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Background: Osteosarcoma (OS), a primary malignant bone tumor, confronts
therapeutic challenges rooted in multidrug resistance. Comprehensive
understanding of disease occurrence and progression is imperative for
advancing treatment strategies. m7G modification, an emerging post-
transcriptional modification implicated in various diseases, may provide new
insights to explore OS pathogenesis and progression.

Methods: The m7G-related molecular landscape in OS was probed using diverse
bioinformatics analyses, encompassing LASSO Cox regression, immune
infiltration assessment, and drug sensitivity analysis. Furthermore, the
therapeutic potential of AZD2014 for OS was investigated through cell
apoptosis and cycle assays. Eventually, multivariate Cox analysis and
experimental validations, were conducted to investigate the independent
prognostic m7G-related genes.

Results: A comprehensive m7G-related risk model incorporating eight signatures
was established, with corresponding risk scores correlated with immune
infiltration and drug sensitivity. Drug sensitivity analysis spotlighted AZD2014 as
a potential therapeutic candidate for OS. Subsequent experiments corroborated
AZD2014’s capability to induce G1-phase cell cycle arrest and apoptosis in OS
cells. Ultimately, multivariate Cox regression analysis unveiled the independent
prognostic importance of CYFIP1 and EIF4A1, differential expressions of which
were validated at histological and cytological levels.

Conclusion: This study furnishes a profound understanding of the contribution of
m7G-related genes to the pathogenesis of OS. The discerned therapeutic
potential of AZD2014, in conjunction with the identification of CYFIP1 and
EIF4A1 as independent risk factors, opens novel vistas for the treatment of OS.
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Introduction

Osteosarcoma (OS) is the most commonly diagnosed malignant bone tumor
characterized by the presence of intratumoral osteogenesis (Wylie, 2004). Its annual
incidence in the general population ranges from two to three cases per
1,000,000 individuals, but notably peaks at eight to eleven cases per
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1,000,000 individuals among children and adolescents (Ritter and
Bielack, 2010). However, the introduction of multi-agent
chemotherapy has improved the 5-year overall survival rate for
OS, achieving approximately 60%–70% long-term survival (Gill and
Gorlick, 2021), and the prognosis for patients with metastatic or
relapsed disease remains devastating, with a mere 5-year overall
survival rate of 20% (Link et al., 1986; Aljubran et al., 2009; Meyers
et al., 2011). Moreover, the emergence of chemotherapy resistance in
OS has hindered therapeutic advancements over the past decades
(Gill and Gorlick, 2021). Molecularly, several crucial factors
contribute to the suboptimal outcomes in OS treatment. First,
the lack of sensitive markers for subtyping patients with poor
prognosis hampers personalized treatment strategies. Second, the
intricate immunological microenvironment of OS remains poorly
understood, limiting our ability to harness immune-based therapies
effectively. Last, the complex genetic landscape of OS presents
challenges in identifying and targeting key molecular drivers for
therapeutic intervention (Meltzer and Helman, 2021).
Consequently, there is a pressing need to gain novel insights into
the molecular genetics of OS as such discoveries hold immense
potential in optimizing early detection methods, advancing
treatment modalities, and enhancing prognostic predictions for
OS patients.

N7-methylguanosine (m7G) is a significant post-transcriptional
modification, which means that a methyl group is added to the
seventh N position of RNA guanine by methylation transferase (Guy
and Phizicky, 2014; Sloan et al., 2017; Song et al., 2020). Through the
methylation modification of RNA, m7G influences the production,
maturation, and decomposition of RNA by triggering various
biological and pathological reactions (Song et al., 2020). Recently,
increasing evidence has shown that m7G modification involves the
oncogenesis and progression of various cancers and plays the role of
a double-edged sword (Chen Y. et al., 2022; Luo et al., 2022). For
example, m7G-related genes serve as tumor promoters in various
cancers, such as glioma, hepatocarcinoma, esophageal squamous cell
carcinoma, non-small-cell lung cancer, and head and neck
squamous cell carcinoma, but exhibit an anti-tumor effect in
certain cancers (Pandolfini et al., 2019; Tian et al., 2019; Chen
et al., 2021; Li et al., 2021; Chen J. et al., 2022; Han et al., 2022).
Recently, increasing research focused on the role of m7G in the
tumor microenvironment (TME) (Huang et al., 2022a; Li Z. et al.,
2022; Gao et al., 2022; Zeng et al., 2023). Certain studies have
exhibited that m7G-related genes shape the TME by affecting the
distribution of immune cells (Wang et al., 2017; Chen J. et al., 2022;
Dong et al., 2022; Wu et al., 2022). Furthermore, studies have found
that m7G was associated with response to chemotherapeutic drugs,
including cisplatin and docetaxel (Okamoto et al., 2014). As such,
exploring the mechanism of m7G during the occurrence and
development of OS may promote the advancement of OS treatment.

