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Immunotherapy for neuroblastoma remains unsatisfactory due to heterogeneity
and weak immunogenicity. Exploring powerful signatures for the evaluation of
immunotherapy outcomes remain the primary purpose. We constructed a
ferroptosis-related gene (FRG) signature by least absolute shrinkage and
selection operator and Cox regression, identified 10 independent prognostic
FRGs in a training cohort (GSE62564), and then verified them in an external
validation cohort (TCGA). Associated with clinical factors, the signature
accurately predicts overall survival of 3, 5, and 10 years. An independent
prognostic nomogram, which included FRG risk, age, stage of the International
Neuroblastoma Staging System, and an MYCN status, was constructed. The area
under the curves showed satisfactory prognostic predicting performance.
Through bulk RNA-seq and proteomics data, we revealed the relationship
between hub genes and the key onco-promoter MYCN gene and then
validated the results in MYCN-amplified and MYCN–non-amplified cell lines
with qRT-PCR. The FRG signature significantly divided patients into high- and
low-risk groups, and the differentially expressed genes between the two groups
were enriched in immune actions, autophagy, and carcinogenesis behaviors. The
low-risk group embodied higher positive immune component infiltration and a
higher expression of immune checkpoints with amore favorable immune cytolytic
activity (CYT). We verified the predictive power of this signature with data from
melanoma patients undergoing immunotherapy, and the predictive power was
satisfactory. Gene mutations were closely related to the signature and prognosis.
AURKA and PRKAA2were revealed to be nodal hub FRGs in the signature, and both
were shown to have significantly different expressions between the INSS stage IV
and other stages after immunohistochemical validation. With single-cell RNA-seq
analysis, we found that genes related to T cells were enriched in TNFA signaling
and interferon-γ hallmark. In conclusion, we constructed a ferroptosis-related
gene signature that can predict the outcomes andwork in evaluating the effects of
immunotherapy.
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Introduction

Neuroblastoma (NB) is the most common extracranial solid
malignancy in children (London et al., 2005). Accounting for 15% of
cancer-related mortalities, it has the characteristics of rapid
metastasis and strong malignancy (Ishola and Chung, 2007). The
prognosis of patients is affected by factors such as age, stage,
histology, MYCN status, and DNA ploidy. A significant amount
of effort has been directed toward the improvement of treatment
results in advanced neuroblastoma; however, the prognosis of about
half of the patients remains poor (Hara, 2012).

To overcome treatment difficulties, additional targeted therapies
for adult malignancies have been tried for NB, yet powerful
treatments are still being explored (Louis and Shohet, 2015;
Whittle et al., 2017; Lochmann et al., 2018). NB denotes a
variable biological character. Although an extensive description of
copy number alterations are found in NB, few single gene alterations
have been shown to be driver mutations in NB oncogenesis
(Combaret et al., 2015). Therefore, the discovery of specific drugs
remains one difficult obstacle (Schulte et al., 2013; Moreno et al.,
2020). Besides, NB can spontaneously downregulate MHC-I and
inhibit antitumor immune components in the microenvironment
(Wienke et al., 2021). Stimulating the immunogenicity of NB cells
and transforming “cold tumors” into “hot tumors” has gradually
become a new research hot spot. There is an urgent requirement for
more effective biomarkers to guide the immune reaction such as in
immune checkpoint blockage therapy (Whittle et al., 2017).

Ferroptosis is recognized as an iron-dependent and reactive
oxygen species (ROS)–dependent cell death, which may act as an
adaptive process to be critical for eradicating carcinogenic cells (Xie
et al., 2016; Dixon, 2017). Besides, ferroptosis is closely related to
other death modes like autophagy and may play a vital role in
shaping the tumor immune microenvironment (Dai et al., 2020).
Several studies have applied ferroptosis-related genes (FRGs) to
predict prognosis and evaluate components of the immune
microenvironment of various malignancies, although not yet in
NB (Liu et al., 2020). However, ferroptosis may play an
important role in the occurrence and development of ferroptosis,
and there might be a variety of therapeutic targets in the ferroptosis
pathway of NB (Geng et al., 2018; Monteleone et al., 2021).
Therefore, the interplay between ferroptosis and immunity in NB
has to be elucidated, as does the identification of the key prognostic
FRGs that regulate the microenvironment.

In the present study, we first shed light on the role of
ferroptosis-related genes in immunity, metabolism, and
autophagy of NB. Furthermore, we developed and externally
validated a ferroptosis-related signature that can accurately
predict the 3-, 5-, 10-year prognosis of patients. By analyzing
the RNA-seq of tissues, cell lines, proteomics, and qRT-PCR
in vitro, we explored the relationship between hub genes and the
key onco-promoter MYCN. The RiskScore calculated by the
signature can to a certain extent divide the disease into “hot
tumor” and “cold tumor,” besides reflecting the mutation load of
tumors. The nodal genes AURKA and PRKAA2 were correlated
with prognosis and verified by immunohistochemistry (IHC) to
be related to the degree of malignancy. Moreover, we found that
genes related to T cells were enriched in TNFA signaling and
interferon-γ hallmark via single-cell RNA-seq analysis. Finally,

this signature had proved meaningful to understand the
immune microenvironment and guide immune checkpoint
blockade.

Materials and methods

Data collection and preprocessing

In this study, the RNA-seq data and corresponding clinical
information of 498 NB samples, which were downloaded from
the Gene Expression Omnibus (GEO, http://ncbi.nlm.nih.gov/
geo)—GSE62564 database, were named the training set (Su et al.,
2014). While the validation cohorts were obtained from The
Cancer Genome Atlas (TCGA) (121 NB) (https://portal.gdc.
cancer.gov/) (Wang et al., 2016). We performed
transcriptomic and immune profiling on tumor biopsies from
melanoma patients treated with combined anti-PD-1 and anti-
CTLA-4 (n = 51) to find the correlates of responder (n = 35) vs.
non-responder (n = 16) to the therapy from Tumor Immune
Dysfunction and Exclusion (TIDE) (http://tide.dfci.harvard.edu/
download/) (Gide et al., 2019). The proteomics data of 49 patients
with NB were obtained from the literature (Birte et al., 2021) We
obtained expression profiling in NB cell lines (29 cell lines and
38 samples) from the GSE19274 database (Cole et al., 2011). After
removing data with unknown MYCN status, we retained
21 MYCN-amplified and 13 MYCN–non-amplified cell lines.
A total of 259 FRGs were acquired from the FerrDb data set
(http://www.zhounan.org/ferrdb/). The data on RNA-seq were
log2 transformed. In terms of the proteomics data, we used the
Perseus software (2.0.6.0) to preprocess the data as follows:
contaminants and protein groups identified by a single peptide
were filtered from the data set. The proteinGroup LFQ intensities
were log2 transformed to reduce the effect of outliers. The
missing values were replaced from the normal distribution.
We used “limma,” “ggplot2,” “ggpubr,” and “ggstatsplot”
packages to verify the correlation between molecule expression
and MYCN status.

