.,
2022). TAMs are subject to extreme metabolic conditions such as
hypoxia, nutrient deprivation, environmental acidity, and a myriad
of cytokines both pro-inflammatory (TNFα, IL-1, IL-6, and IFN-γ)
and anti-inflammatory (adenosine, IL-10, and TGF-β) (Mantovani
et al., 2022). Hence, it is important therapeutically that we target
specific metabolic pathways at different stages of tumor
development. For instance, systemic glycolytic inhibitors may
reduce lactic acid–driven M2 polarization yet compromising
M1 activation at the same time. Although blocking lipid uptake
or FAO may result in abrogation of anti-inflammatory TAM
functions (Georgoudaki et al., 2016), therapeutics targeting TAM
metabolism have yet a long way to go before clinical impact
(Mantovani et al., 2022). Interestingly, a recent study has shown
glycolytic TAMs are the major PD-L1 expressors in HCC, and PD-
L1 blockade can unleash glycolysis-dependent tumoricidal activity
(Lu et al., 2022). Future studies may investigate the relationship
between metabolism and immune checkpoints (Yu et al., 2021b) and
design novel immuno-oncology interventions powered by
metabolomics (Bleve et al., 2020).

6.2 Dendritic cells

The metabolic profile of dendritic cells (DCs) in cancer bears
resemblance to that of macrophages. DC activation causes a
metabolic switch from OXPHOS to glycolysis (Krawczyk et al.,
2010; Williford et al., 2019), with increasing lipid accumulation that
may facilitate antigen presentation (Bougneres et al., 2009).
However, the influence of metabolic dysregulation on DC
phenotype is more prominent in tumors. The antigen processing
and presentation in lipid-laden DCs are compromised, resulting in
defective T-cell stimulation (Herber et al., 2010). Metabolic
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reprogramming of DCs from glycolysis to FAO depends on PPARγ,
conferring an immunosuppressive effect similar to M2 activation
(Zhao et al., 2018). Lipid peroxidation and accumulation can also
lead to ER stress (Cubillos-Ruiz et al., 2015) and decreased antigen
processing at the ER (Veglia et al., 2017), abrogating antitumor
immunity. While neoantigen-based DC vaccine is a promising
immuno-oncology strategy, it may be necessary to interrogate the
extracellular or intracellular biochemical environment to avoid the
negative impact by metabolic derangements on DC functions
(Wculek et al., 2019; Moller et al., 2022). The use of a carnitine
palmitoyltransferase-1 (CPT1) mitochondrial fatty acid transporter
inhibitor—etomoxir—could be a promising candidate for
combinatory therapy with conventional immune checkpoint
inhibitors where the metabolic reprogramming of DCs can be
abrogated to prevent polarization into a tolerogenic phenotyping
that drives the generation of regulatory T cells (Zhao et al., 2018).

6.3 Myeloid-derived suppressor cells

Myeloid-derived suppressor cells (MDSCs) are a
heterogeneous group of immunosuppressive myeloid cells that
are differentiated in chronic inflammatory conditions such as
cancer (Hegde et al., 2021). These cells may not possess typical
granulocyte or monocyte/macrophage phenotypes and hence a
monolithic view of MDSCs can see a dichotomy of
polymorphonuclear (PMN) and monocyte (M) MDSCs. The
current understanding has uncovered much heterogeneity of
MDSCs and an alternative framework has been proposed
(Hegde et al., 2021). MDSCs reprogram their metabolism in
ways resembling immunosuppressive macrophages and
dysfunctional DCs. MDSCs upregulate FA uptake and
oxidation (Al-Khami et al., 2017), which is abrogated by FAO
inhibitors that delay tumor growth and synergize with other
therapies (Hossain et al., 2015). Evidence suggests that this
process is mediated by inflammation, hypoxia, and
environmental acidity, which in turn upregulate HIF-1α
(Corzo et al., 2010), PPARγ (Xin et al., 2021), AMPK (Yan
et al., 2019), and STAT3 (Ma et al., 2018b). Increased
eicosanoid metabolism (Gabrilovich, 2017), characterized by
increased COX-2 activity and concentrations of AA and
prostaglandin E2 (Prima et al., 2017; Wang et al., 2022),
reciprocally increases lipid accumulation and confers
immunosuppressive activity. The nitrogen metabolism is more
complex, as increase in both arginase-1 (Raber et al., 2012), a
potent T-cell suppressor, and iNOS (Enioutina et al., 2011), the
pro-inflammatory NO synthase, has been reported. The
immunosuppressive effect is a delicate balance of mTOR/
PI3K/AKT regulation as well as stimulation by Th1 or
Th2 cytokines (Yan et al., 2019). Finally, ER stress may also
confer MDSC immunosuppression via the PERK-NRF2 pathway
(Mohamed et al., 2020). Ablating PERK, a kinase on the ER,
upregulates type I interferon response and reprograms the
MDSCs toward tumor-limiting myeloid cells (Mohamed et al.,
2020). Taken together, metabolic reprogramming of MDSCs lead
to an increased expression of myeloid checkpoints [e.g., PD-L1
(Prima et al., 2017; Xin et al., 2021) and arginase-1 (Grzywa et al.,
2020)] and immunosuppressive cytokines [e.g., TGF-β

(Gabrilovich, 2017), IL-10 (Grzywa et al., 2020), and PGE2
(Wang et al., 2022)]. Targeting MDSC metabolism, such as
lipid transport (Al-Khami et al., 2016)/FAO inhibitors
(Hossain et al., 2015; Xin et al., 2021), LXR agonists (Tavazoie
et al., 2018), and COX-2 inhibitors (Prima et al., 2017), may
synergize with immune checkpoint blockade and confer clinical
benefit.