Herein, we utilized the bioinformatic analysis to explore the role of
m7G-related genes in the molecular landscape of OS. Additionally, we
constructed a prognostic model and its relation with immune infiltration
and chemotherapy sensitivity. Furthermore, an integrated nomogram
was established to quantitatively predict OS patients’ prognosis. More
importantly, through drug sensitivity analysis, we found that
AZD2014 may serve as the potential sensitive drug for OS, and
AZD2014 can induce the G1-phase cell cycle arrest and apoptosis of
OS cells, serving as a potential therapeutic drug for OS patients.

Eventually, we identified CYFIP1 and EIF4A1 as two independent
risk factors of OS through multivariate Cox regression analysis and
verified the differential expression of CYFIP1 and EIF4A1 at histological
and cytological levels, offering new therapeutic targets for OS.

Materials and methods

Data collection and processing

The RNA sequencing data of OS patients with corresponding
clinical information in TARGET-OS and GSE21257 datasets were
separately downloaded from Therapeutically Applicable Research to
Generate Effective Treatments (TARGET; https://ocg.cancer.gov/
programs/target) and the Gene Expression Omnibus (GEO; https://
www.ncbi.nlm.nih.gov/geo/) databases. Additionally, the mRNA
expressions of OS patients in these two cohorts were merged and
batch-corrected via the “sva” package. The m7G-related genes were
collected based on the published literature (Regmi et al., 2022).
Detailed information on the 98 m7G-related genes is shown in
Supplementary Table S1.

Screening of prognostic m7G-related genes
and unsupervised consensus clustering

Univariate Cox regression analysis was performed to identify the
prognostic m7G-related genes of TARGET-OS patients. The “NMF”
package was applied to identify different m7G-related clusters based
on the expressions of prognostic m7G-related genes. The “ns”
algorithm was used as a clustering measure, and the cophenetic
coefficient was applied to decide the best clustering. After the best
cophenetic coefficients were selected, a heatmap was depicted using
the “consensusmap” function. The “limma” package was adopted to
determine differentially expressed genes (DEGs) among different
m7G-related clusters with a Foldchange >1.5 and p-value <0.05.

Construction and verification of a
prognostic model based on m7G-related
genes

The TARGET-OS dataset was used as the training cohort to
construct a prognostic model. The least absolute shrinkage and
selection operator (LASSO) analysis was used to further narrow the
preliminarily screened prognostic m7G-related genes. The final
prognostic model can be expressed as follows: risk score =
∑CoefmRNAi * ExpressionmRNAi, in which ExpressionmRNAi

represents the expression level of each prognostic m7G-related gene
and CoefmRNAi represents the coefficient of the corresponding
prognostic m7G-related genes in the LASSO-Cox regression model.
Based on the prognostic model, the risk score of each OS patient was
calculated, and OS patients were separated into high- and low-risk
groups based on the medium risk score. In addition, OS patients
included in the GSE21257 dataset were set as a verification cohort
to validate the prediction performance of the constructed prognostic
model. Furthermore, the prediction performance of the constructed
prognostic model was validated in the merged dataset.
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Construction of an integrated nomogram

We utilized the “survival,” “survminer,” and “rms” packages in R
to develop an integrated nomogram. Multivariate Cox regression
models were performed to identify the independent factors
associated with the prognosis of OS patients. Following the result
of multivariate analysis, a Cox proportional hazard (PH) model was
applied to develop a nomogram to predict the survival probability of
OS patients of the merged dataset. The receiver operating
characteristic (ROC) curve, calibration curve, and decision curve
analysis (DCA) curve were performed to assess the predictive
accuracy and clinical usefulness.