Construction and validation of the
prognostic ferroptosis-related risk signature

To construct an FRG signature, we proceed as follows: 1. in total,
236 FRG mRNAs were obtained by intersecting between mRNAs of
the training set and the FRGs, 2. FRGs with prognosis were
evaluated by univariate Cox regression analysis, 3. the DEGs with
a p < 0.01 were chosen as the candidate variables and entered into
the least absolute shrinkage and selection operator (LASSO)
regression, 4. the stepwise multivariate Cox regression analysis
was subsequently applied for reserved genes from the LASSO
regression analysis to select the candidate DEGs tested by the
Akaike information criterion (AIC) for identifying the risk
signature, 5. model: RiskScore = ∑n

i�1EXPi × Coei, where EXP
and Coe represent the expression value and regression coefficient
of the DEGs from the multivariate cox regression analysis.

Then, patients with their corresponding calculated RiskScore
were divided into the low- and high-risk prognostic groups based on
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the median risk value. Subsequently, the Kaplan–Meier survival
curves and receiver operating characteristic (ROC) curve were
performed to test the prognostic and predictive efficacy of the
FRG risk signature. Additionally, the prognostic value derived
from the training set was then applied to the validation set
(TCGA), the immunotherapy data set of melanoma, and the
NB cell data set (GSE19274) to calculate the RiskScores.

Survival analysis of NB FRG signature and
correlations with pathological features

A nomogram was established through the univariate and
multivariate Cox regression analysis, employing the independent
prognostic factors in the training set. The C-index and ROC analysis
of the training and validation sets were used to value the availability
of the nomogram.

Functional enrichment analysis

Based on the computational algorithm of the gene set
enrichment analysis (GSEA) for analyzing the molecular profiles
of the data set, we compared the low- and high-risk groups
from the training cohort to identify the enriched pathway.
The Gene Set Variation analysis (GSVA) was used to detect
the difference in expression with the RiskScore. Meanwhile, the
c2.cp.v7.4.symbols.gmt gene sets were downloaded from the
Molecular Signatures Database (http://www.Gsea-msigdb.org) and
then calculated by using single-sample gene set enrichment analysis
(ssGSEA) in the “GSVA” R package (Hanzelmann et al., 2013).
Furthermore, the DEGs between the high- and low-risk groups were
identified by |log2FC|>2 and adjusted p < 0.05, and then functionally
annotated by the Gene Ontology (GO).

Evaluation of the immune landscape

The penetration fraction was calculated using the ssGSEA for
28 immune cells. The immune scores and stromal scores of NB
patients were calculated using the “estimate” package
(ESTIMATE algorithm: estimation of stromal and immune
cells in malignant tumor tissues using expression data)
(Yoshihara et al., 2013). As in a previous study, there were
seven steps involved in the activation of anti-cancer immunity
cycle, and these steps could be downloaded from the tracking the
tumor immunophenotype web (http://biocc.hrbmu.edu.cn/TIP/
index.jsp) (Liwen et al., 2018) and scored by using the ssGSEA
based on the gene expression of each sample. In addition, CYT,
which reflects the cell killing function by a geometric mean of
gene expressions of granzyme A (GZMA) and perforin 1 (PRF1),
could be put to value immune-mediated attack against cancer
cells (Rooney et al., 2015). Moreover, a Wilcoxon rank-sum test
was performed to examine the association between the signature
group and immune checkpoints, which included PD-L1, PD-1,
CTLA-4, and IDO-1. The univariate Cox regression and
Kaplan–Meier survival analysis on each immune checkpoint
were performed.

RiskScore of FRG signature correlates with
genome instability and tumor mutation
burden

We downloaded the somatic mutation data of 209 NB
patients from the TCGA database and calculated the TMB
for each case using the formula. Then, we used the
“maftools” package to visualize the mutational profiles
(Mayakonda et al., 2018). Toward the end, we performed a
correlation analysis between the TMB and RiskScore.

Cell culture and quantitative real-time
polymerase chain reaction

Human NB cell lines, SK-N-AS (MYCN–non-amplified) and
SK-N-BE2 (MYCN-amplified), were purchased from the American
Type Culture Collection (ATCC, United States). The cell lines were
cultured in DMEM (VivaCell, China), enriched with 10% FBS
(VivaCell, China), and maintained in a humidified incubator at
37°C, 5% CO2. The FRGs with their consistent correlation with
MYCN expression between both tissue and cell databases were
included for the qRT-PCR analysis.

The total RNA of each cell line was extracted via TRIzol
(Thermo, United States), followed by reverse transcription into
cDNA with PrimeScript™ RT Master Mix (TaKaRa, Japan)
according to the manufacturer’s instructions. qPCR was carried
out using the TBGreen® Premix Ex Taq™ II kit (TaKaRa, Japan). The
amplification reaction for cDNA detection was carried out for
40 cycles. Each cycle contained denaturation at 95°C for 30 s,
annealing for 5 s, and an extension at 60°C for 20 s. β-actin
served as the internal control. The relative expression levels were
quantified with the 2−ΔΔCt method. The primer sequences are listed
in Supplementary Table S1.