7 Obesity-mediated reprogramming of
tumor-infiltrating lymphocytes

Studies in recent years have started to shed light on the link
between obesity and antitumor immune responses. With an
increasing focus on immunotherapy in cancer, there is a greater
need to understand how altered lipid metabolism would influence
the performance of cytotoxic lymphocytes within the tumor
microenvironment.

7.1 T cells

A systematic analysis has revealed that an abundance of CD8T cells
was themost predictive parameter of a beneficial response to anti-PD-1/
PD-L1 therapy across multiple cancer types (Lee and Ruppin, 2019). As
exemplified in mouse models, a high-fat diet resulted in poor
CD8 T-cell infiltration into several types of solid tumors. Colorectal
tumors of patients with higher BMI of more than 35 were also
associated with lower CD8 immune scores (Ringel et al., 2020). Our
current understanding is that the shift toward lipid metabolism drives
cellular stress and T-cell dysfunction. In fact, it has been elucidated that
PD-1 ligation elevated FAO in T cells during immune suppression
which can be modulated by conventional immune checkpoint blockade
(Patsoukis et al., 2015). In addition, accumulation of LCFAs dampens
mitochondrial respiratory capacity and triggers extensive
transcriptional reprogramming of CD8 T cells (Manzo et al., 2020).
Considering that the bioenergetics of intra-tumoral T-cells have shifted
toward FAO rather than glycolysis, the activation of PPARγ enables
beneficialmetabolic adaptation that boostsmitochondrial functions and
oxidative phosphorylation despite the altered lipid metabolism
(Chowdhury et al., 2018).

As a scavenger receptor for LCFAs and oxidized LDL,
CD36 is highlighted in recent studies as an emerging target
for cancer therapeutics. It has been demonstrated that a high-
fat diet enhances the potential of CD36+ tumor cells to initiate the
formation of metastases (Pascual et al., 2017). Being both a signal
transducer and lipid transporter, the expression of
CD36 influences the activation of both conventional and
regulatory T cells, implying that CD36 could be a potential
metabolic immune checkpoint to target. The deletion of
CD36 would reduce the uptake of oxidized lipids that is
associated with ferroptosis and impaired CD8 T-effector
functions. At the same time, CD36-triggered AMPK and
PPARγ signaling could also be suppressive pathways that are
distinct from metabolic stress (Chen et al., 2022). Unlike
conventional T cells, regulatory T cells are programmed to
express lower GLUT-1 with a higher reliance on lipid
oxidation (Michalek et al., 2011). It has been demonstrated
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that CD36 mediates altered lipid metabolism that enables
PPARβ-mediated adaptation to high lactate environment for
the survival of regulatory T cells (Wang et al., 2020).

7.2 Natural killer cells

Similar to T cells, obesity has also been recently reported to
influence natural killer (NK) cell–mediated antitumor immunity. In
a comparison of normal weight and obese human subjects, it was
found that the frequency of NKG2D+ and CD56dim cytotoxic NK
cells in the peripheral blood was reduced (Bahr et al., 2018). Reduced
frequencies of NK cells in the spleen and liver were also reported in
obese mice which would potentially increase the risk of cancer
development (Bahr et al., 2017). Lipotoxicity impairs mTOR
activation in NK cells and glycolytic activity which are both
essential for its effector functions. Scavenger receptors such as
CD36, CD68, and MSR1 were found upregulated in
dysfunctional NK cells which were reported to be induced by
granulocytic MDSCs (Niavarani et al., 2019). Mechanistically,
lipid-treated NK cells acquire defects in lytic granule polarization
despite successfully forming an immune synapse with its tumor
target (Michelet et al., 2018). Likewise, etomoxir was also reported to
restore NK cell functionality under lipid stress (Michelet et al.,
2018). While we previously reported that NK cells could experience
cumulative oxidative stress in lung cancer patients with smoking
history, it was also found that obesity increases the susceptibility of
NK cells to the harmful effects of cigarette smoke (Yang et al., 2020;
O’Shea et al., 2010). Obesity not only has suppressive effects on NK
cell cytotoxicity but also influences the immune-regulatory
functions of NK cells. An increased proportion of a NK cell
subset expressing IL6Ra was observed in obese mice and humans
in which transcriptomics analysis revealed an enrichment of
inflammatory genes that is suggestive that these regulatory NK
cells could contribute to obesity-associated inflammation
(Theurich et al., 2017).

8 Concluding remarks

So far, the oncogenic role of obesity on the tumor-bearing host
has been mostly studied in HCC where hepatic steatosis is a
prominent driver of malignancy. Despite the existing vast
literature on altered lipid metabolism, most studies largely focus
on characterizing the metabolic changes that reprograms the
bioenergetics of tumor cells. Within the gut–liver axis, the
obesity-augmented microbiome and metabolites may have
significant influences on the host’s immune responses during

tumor progression. A recent study has reported differential bile
acids and gut microbiome profiles comparing HCC responders
versus non-responders to immune checkpoint blockade (Lee
et al., 2022). Additionally, the gut microbiome influences levels of
short-chain fatty acids that influence the functional plasticity of
hepatic immune cells (Hu et al., 2023). Given that obesity is often
implicated in chronic inflammation, future studies should seek to
understand how obesity influences the systemic immune responses
of the tumor-bearing host. Ultimately, these novel insights on
metabolism could change existing treatment and lifestyle
modification paradigms to provide the next breakthroughs in
oncology.
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