Functional analyses and mechanism
exploration

The underlying effect of m7G-related genes on the occurrence
and development of OS was investigated through functional
enrichment analysis. First, DEGs between the merged datasets’
high- and low-risk groups were identified with the R package
“limma.” Subsequently, the functional enrichment analyses,
including Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) analyses, were completed to explore
underlying pathways. In addition, a protein–protein interaction
(PPI) network based on identified DEGs was constructed on the
Metascape website (http://metascape.org/gp/index.html) to screen
hub genes and hubmodules. Subsequently, the Gene Set Enrichment
Analysis (GSEA) algorithm was applied to explore the activity
variation of KEGG analysis. Moreover, the GSVA algorithm was
applied to explore the activity variation of biological process (BP)
terms in GO analysis.

Immune infiltration and drug sensitivity
analysis

The Estimation of Stromal and Immune cells in Malignant
Tumor tissues using Expression data (ESTIMATE) algorithm was
performed to calculate the stromal score, immune score, ESTIMA
score, and tumor purity in the high- and low-risk groups. Moreover,
MCP counter algorithms were used to estimate the proportion of
immune cells. The Genomics of Drug Sensitivity in Cancer (GDSC),
developed by the Sanger Institute in the UK, is considered the most
prominent public resource for drug sensitivity of tumor cells at
present, collecting the sensitivity and response of tumor cells against
drugs. The “limma,” “ggpubr,” and “oncopredict” packages were
utilized to perform drug sensitivity between the high- and low-risk
groups in the merged dataset and to screen potential therapeutic
drugs for OS, with p < 0.01 as the screening criterion.

Tissue, cell lines, and reagents

OS samples and adjacent normal tissues were collected from
patients undergoing hinge knee arthroplasty in the Orthopedics
Department of Xiangya Hospital. The Ethics Committee of Xiangya
Hospital of Central South University approved this study, and

informed consent was obtained from all the participants or their
legal guardians.

The human OS cell lines U2OS and MG63 cells were purchased
from the Procell Life Science&Technology Company. Under 37°C
and 5% CO2, U2OS cells were maintained in high-glucose DMEM,
while MG63 cells were cultured in MEM, and all mediums were
added with 10% fetal bovine serum and 1% streptomycin/penicillin.

AZD2014 was purchased from the Selleck Company (Houston,
TX, USA). Dimethyl sulfoxide (DMSO) was utilized to dissolve the
AZD2014 powder to prepare a 50 mM stock solution stored
at −80°C. The stock solution was diluted with the appropriate
assay medium in the subsequent experiment, while 0.1% DMSO
was used as the vehicle control.

Immunohistochemical analysis

The pathological tissues and adjacent normal tissues of OS
patients were fixed in 4% paraformaldehyde, embedded in
paraffin, and then, sliced into slides for immunohistochemistry
(IHC). Subsequently, deparaffinization, dehydration, and antigen
reparation were performed for each slide. To block the endogenous
peroxidase activity, the slides were incubated with 3% hydrogen
peroxide solution at room temperature for 10 min. After rinsing
with PBS, the slides were hatched for 1 hour at room temperature
with the goat serum (ZLI-9022, ZSGB-Bio, China). Then, the slides
were hatched with EIF4A1 primary antibody (R383037, ZenBio,
China) and CYFIP1 primary antibody (ab156016), which were
diluted into 1:100, respectively, at room temperature overnight.
After rinsing in PBS for three cycles for 5 min/times, the slides
were hatched with an antibody booster and anti-rabbit secondary
antibody (PV-9000, ZSGB-Bio, China) for 20 min at room
temperature, respectively. Finally, the signals of sections were
developed using 3,3′-diaminobenzidine tetrahydrochloride, and
all slides were stained with hematoxylin.

RNA extraction and quantitative PCR

Total RNAwas extracted from hFOB1.19, U2OS, andMG63 cell
lines by using the AG RNAex Pro RNA extraction kit (AG,
Changsha, China) and utilized to synthesize cDNA with the
Reverse Transcription Kit (AG, Changsha, China). qPCR analysis
was carried out on the ABI7500 system using the TB Green Premix
Pro Taq HS qPCR Kit (AG, Changsha, China). Last, we used the
ΔΔCq method to calculate the relative expression levels of each
sample, and the results were expressed as 2−ΔΔCq. GAPDH were used
for normalization in the qPCR experiment.