Screening nodal genes and
immunohistochemistry analysis

To screen out the nodal gene in this FRG signature, we used the
integrated interactions database (http://iid.ophid.utoronto.ca/
search_by_proteins/), which can construct tissue-specific
protein–protein interaction (PPI) networks across species. The
two selected genes were analyzed for overall survival (OS) and
event-free survival (EFS). A total of 10 NB tissues were obtained
from the Tianjin Medical University Cancer Institute and Hospital,
which included INSS stage IV and other stages (INSS I–III, IVS).
Our study was approved by the Ethics Committee of the Tianjin
Medical University Cancer Institute and Hospital. A written
informed consent was signed by every patient or legal guardian
before the study started. Primary antibodies that included
PRKAA2 (18167-1-AP, 1:100 for IHC) purchased from
Proteintech and AURKA (DF6845, 1:50 for IHC) purchased
from Affinity were applied. IHC was performed according to
previously described procedures (Tian et al., 2021). The IHC
score was calculated with staining percentage and intensity (Yin
et al., 2021). Two experienced pathologists were blinded to the
clinical information and independently assessed the slides.
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Single-cell RNA sequence analysis

We obtained single-cell RNA-seq profiles (NB02, NB16, NB23,
and NB24) from GSE147766 (Verhoeven et al., 2022). Using the

“Seurat” and “SingleR” packages to conduct data analysis, we moved
cells with a number of features <50 and genes detected <3 cells. By
subjecting the 1,500 feature genes to the principal component
analysis (PCA), we obtained single-cell clusters. The “SingleR”

FIGURE 1
Study design and workflow of the present study.
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was used for cell-type annotation. Then, we recognized the marker
genes of each cell type by absolute log2 fold change >0.5 and an
adjusted p <0.05. Expression correlation assays between the
RiskScore and T-cell marker genes were performed using the
Spearman’s coefficient correlation on the GSE62564 and TCGA
data sets, respectively. The GSEA hallmark pathways enriched in the
intersection genes above, ordered by the −log10 false discovery
rate (FDR).

Statistical analysis

All statistical analyses were performed using R (version 4.0.3)
and its appropriate packages (Sepulveda, 2020). The statistical
significance was defined with a two-tailed p < 0.05. We used
either Pearson’s r correlation or Spearman’s rank-order
correlation to measure the correlation between two continuous
variables. The 3-, 5-, and 10-year prognosis were taken as follow-
up nodes (Hassanzadeh et al., 2017; Tuomainen et al., 2020;
Berberi, 2021). The comparison of a continuous variable in two
or more than two groups was made using either a parametric test
(Student’s t-test or analysis of variance) or non-parametric test
(Wilcoxon rank-sum test or Kruskal–Wallis test) if the variable
was normally distributed.

Results

Construction and validity of prognostic gene
signature related to NB and ferroptosis

A brief flowchart is shown in Figure 1. In the GSE62564 data set,
after performing the match between the Ensembl ID and mRNA
annotation file, 236 FRGmRNAs were sorted out by intersecting the
FRG list (Figure 2A). First, a univariate Cox regression analysis was
performed to single out genes associated with patient survival. Then,
by p < 0.01, there were 149 FRGs selected in NB patients. The LASSO
Cox regression model and multivariate Cox regression were applied
to find key genes that were most associated with the prognosis of NB
(Figures 2B–D). Subsequently, a gene-based prognostic model of
10 FRGs (AURKA, DPP4, ELAVL1, G6PD, MAP1LC3A, PRDX6,
PRKAA2, PROM2, SCD, and ULK2) was established to evaluate the
risk of patients as described by the abovementioned methods. The
risk score of the FRG signature named RiskScore was calculated
from the expression of the 10 genes and the relative coefficient.
Additionally, NB patients were divided into the low-risk and high-
risk groups on the basis of their median RiskScore. Ordering by
RiskScore in the training cohort (GSE62564) and the validation set
(TCGA), heatmaps were shown to present the different expression
levels of the 10 genes and clinical information (Figures 2E, F). In the

FIGURE 2
Construction and definition of the FRG signature. (A) Venn diagram to identify 236 FRGs in NB patients from the GSE62564 data set. (B, C) LASSO
Cox regressionmodel constructed from the 149 signature FRGs. Optimal lambda value is 0.02880196. According to the best fit contour, a 21-FRGs group
was determined to the next step. (D) Multivariate Cox regression analysis confirmed independent prognostic factors which included 10 FRGs with HRs
and p values. Grouping and heatmap of patients in GSE62564 (E), TCGA (F).
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training set, with an increase in RiskScore, the expression levels of
AURKA, ELAVL1, G6PD, PRDX6, and SCD were upregulated.
Meanwhile, ULK2, DPP4, MAP1LC3A, PRKAA2, and
PROM2 were distinctly downregulated. MYCN-amplified status,
INSS stage IV, and death were enriched in the high-risk
group. The validation cohort showed similar levels of genes and
clinical information. These results have indicated that the high
RiskScore positively correlated with NB malignancy. Meanwhile,
the characteristics of NB patients in the training and validation
cohorts are shown in Supplementary Figure S1.

The Kaplan–Meier survival curves for the 10 hub FRGs are
shown in Supplementary Figure S2. Besides, the Kaplan–Meier
curves for the training set shows that the low-risk group had

significantly longer OS than the high-risk group in NB
(Figure 3A). The consistency of results was validated for the
TCGA data set (Supplementary Figures S3A, B). Meanwhile, the
3-, 5-, and 10-year calibration plots for the probability of survival
showed optimal agreements between observation and prediction
(Supplementary Figure S3). The ROC curve was used to predict the
3-, 5-, and 10-year survival of NB patients. The signature of the
10 FRGs exhibited striking prognostic validation, with the AUC
values of 0.924, 0.932, and 0.939 in GSE62564, and 0.709, 0.709, and
0.765 in TCGA databases (Figure 3B; Supplementary Figure S3C).
Besides, we combined the RiskScore levels (high vs. low), age
(<18 months vs. ≥18 months), INSS stages (I–IV, IVs), MYCN
status (amplified vs. not amplified), and vital status to draw a

FIGURE 3
FRG signature’s ability of prognosis prediction and the construction of nomogram. (A) Signature could divide the overall prognosis into the high-risk
and low-risk groups. (B) Time-dependent ROC curve of the RiskScore in the training cohort. (C) Sankey diagram directly shows the relationship of the
signature with age, MYCN status, INSS stage, and mortality. Forest plot of univariate (D) and multivariate (E) Cox regression results of the RiskScore and
clinical variables. (F) Establishment of the nomograms which include the RiskScore and clinical variables. ROC curves of themodel for predicting the
3-, 5-, and 10-year survival in the training cohort (G) and external validation cohort (TCGA) (H).
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comprehensive Sankey diagram, from which we explored that the
low-risk group corresponded to a younger age, better MYCN status,
earlier INSS staging, and very low mortality, while the high-risk

group corresponded to completely the opposite (Figure 3C). These
results have illustrated that the signature of the 10 FRGs is a reliable
prognostic indicator in NB.

FIGURE 4
Differential expression of hub FRGs between MYCN amplification and MYCN non-amplification in tissue samples and cell lines and verification in
qRT-PCR. (A) Differential expression of protective FRGs in tissue samples between MYCN amplification and MYCN non-amplification. (B) Differential
expression of risk FRGs in tissue samples between MYCN amplification and MYCN non-amplification. Consistent with the expression trends in the tissue,
differential expressions of AURKA, ELAVL1, PRDX6, SCD, DPP4, andMAP1LC3A betweenMYCN amplification andMYCN non-amplification in NB cell
lines (C). (D) Differential expressions of six FRGs among SK-N-AS (MYCN–non-amplified) and SK-N-BE2 (MYCN-amplified). (E) Differential protein
expression of four FRGs among tissues with different MYCN statuses.
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FRG signature serves as valuable marker for
clinical prognostic targets

Moreover, univariate Cox regression and multivariate Cox
regression of the FRG signature RiskScore was performed in the
training set (p < 0.001, univariate Cox regression; p < 0.001, and
multivariate Cox regression). It verified the independence of the
clinical prognostic significance of the RiskScore (Figures 3D, E). The
consistency of results was also validated in the validation set. Then, a
3-, 5-, and 10-year survival nomogram prediction model was built
with independent prognostic factors for the OS of patients in the
training set (Figure 3F). The C-index was 0.865. We selected the
patient GSM1529160. Then, the INSS stage S4 equaled
63 points, ≥18 months equaled 62 points, MYCN-amplified
equaled 66 points, and high risk equaled 100 points by the
nomogram. In total, the chosen sample equaled 291 points with
the prediction values of 0.605, 0.767, and 0.828 for OS <3, <5,
and <10 years. In fact, the chosen patient’s OS was 4.64 years. Using
the ROC curve to predict the 3-, 5-, and 10-year survival of NB
patients, the AUC values were, respectively, 0.902, 0.912, and
0.924 in GSE62564 and 0.727, 0.706, and 0.749 in TCGA
database (Figures 3G,H). This meant that RiskScore combined
with prognostic clinical features showed a good predictive value.

Association with MYCN status

As a significant prognostic factor in NB, MYCN proto-oncogene
amplification consistently predicts malignant diseases. So, the
MYCN status was performed to explore the different gene
expressions of each FRG of the signature. Except for the p-value
of G6PD that was not significant, AURKA, ELAVL1, PRDX6, and
SCD had higher expression levels in theMYCN-amplified set than in
the MYCN–non-amplified set in the training group (345 patients:
58 MYCN-amplified, 287 MYCN–non-amplified) (p < 0.001)
(Figure 4A). Meanwhile, ULK2, DPP4, MAP1LC3A, PRKAA2,
and PROM2 showed the opposite trends (p < 0.001) (Figure 4B).
Similar trends were revealed in the validation cohort
(Supplementary Figures S4A, B). Furthermore, in Figure 4C, the
NB cell line data set showed that AURKA, ELAVL1, PRDX6, and
SCD were significantly enriched in the MYCN-amplified cell lines,
whereas DPP4 and MAP1LC3A were enriched in the MYCN–non-
amplified cell lines.

We performed qRT-PCR applying two cell lines: SK-N-AS
(MYCN–non-amplified) and SK-N-BE2 (MYCN-amplified). The six
genes (Figure 4C) screened with the cell line and tissue database were
verified by experiments. Experimentally, these genes mostly showed the
same trend as the NB cell lines database revealed, except for PRDX6.
There were significant differences in the expressions of ELAVL1, SCD,
and DPP4 and insignificant differences in the expressions of AURKA,
MAP1LC3A, and PRDX6 between the SK-N-AS (MYCN–non-
amplified) and SK-N-BE2 (MYCN-amplified) cell lines (Figure 4D).

Through the analysis of protein sequencing results, we obtained
a total of 6,389 proteins, of which four proteins corresponded to the
genes in the signature, namely, G6PD, PRDX6, ELAVL1, and
PRKAA2. The results (Figure 4E) showed that G6PD, PRDX6,
and ELAVL1 were highly expressed in MYCN(+) (p < 0.05);
PRKAA2 was highly expressed in MYCN(−) (p > 0.05).

Functional enrichment analyses

To clarify the potentially functional signature characteristics of
the FRG signature in NB, we conducted GSEA to analyze the
differences between the enriched gene sets. Setting p < 0.05 as
the cutoff value, we found that multiple autophagy- and immunity-
associated pathways were involved (Figure 5A), indicating that
lower RiskScores were associated with antitumor immunity,
which included the downregulation of the ERBB2 signal pathway.
Yet, a higher RiskScore was associated with the aurora A and B
pathways. Subsequently, the GSVA was applied for validation.
Consistent with the GSEA results, it was shown that the
RiskScore was markedly associated with autophagy- and
immunity-associated pathways (Figure 5B). In the GO analysis,
the DEGs were remarkably enriched in neuron projection, MHC
class II protein complex, cell chemotaxis, and T-cell–related
immune response (Figure 5C). Thus, we found that the FRG
signature leads to a very differential characteristic of the TME
immune cells infiltration phenotype.

Immune landscape of FRG signature

Since prior work has demonstrated that functional
enrichment is an immune-related function, we explored
whether the RiskScore of the FRG signature was correlated
with NB immunity. With the immune score defined by
28 categories of immune cells using the ssGSEA algorithm, the
analysis of immune cell infiltration illustrated the abundance of
innate immune cell infiltration such as natural killer cell,
macrophage, mast cell, plasmacytoid dendritic cell, and
eosinophil in the low-risk group. Meanwhile, specific immune
cells were abundant, namely, CD8 T cell, immature B cell, T
follicular helper cell, T helper cell except activated CD4 T cell,
and memory B cell, in the low-risk group (Figure 6A).
Accordingly, an important index named the seven-step
cancer-immunity cycle was evaluated for the status of anti-
cancer immunity. In the high-risk group, activities of various
steps in the cycle were seen to be upregulated such as the release
of cancer cell antigens (Step 1) and recognition of cancer cells by
T cells (Step 6). Whereas in the low-risk group, cancer antigen
presentation (Step 2), priming and activation (Step 3), trafficking
of immune cells to tumors (Step 4, such as CD4 T cell, CD8 T cell,
NK cell, dendritic cell, B cell, Treg cell, and TH1 cell), infiltration
of immune cells into tumors (Step 5), and killing of cancer cells
(Step 7) were stronger than that in the high-risk group. These
elevated activities of the steps showed potent immunological
potential (Figure 6B). In the training set, the high-risk group
showed significantly lower stroma, immune, and ESTIMATE
scores, but higher tumor purity than the low-risk group
(Figure 6C).