Cell cycle propidium iodide staining assay

For the cell cycle assay, cells were seeded in the six-well plates
(5 × 105/well) overnight and then treated with AZD2014 at the
concentrations of 2.5, 5.0, and 10.0 uM. After 24 h, cells were
collected and rinsed in PBS. We then fixed these samples in 70%
ethanol overnight at 4°C. Subsequently, 0.5% propidium iodide (PI)
(Multisciences Biotech Co., Ltd.) added with 0.01% RNase was used

Frontiers in Pharmacology frontiersin.org03

Lin et al. 10.3389/fphar.2023.1158775

http://metascape.org/gp/index.html
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1158775


TABLE 1 Prognostic genes generated using univariate Cox analysis.

Sig_genes Full name Category Gene card ID p-value HR (95% Cl for HR)

CYFIP2 Cytoplasmic FMRl interacting protein 2 Protein coding GC05P157267 0.0077 1.40 (1.10–1.80)

IGF2BP2 Insulin-like growth factor 2 MRNA-binding protein 2 Protein coding GC03M185643 0.02 1.40 (1.00–1.90)

ALKBHl AlkB homolog 1. Histone H2A dioxygenase Protein coding GC14M077672 0.019 0.31 (0.12–0.83)

NUDTl Nudix hydrolase 1 Protein coding GC07P002242 0.034 1.70 (1.00–2.70)

FTO FTO alpha-ketoglutarate-dependent dioxygenase Protein coding GC16P053853 0.014 0.29 (0.11–0.78)

EIF4Al Eukaryotic translation initiation factor 4Al Protein coding GC17P007572 0.021 2.50 (l.20–5.50)

EIF4E3 Eukaryotic translation initiation factor 4E family member 3 Protein coding GC03M071675 0.014 0.31 (0.12–0.79)

NUOT16 Nudix hydrolase 16 Protein coding GC03P131381 0.0019 0.30 (0.14–0.64)

CYFIPl Cytoplasmic FMRl interacting protein 1 Protein coding GC15M022867 0.0014 0.23 (0.09–0.56)

FIGURE 1
Screening of molecular subgroups. (A) Three clusters were identified as the optimal value for consensus clustering. (B) Kaplan–Meier plot of three
clusters. (C) Kaplan–Meier plot of two new clusters. (D)DEGs between two new clusters. (E)GO analysis of DEGs. (F) KEGG analysis of DEGs. (G)GSEA of
two new clusters. DEGs: differentially expressed genes; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; and GSEA: Gene Set
Enrichment Analysis.
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for staining. Cell cycle analysis was performed on the flow cytometer
(NovoCyte, ACEA).

Cell apoptosis assay

For the apoptosis assay, cells were seeded in six-well plates (2 ×
105/well) with AZD2014 at the concentrations of 2.5, 5.0, and 10 uM
for 48 h. DMSOwas used to treat the vehicle control group. The cells
and supernatants were collected and washed twice with ice-cold
PBS. The annexin V/PI kit (Multisciences Biotech Co., Ltd.) was
used to detect apoptosis, according to the manufacturer’s
instructions.

Statistical analysis

Statistical tests were performed using R software (version 4.2.1).
Continuous data were expressed as the mean and standard
deviation, while categorical data were expressed as count and
percentage. Univariate, LASSO, and multivariate Cox analyses
were performed to identify independent prognostic factors and
construct an integrated nomogram, including predictable clinical
traitors and risk scores. The performance and clinical usefulness of
the model were assessed by the calibration curve, timeROC, and
timeDCA. All tests were two sided. The statistical significance was
shown as follows: p-value <0.05 (*), p-value <0.01 (**), and
p-value <0.001 (***).

Results

Identification of prognostic m7G-related
genes and m7G-related clusters

Ninety-eight m7G-related genes were obtained from the previous
literature (Supplementary Table S1), and nine m7G-related genes were
identified as the prognosis-related genes through univariate cox
regression analysis: CYFIP2, IGF2BP2, ALKBH1, NUDT1, FTO,
EIF4A1, EIF4E3, NUDT16, and CYFIP1 (all p < 0.05) (Table 1).
Based on the expression of nine identified m7G-related genes, we
classified the patients into clusters to explore the impact of m7G RNA
modification onOS patients. The cophenetic plot signified that dividing
the patients into three clusters is the best clustering choice (Figure 1A;
Supplementary Figure S1). Then, we used the Kaplan–Meier curve for
these three clusters and found that the prognosis of Cluster 3 was better
than that of Cluster 1 and Cluster 2 (Figure 1B, total p-value: 0.056, total
HR: 0.65, 95CI% [0.41, 1.02]; Cluster1–Cluster2: p-value 0.91;
Cluster1–Cluster3: p-value 0.08; and Cluster1–Cluster3: p-value
0.04). Subsequently, considering the similar prognoses between
Cluster 1 and Cluster 2, we merged them into one group, plotted
the Kaplan–Meier curve for the new clusters, and found the
distinguished prognosis between these two clusters (p-value: 0.028,
HR: 0.41, 95CI% [0.19, 0.93]) (Figure 1C). To explore the underlying
mechanism that results in different prognoses, we performed the
differentially expressed analysis and functional enrichment analyses
between the clusters. As a result, 195 DEGs were identified, of which
106 were downregulated and 89 were upregulated (Figure 1D). GO

analysis’s biological process (BP) was mainly enriched in cell adhesion,
extracellular matrix organization, and cell differentiation. GO analysis’s
cellular component (CC) was mainly enriched in the extracellular
region, extracellular space, and extracellular exosome. GO analysis’s
molecular function (MF)wasmainly enriched in extracellular structural
constituent, calcium-ion binding, and heparin binding (Figure 1E).
KEGG analysis was mainly enriched in ECM–receptor interaction,
protein digestion and absorption, focal adhesion, and the PI3K-Akt
signaling pathway (Figure 1F). Furthermore, the GSEA was primarily
enriched in glutathione metabolism, proteasome, oxidative
phosphorylation, and fatty acid metabolism (Figure 1G). Therefore,
the differences in cell adhesion and extracellular matrix metabolism of
GO and KEGG enrichment analyses might affect OS invasiveness and
metastasis ability, while metabolism-related pathways, such as
glutathione metabolism, oxidative phosphorylation, and fatty acid
metabolism, in GSEA may represent the different metabolism status
among OS clusters, leading to the differential prognosis of OS patients.
To sum up, m7G modification may be associated with extracellular
matrix organization, focal adhesion, ECM–receptor interaction, and cell
metabolism, which may affect the invasion and metabolism-related
ability of OS cells, resulting in different prognoses among clusters.

Construction and validation of a prognostic
model

LASSO analysis was used to narrow down the prognostic m7G-
related genes and construct a prognostic model based on the TARGET-
OS dataset. Then, eight m7G-related genes were included in the final
model, and the prognostic model could be expressed as follows: risk
score = 0.18*CYFIP2+ 0.64*IGF2BP2 - 1.65*ALKBH1+ 0.58*NUDT1+
1.33*EIF4A1 - 0.83*EIF4E3 - 0.26*NUDT16 - 2.66*CYFIP1 (Figures
2A–C). Subsequently, OS patients were separated into high- and low-
risk groups based on the medium risk score, and the prognosis of the
low-risk group was significantly better than that of the high-risk group
(Figures 2D, E; p-value: <0.0001, HR: 13.01, 95CI% [3.89, 43.53]). The
timeROC curve with the area under the curve (AUC) of 1-, 3-, and 5-
year being 0.75, 0.89, and 0.91, respectively, signified the high prediction
efficiency of the constructed prognostic model (Figure 2F). Meantime,
the prognostic model’s predictive ability was tested in the
GSE21257 dataset, suggesting the prognosis of the low-risk group
was also better than that of the high-risk group. Moreover, the AUC
of 1-, 3-, and 5-year ROC was 0.83, 0.85, and 0.74, respectively (Figures
2G–I; p-value: 0.023, HR: 2.82, 95CI% [1.11, 7.14]). Therefore, our
prognostic model may exhibit excellent performance in predicting the
prognosis of OS patients.