As a result, high CYTwas associated with the low-risk group and
better survival (Figures 6D,E), which reflected that the low-risk
group had a stronger immune-mediated attack against cancer cell
function. These differential analyses between the two risk subgroups
were shown to be the same in the validation cohort, and similar
results were observed in the validation cohort (Supplementary
Figure S5).
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FRG signature could predict immunotherapy
benefit

Subsequently, the immune checkpoints (PD-1, PD-L1, CTLA-4,
and IDO-1) and human leukocyte antigen (HLA-A, HLA-B, and HLA-
C) were upregulated in the low-risk group (Figure 7A). As shown in
Figures 7B, D, F, H, the RiskScore of the FRG signature was significantly
negatively correlated with immune checkpoint genes (r = −0.222 and
p < 0.001 for PD-1, r = −0.386 and p < 0.001 for PD-L1, r = −0.209 and
p < 0.001 for CTLA-4, and r = −0.37 and p < 0.001 for IDO-1). The
expression of immune checkpoints affected the prognosis of patients
(Supplementary Figure S6). In addition, to further investigate the effect
of crosstalk between RiskScore and immune checkpoints on survival,
patients were stratified into four parts based on the combination of
RiskScore and immune checkpoints. Survival comparisons revealed that
the RiskScore could distinguish the outcomes of NB with similar levels
of immune checkpoint genes. Furthermore, patients with a low
RiskScore and high expression level of immune checkpoints
illustrated markedly longer survival rates than those with a high
RiskScore and high expression level of immune checkpoints (p <
0.0001 for PD-1, PD-L1, CTLA-4, and IDO-1) (Figures 7C, E, G, I).

Furthermore, the abovementioned observed associations have led
us to hypothesize that the RiskScore may be predictive of the response
to immunotherapy. So, we tested the predictive value of the RiskScore in
the melanoma combined anti-PD-1 and anti-CTLA-4 immunotherapy
data sets. In OS, the RiskScore achieved an AUC of 0.816, which is
comparable with the immune checkpoint gene markers (0.579 for
CTLA-4 and 0.708 for PD-1) (Figure 7J). Moreover, the
discriminative ability of the RiskScore was also observed to be
higher in progression-free survival (PFS) than in CLTA-4 and PD-1.
The AUC increased from 0.692 (CLTA-4) and 0.647 (PD-1) to 0.781
(RiskScore) (Figure 7K). Concurrently, the Kaplan–Meier curves show
that the prognosis of the high-risk group is worse, although the p-value

was not significant due to limited cases (Figure 7L). These results have
indicated that lower RiskScore values are associated with better OS and
PFS in tumor patients receiving immunotherapy. To explore the
association between the response to immunotherapy and RiskScores,
the RiskScore achieved an AUC of 0.68 in predicting the response to
immunotherapy (Figure 7M).

Tumor somatic mutation in distinct
RiskScore patterns

We next classified the mutation data into various categories,
where missense mutation occupied the most part, single-nucleotide
variant (SNV) mutates most frequently, and C>A played the top
type of SNVs in NB. Furthermore, we compared the mutational
difference between the high- and low-risk groups and found that the
high-risk group ALK mutated more than MUC16 in the low-risk
group (Figure 8A). Moreover, we observed that TMB in the low-risk
group was higher than it was in the high-risk group (Figure 8B). The
Kaplan–Meier curves also proved the same trend, that the high-
TMB group had significantly more OS than the low-TMB group in
NB (Figure 8C). Moreover, patients with a low RiskScore and high
TMB indicated significantly longer survival rates than those with
high RiskScore and low TMB (p = 0.035) (Figure 8D).

Identification of nodal genes and
immunohistochemistry

According to the integrated interactions database, we identified
two key genes specific in NB, AURKA, and PRKAA2 (Figure 9A). In
the survival analysis, high AURKA expression showed worse OS and
EFS. Nevertheless, PRKAA2 was the opposite of AURKA (Figures

FIGURE 5
Results of functional and pathway analysis for the FRG signature. (A) Significantly enriched pathways by GSEA. (B) Significantly enriched pathways by
GSVA. (C) Significant results of functional analysis of GO terms.
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9B–E). The results confirmed the previous analysis in that AURKA
was a risk factor and PRKAA2 was a protective one. Besides,
at ×200 magnification, AURKA was expressed significantly

higher in the INSS stage IV than in the other stages in the IHC
analysis, whereas PRKAA2 was the opposite of AURKA
(Figures 9F, G).

FIGURE 6
FRG signature reflects immune cell activation. (A) Histogram shows the normalized absolute abundance of 28 immune cell categories in individual
samples of high- and low-risk groups. (B) TIPs to estimate the activity scores andmajor immune-related cells in tumor tissues. (C)Degree of the stromal,
immune, estimate score, and tumor purity in high- and low-risk groups. (D) Relationship between the RiskScore and CYT. (E) Level of the CYT index
significantly distinguishes survival.
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Correlation between FRGs and T cells in NB
microenvironment

As previously mentioned, our FRG signature could predict
immunotherapy benefits and well distinguish the TME, so we
further explored the correlation with T-cell killing at the single-

cell level. First, the t-SNE plot showed the immune components in
the NB microenvironment (Figure 10A) and second, the expression
of the major marker genes (CD3D, CD3E, CD3G, and IL7R) for
T cell (Figure 10B). We next took 76 intersection genes of the
Spearman’s coefficient correlation >0.2 between the RiskScore and
T-cell marker genes in the GSE62564 and TCGA data sets

FIGURE 7
Correlation between immune checkpoint genes, HLA genes, and RiskScores, and validation of the signature in melanoma immune therapy data. (A)
Immune checkpoint gene expression that includes PD-1, PD-L1, CTLA4 and IDO1, and HLA-ABC in the high- and low-risk groups stratified by the risk
signature. (B–I) Respective correlation between the RiskScore and individual immune checkpoint gene, and the combination divides prognosis into four
groups with significant differences (p < 0.0001). Comparison of ROC curves with PD-1 and CTLA4 shows the superiority of the FRG signature in
predicting overall survival (J) and progression-free survival (K). (L)Generally, melanoma patients are divided into high- and low-risk groups. (M) This AUC
showed the predictive value of the RiskScore for the response of immunotherapy.
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(Figure 10C). The pathway analysis revealed that the TNFA
signaling via NFKB and interferon-γ response were regulated
(Figure 10D).

Discussion

As one of the most lethal childhood malignancies, NB presents
clinicians with challenges and difficulties (Hara, 2012). There are
multifarious means of immune escape, such as infiltrating
immunosuppressive cells, modulation of antigen presentation
machinery (APM), and secreting immunosuppressive factors
(Vanichapol et al., 2018). The process to awaken the immune
action in the microenvironment of NB has been considered a
novel means to activate the effect of immunotherapy (Carlson
et al., 2013). Ferroptosis is associated with the MYCN gene and

might be closely related to shaping the tumor immune
microenvironment (Angeli et al., 2019; Lu Y. et al., 2021). Our
results also implied that the hub FRGs with an independent
prognostic value might act as downstream bioactive molecules of
MYCN onco-promotor gene in terms of the expression trends
(Figure 4). Besides, immunotherapy for NB requires novel targets
and powerful estimating models, so we developed this hub
FRG–based prognostic signature and revealed the association
between the signature and diverse immunophenotypes in NB.

After screening with LASSO and Cox regression, FRGs which
included five protective genes, namely, ULK2, MAP1LC3A, DPP4,
PROM2, and PRKAA2 and five risk genes, namely, AURKA, SCD,
PRDX6, G6PD, and ELAVL1 were identified as the component
genes of the FRG signature. In addition to tumor tissues in training
and validation cohorts, we divided the cell line data according to the
MYCN-amplification status, and the differential expressions of the

FIGURE 8
Correlation between RiskScores and TMB. (A) Mutation genes and types between high- and low-risk groups. (B) TMB level distribution between
high- and low-risk groups. (C) TMB level significantly divided the prognosis. (D) TMB level, combinedwith RiskScore, can further divide prognosis into four
groups.
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abovementioned FRGs were compared. Subsequently, based on cell
line data analysis, our PCR results revealed the potential relationship
between six key genes and the MYCN gene. MYCN oncogene, as a
promoter, may significantly drive the expression of a variety of
oncogenes, such as AURKA and SCD (Huang and Weiss, 2013;
María et al., 2017). Meanwhile, the expression trend of PRDX6 was
inconsistent with the overall cell line data, but after consulting the
GSE19274 database (Cole et al., 2011), the PRDX6 of SK-N-AS cell
line was highly expressed than that of SK-N-BE2. More cell lines
should be included in the research and verification processes.

The ferroptosis level cannot represent the malignant potential of
tumor development. In fact, targeting ferroptosis in cancer might be
a double-edged sword (Chen et al., 2021a; Chen et al., 2021b). As
Supplementary Figure S2 shows, genes that had the same
promoting/suppressing effect on ferroptosis can have different
effects on prognosis. For example, as key activators of autophagy
and regulators of ferroptosis, ULK2 andMAP1LC3A (also known as

LC3) both take part in diverse carcinogenesis. Promoting autophagy
and ferroptosis may cooperatively induce drug sensitivity and
inhibit the development of NB (Liu et al., 2019). Second, the
prognostic role of DPP4 is controversial. However, it is not only
in our study that higher DPP4 might be associated with better
survival in various cancers such as head and neck malignancies
(Javidroozi et al., 2012). Besides, DPP4 is related to activation of
AMPK in neural cell line SK-N-MC, providing a new version for NB
treatment (Kornelius et al., 2015). Third, when compared to that in
normal tissues, PROM2 was significantly overexpressed in breast,
lung, bone marrow, and ovarian cancers, whereas it was
underexpressed in colon, esophageal, gastric, kidney, prostate,
and skin cancers (Subbroto et al., 2020). The protective
relationship between PROM2 and prognosis of NB was first
revealed in our study and worthy of further experimental
verification. Finally, PRKAA2 has been shown to inhibit cell
proliferation through the p53/p21 pathway and through

FIGURE 9
Identification of nodal FRGs and immunohistochemistry analysis. (A) Identification of two nodal genes specific in NB. (B–E) Survival analysis of
AURKA and PRKAA2. (F–G) Different expression trends of AURKA and PRKAA2 in the INSS stage IV and non–INSS stage IV at ×200 magnification.

Frontiers in Pharmacology frontiersin.org13

Hu et al. 10.3389/fphar.2023.1162563

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1162563


modulation of the expression of p27 (Jones et al., 2005). Besides,
PRKAA2 knockout in liver cancer enhanced tumor inflammation,
also associated with the immune microenvironment (Qiu et al.,
2019). The overexpression of PRKAA2 in NB could promote ROS
production and cell apoptosis after bupivacaine treatment (Lu et al.,
2011). Our screening of hub genes has also revealed the key node
role of PRKAA2, which had significant impact on both event-free
survival and overall survival. Besides, the results showed the
molecular localization of PRKAA2 and might be further helpful
for the development of target therapy in NB.