Construction of an integrated nomogram

In order to improve the quantitative predictive ability of the risk
model, we merged two cohorts (Supplementary Figure S2; Figures
3A–C; p-value: 0.0047, HR: 2.34, 95CI% [1.28, 4.28]) and integrated
the clinical characteristics into the risk model to establish a
nomogram. The result of multivariate Cox regression analysis
indicated that the risk score (1.6 × 10−3), metastasis (1.6 × 10−3),
and primary site (0.03) were the independent factors affecting the
prognosis of OS patients, while the relationship between gender/age
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and the prognosis of OS patients was not significant (Figure 3D).
Subsequently, we constructed an integrated nomogram including
the risk score, metastasis, and primary site (Figure 3E). From the
nomogram, each item can obtain its corresponding score and the
total score and its corresponding survival rate can be obtained after
adding the score of all items. The timeROC curve with a 3- and 5-
year AUC being 0.77 and 0.76, respectively, indicated the predictive
accuracy of the nomogram, and the results of the 3- and 5-year
calibration plots confirmed this (Figures 3F, G). Furthermore, the 3-,
4-, and 5-year timeDCA curves indicated the excellent clinical
usefulness of the nomogram (Figure 3H). Therefore, our
integrated nomogram may serve as a viable quantitative predictor
of the prognosis of OS patients.

Mechanism exploration and functional
enrichment analyses

To explore the mechanism of our m7G-related prognostic model
in OS, we performed differentially expressed analysis between the
high- and low-risk groups. Then, 110 DEGs were identified, of which

69 were downregulated and 41 were upregulated (Figure 4A). GO
function enrichment analysis indicated that DEGs were enriched in
the immune-related processes and extracellular matrix metabolism
(Figure 4B, C). Additionally, the KEGG enrichment analysis signified
that DEGs were closely associated with some immune-related diseases
and corresponding signaling pathways (Figure 4D). The PPI analysis
further identified seven hub modules, which mainly involved the
immune response and extracellular matrix metabolism (Figure 4E).
Moreover, the GSEA and GSVA enrichment analyses were conducted
to identify the expression pattern of the involved BP. The results
revealed that immune-related processes, including antigen
presentation, the B-cell receptor signaling pathway, and natural
killer cell-mediated cytotoxicity, were highly expressed in the low-
risk group, compared with the high-risk group. In contrast, the
metabolism-related processes, including nitrogen metabolism, alpha
linolenic acid metabolism, and linoleic acid metabolism, showed the
opposite trend (Figure 4F, G). These function enrichment analyses
synergistically suggested that m7G-related DEGs were closely
associated with immunity disorders, extracellular matrix
organization, and cellular metabolism in OS patients, which may
be the underlying mechanism affecting the prognosis of OS patients.

FIGURE 2
Construction of the prognostic model in the training cohort. (A–C) Eight candidate genes were screened out by LASSO analysis with minimal
lambda. (D–F) Distribution, Kaplan–Meier plot, and time-dependent ROC curve of the risk model in the training group. (G–I) Distribution, Kaplan–Meier
plot, and time-dependent ROC curve of the risk model in the testing group.
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Immune infiltration analysis and drug
sensitivity analysis

To evaluate the impact of m7G modification on the OS
immune microenvironment, we used ESTIMATE and MCP
counter analyses to assess the infiltration of immune cells.
Then, we found that the low-risk group’s stromal score,
immune score, and estimate score were significantly higher. In
contrast, the tumor purity of the low-risk group was significantly
lower than that of the high-risk group (Figure 5A, B). Additionally,
the MCP counter further confirmed the risk score was associated
with the immune microenvironment and revealed the infiltration
of T cells, cytotoxic lymphocytes, B lineage, monocytic lineage,
neutrophils, and fibroblasts was distinctly higher in the low-risk
group (Figure 5C). To determine the possible small molecules
targeting m7G-related genes and further improve the clinical value
of the prognostic model, we performed the drug sensitivity analysis
by comparing IC50 between high- and low-risk groups. The results
indicated that the high-risk group was more sensitive to AZD2014
(6.1×103), AZD5153 (8.2×103), acetalax (8.8×103), and dactolisib

(8.9×103) in targeting m7G-related genes than the low-risk group
(Figures 5D–G). AZD2014, the most significant sensitive drug in
our drug sensitivity analysis, was included in the verified
experiment.