On the contrary, AURKA shows significantly higher expression
in cancer tissues than in normal control tissues for multiple
malignancies according to the TCGA database (Du et al., 2021).
The silencing of AURKA is effective in antitumor efficacy of NB
in vitro and in vivo (Yang et al., 2020). From the perspective of
immunity, natural killer–derived exosomal miR-186 can directly
inhibit the expression of AURKA and simultaneously inhibit
growth, spreading, and TGFβ-dependent immune escape
mechanisms in NB (Neviani et al., 2019; Schmittgen, 2019).
Moreover, nodal gene results have shown that other than
PRKAA2, AURKA was one of the nodal FRGs that had an
important relationship with NB. Understanding the physical and
chemical properties and its distribution in the cytoplasm and
nucleus would be helpful to explore therapeutic targets for
advanced disease (Ruijuan et al., 2021). Second, SCD may
promote carcinogenesis while the inhibition of SCD can help

rescue rapid alpha-synuclein toxicity in a neural cell model and
affect αS homeostasis and toxicity in neuronal cells (Imberdis et al.,
2019; Terry-Kantor et al., 2020). However, the role of SCD in NB
prognosis was explored for the first time in the present study. Third,
PRDX6 promotes the development of several cancer cells (Yun et al.,
2014; Hu et al., 2020). Exogenous PRDX6 can rescue cellular damage
induced by cellular hypoxia (CoCl2) chemically and significantly
decrease CoCl2-induced apoptosis in SK-N-SH human NB cells
(Asuni et al., 2015). Fourth, G6PD takes part in neuronal
differentiation in the SH-S5Y5 cell line, meanwhile the aberrant
activation of G6PD leads to enhanced cell proliferation and
adaptation in many types of cancers (Almeida et al., 2018; Yang
et al., 2019). Hence, we speculated that G6PDmay be associated with
the adverse biological behavior of NB cells. Finally, ELAVL1 might
act as a part of the central oncogenic driver for malignant peripheral
nerve sheath tumors (Palomo-Irigoyen et al., 2020). Moreover,
activating ELAV may play a role in neurodegenerative diseases
(Marchesi et al., 2016). Therefore, further experimental
exploration of the mechanisms responsible for the poor
prognostic effect of ELAVL1 in NB development is required.

The RiskScores calculated from FRG signatures were strongly
correlated with clinical prognostic factors. In comparison, the
Sankey diagram analysis revealed that a higher RiskScore was
consistent with older age, MYCN amplification, and advanced
INSS stage. Besides, as expected, the increase of the RiskScore
might mean a higher relapse rate and worse prognosis. To

FIGURE 10
scRNA-seq reveals the correlation between FRG signature and T-cell marker genes in NB microenvironment. (A) t-SNE plot of cells from the NB
microenvironment. (B) Distribution characteristics of major marker genes for T cell. (C) Venn diagram to identify 76 significantly associated genes. (D)
GSEA hallmark analysis obtained from genes in the intersection.
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further evaluate the prognosis, we used Cox regression to screen and
construct a nomogram that included the RiskScore and clinically
independent prognostic factors, which can accurately calculate long-
term prognosis (until 10-year survival) of children with NB. External
data validation also revealed that it had a satisfied prediction ability.

The GO analysis significantly revealed the relationship of the
present signature with T-cell development and adaptive immunity,
as well as neuron projection and cell adhesion that might participate
in the development of NB. After comparison with groups, some
clues about carcinogenesis were revealed. For example, first, aurora
kinase A and B were both reported to correlate with poor survival
and MYCN expression in NB, and aurora kinases A may have a
direct physical interaction with the MYCN protein (Otto et al., 2009;
Hsieh et al., 2019). Moreover, researchers used gene enrichment
analysis and found that the carbohydrate metabolic process, fatty
acid metabolic process, lipid biosynthetic process, and response to
hypoxia were associated with aurora kinase inhibition in Th-MYCN
transgenic NB mice, which would simultaneously have potential
effects on the regulation of autophagy and ferroptosis (Lu J. et al.,
2021; Chen et al., 2021c; McLeod et al., 2021; Ni et al., 2021; Wang
et al., 2021). Second, the FOXM1 pathway was discovered to be
involved in the tumorigenicity of aggressive NB cells through the
maintenance of the undifferentiated state (Wang et al., 2011).
Besides, the overexpression of FOXM1 might lead to malignant
phenotypes by directly upregulating genes such as AURKB and
MYC or indirectly upregulating genes such as ZEB1 and ZEB2
(Katoh et al., 2013). Meanwhile, the inhibition of FOXM1 induced
apoptosis by inhibiting the activation of PI3K and AKT in NB cell
lines (Liao et al., 2020). Next, a positive feedforward regulatory loop
between the PLK and MYC pathways was revealed (Xiao et al.,
2016). Iliaki et al. (2021) have reported that PLK1 was involved in
immune and neurological disorders such as Alzheimer’s disease.
Furthermore, Grinshtein et al. (2011) screened and then suggested
that PLK1 inhibitors could be an attractive candidate therapy for
metastatic NB. On the other hand, immune-related pathways like
the IL17 and TCR JNK pathways were found to be enriched in the
low-risk group. The role of IL17 in malignancy disease remains
controversial (Lin et al., 2015; Tsai et al., 2021). The research value of
IL17 secreted from different cells in the NB microenvironment has
to be confirmed by further experiments due to the limited research at
present (Zhang et al., 2020). Besides, JNK, known as c-Jun
N-terminal kinase, is activated when T-lymphocytes are
stimulated with the T-cell receptor (TCR) and CD28 (Kirk et al.,
1999). Furthermore, the activation of JNK may induce the death of
tumor cells accompanied with the release of mitochondrial
cytochrome C and increase in autophagy inducing factors (Yu
et al., 2019; Zheng et al., 2020). In addition, the downregulation
of the ERBB2 pathway was found to be significantly related with
good prognosis and immunotherapy response in another nervous
system tumor, glioma (Mei et al., 2021). Last but not the least, the
regulation of the autophagy pathway was also found enriched in the
low-risk group, which is consistent with previous reports and
worthy of further research (Meng et al., 2020).

Since the functional enrichment results have revealed a close
relationship with metabolism, autophagy, and immunity, ssGSEA
was performed, which showed that there were more active immune
components in the microenvironment of NBs in the low-risk group,
such as activated CD8 T cell, natural killer cell, and neutrophil cell,

providing us with the possibility of low-risk patients being included
in the “hot tumor” group. In addition, estimates of tumor immune
infiltration found that the low-risk group had higher stromal scores,
immunization scores, and estimation scores, implying more active
immunity. Meanwhile, the low-risk group had lower immune purity,
which meant low malignancy and low invasiveness. Moreover, the
CYT score, defined by granzyme A and perforin expression and
reflecting the immune cell killing function, was successfully used for
underlying immunity (Takahashi et al., 2020). We also hypothesized
that CYT-high NBs had low risk in the present FRG signature and
significantly better prognosis . Furthermore, we found that the low-
risk group was more activated as a whole in tracking the analysis of
the tumor immunophenotype, except step 1 release of cancer cell
antigens and step 6 recognition of cancer cells by T cells (Liwen et al.,
2018). Furthermore, the low-risk group had a higher expression of
immune checkpoints and markers, such as PD-L1 and HLA-ABC,
which is similar to several reports by Ming et al. (2021). Therefore,
the results have supposed that patients in the low-risk group would
benefit more from immune checkpoint blocking therapy. Moreover,
we can accurately predict the treatment effect by further subdividing
the KM curves.

Unfortunately, although NB is one of the most common
childhood tumors, there is still no available data on the outcome
of immunotherapy. However, melanoma with publicly available
immunotherapy data shares several similar characteristics with
NB. First, both of them share a common origin, arising from the
neuroectodermal tissue, the portion of the ectoderm that gives rise to
the central and peripheral nervous systems (Morandi et al., 2018).
Second, NB and melanoma share common immune markers, such
as GD2, a therapeutic target that has been carried out in both
malignancies (Cheresh et al., 1986; Rakhmilevich et al., 2017; Tran
et al., 2017). Moreover, Avitabile et al. (2020) have found that NB
and melanoma share 1p13.2 as the susceptibility locus and
SLC16A1 as the common oncogene by cross-disease meta-
analysis of GWAS. Finally, in clinics, neuron-specific enolase
(NSE) can aid the diagnosis of both melanoma and NB (Dhillon
et al., 1982). The serum levels of cytoplasmic melanoma-associated
antigen at diagnosis may predict clinical relapse in NB patients
(Morandi et al., 2011). In addition, immune mechanisms underlying
spontaneous regression in NB can predict melanoma response to
immune checkpoint blockade (Auslander et al., 2018). Therefore, as
Sha et al. (2022) have previously reported, we used melanoma data
for immunotherapy validation. In the present study, the signature
could classify the melanoma population into the high- and low-risk
groups. The AUCs showed more predictive power of the signature
for the prognosis. Moreover, the signature was capable of predicting
immune checkpoint blocking responses.

Numerous reports have shown that tumor cells with higher
TMB were more easily recognized by the immune system, and
immunotherapy was more likely to respond (Maleki, 2018). A
higher tumor mutation burden can also induce more antigens
and anti-tumor immunity, which finally results in better
prognosis in NB. Moreover, MUC16 and ALK mutation were
common in the NB cohort, meanwhile MUC16 mutation was
especially more common in the low-risk group. Li et al. (2018)
have reported that MUC16 mutations might be associated with
higher tumor mutation load, as well as better survival outcomes and
immune response. Furthermore, the role of MUC16 mutation in NB
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is worthy of further explanation (Lee et al., 2020). Besides, as was
reported, high ALK mutation in NB was associated with poor
prognosis (Borenas et al., 2021). All of these findings have shown
that the FRG signature not only distinguished the TME immune cell
infiltration but also correlated with the mutation landscape,
underling the significance of ferroptosis in NB development
again. Moreover, scRNA-seq analysis showed that the signature
was related to T cells, and TNFA signaling and interferon-γmight be
the target pathway to overcome immunotherapy tolerance (Lorenzi
et al., 2012).

There is no doubt that our research still has some limitations.
Generally, a large sample of the clinical multicenter prospective
cohort is required to verify our results and the clinical value of these
genes still require further verification through follow-up research.
Besides, the gene set used in this study cannot accurately represent
the type and function of all immune cells, and the mRNA and
protein levels cannot be accurately equivalent. Finally, the FRG
signature showed a moderate predictive effect on immune
checkpoint treatment of melanoma, which should further be
verified in the data set of NB immune treatment in the future.

Conclusion

In summary, our study established and validated an FRG-
based signature, which could divide patients into high-risk and
low-risk groups in multiple cohorts. Meanwhile, the RiskScore
calculated by the signature showed a significant relationship with a
variety of cell components of the immune microenvironment and
immune checkpoint expression and could effectively predict the
response to immunotherapy. Moreover, this study proposed many
effective pathways and targets related to the biological behavior
of NB.
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SUPPLEMENTARY FIGURE S1
Overall clinical data of the training cohort (GSE62564) and external validation
cohort (TCGA).

SUPPLEMENTARY FIGURE S2
Kaplan–Meier survival curves of 10 hub FRGs. (A) In the ferroptosis driver
genes; MAP1LC3A, ULK2, DPP4, and PRKAA2 were significantly positively
correlated with favorable prognosis (p < 0.05), while ELAVL1 and G6PD
were significantly negatively correlated with favorable prognosis (p < 0.05);
(B) in the ferroptosis suppressor genes, PRDX6 and SCD were significantly
positively correlated with favorable prognosis (p < 0.05), while PROM2 was
significantly negatively correlated with favorable prognosis (p < 0.05); (C)
ferroptosis marker gene AURKA was negatively correlated with a favorable
prognosis.

SUPPLEMENTARY FIGURE S3
The FRG signature’s ability of prognosis prediction in TCGA. The signature
could divide the overall prognosis into high-risk and low-risk groups (A).
Calibration curves of the signature for 3, 5, and 10 years in TCGA (B). Time-
dependent ROC curve of the RiskScore in TCGA (C).
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SUPPLEMENTARY FIGURE S4
Differential expression of hub FRGs betweenMYCNamplification andMYCNnon-
amplification in tissue samples of TCGA. (A)Different expressions of risk genes in
tissue samples between MYCN amplification and MYCN non-amplification in
TCGA cohort. (B) Different expressions of protective genes in tissue samples
between MYCN amplification and MYCN non-amplification in TCGA cohort.

SUPPLEMENTARY FIGURE S5
FRG signature reflecting immune cell activation in TCGA. (A) Histogram
shows normalized absolute abundance of 28 immune cell categories in
individual samples of high- and low-risk groups. (B) TIP to estimate the
activity scores andmajor immune-related cells in tumor tissue. (C)Degree of

stromal, immune, estimate score, and tumor purity in high- and low-risk
groups. (D) Relationship between the RiskScore and CYT. (E) Survival status
correlated with the CYT index.

SUPPLEMENTARY FIGURE S6
Univariate Cox regression and Kaplan–Meier survival analysis on each
immune checkpoint. (A) Univariate Cox regression of immune
checkpoints. (B–E) Kaplan–Meier survival analysis on each immune
checkpoint.

SUPPLEMENTARY TABLE S1
Primers information.
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