AZD2014 blocks OS cell division and induces
apoptosis

AZD 2014, an mTOR inhibitor, has been reported as an anti-
proliferative drug against various cancers. To explore the impact of
AZD2014 on OS, we performed the cell cycle assay and the apoptosis
assay. The results of the cell cycle assays showed that the increase in
AZD2014 expanded the proportion of G1-phase cells but decreased the
proportion of S- and G2-phase cells, suggesting that AZD2014 can
induce the G1-phase arrest in OS cells (Figure 6A, B). Subsequently, we
analyzed the impact of AZD2014 on OS-cell apoptosis and found an
increase of annexinV (+)OS cells followed by the high concentrations of
AZD 2014, indicating that AZD2014 induced OS cell apoptosis as well
(Figure 6C, D). As such, our results indicated that AZD2014 induced the

FIGURE 3
Construction of an integrated nomogram. (A–C) Distribution, Kaplan–Meier plot, and time-dependent ROC curve of the risk model in the merged
group. ROC: receiver operating characteristic. (D) Result of multivariate Cox regression of the risk score and clinical characteristics. (E) Integrated
nomogram combines the risk score and clinical characteristics, including metastasis and the tumor site. (F, G) timeROC curve, calibration curve, and
timeDCA curve of the nomogram. ROC: receiver operating characteristic; DCA: decision curve analysis.
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G1-phase cell cycle arrest and apoptosis of OS cells, whichmay serve as a
potential drug for OS.

Verification of the m7G-related signature
in OS

To explore the independent prognostic factors of OS, we performed
multivariate Cox regression analysis among eight m7G-related
signatures included in the prognostic model and found that CYFIP1
and EIF4A1 served as the independent prognostic factors of OS patients
(Figure 7A). Subsequently, we carried out qPCR and IHC to validate our
bioinformatic results. The result of qPCR illustrated that in comparison
with osteoblasts, the expression of CYFIP1was significantly lower, while
that of EIF4A1 was higher in OS cells (Figure 7B). Meanwhile, IHC
demonstrated that compared to the adjacent normal tissue, the
expression of CYFIP1 was significantly lower, while that of EIF4A1
was evidently higher in OS tissue (Figure 7C). Taken together, our
histological and cytological experiments validated the low expression of
CYFIP1 and high expression of EIF4A1 in the OS status, which is
consistent with our bioinformatic results, signifying the therapeutic
potential of CYFIP1 and EIF4A1.

Discussion

Over the past decades, OS treatments have been stagnant
because of the increase in chemotherapeutic resistance (Lin et al.,
2021). Treatment advance requires further understanding of OS
pathogenesis, progression, and drug resistance mechanism.
Recently, m7G, a post-transcriptional modification, has been
found to be involved in the oncogenesis, progression, and drug
resistance of various cancers (Luo et al., 2022). Notably, previous
studies have revealed the significance of m7G modification, such as
METTL1-mediated tRNA modification, in driving oncogenic
transformation and promoting resistance to specific drugs like
lenvatinib (Orellana et al., 2021; Huang et al., 2023). Given the
pivotal role of m7G modification in disease processes, researchers
have focused on identifying and studying genes involved in the
regulation of this modification to unravel their impact during
various disease states (Huang et al., 2022a; Li X. Y. et al., 2022).
Similarly, our study aimed to employ bioinformatic analysis to
explore the prognostic significance of m7G-related genes in OS
patients. Through univariate Cox and LASSO regression analyses,
we identified eight m7G-related genes, including EIF4A1, IGF2BP2,
NUDT1, CYFIP2, NUDT16, EIF4E3, ALKBH1, and CYFIP1, and

FIGURE 4
Mechanism exploration and functional enrichment analysis. (A) DEGs between the high- and low-risk groups. (B, C) PPI network and GO analysis of
DEGs. (D) KEGG analysis of DEGs (E) Hub modules in the PPI network. (F, G) GSEA and GSVA of the high- and low-risk groups. DEGs: differentially
expressed genes; PPI: protein–protein interaction; GO: GeneOntology; KEGG: Kyoto Encyclopedia of Genes and Genomes; GSEA: Gene Set Enrichment
Analysis; and GSVA: Gene Set Variation Analysis.
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developed a prognostic model based on their expression patterns.
Subsequently, we calculated a corresponding risk score using these
m7G-related genes, which could potentially serve as a valuable
prognostic and chemosensitive predictive tool for OS.
Furthermore, we investigated the impact of AZD 2014, a drug of
interest, on the cell cycle and apoptosis of OS cells. Our findings
demonstrated that AZD2014 induces the G1-phase cell cycle arrest
and apoptosis in OS cells. These observations suggest that the
identified m7G-related genes may not only serve as indicators of
drug sensitivity but also have clinical implications for predicting the
outcomes of OS patients.

With the increasing understanding of genetics, epigenetic
regulation has obtained significant attention in various biological
and pathological processes (McKusick, 1970). Among the crucial
RNA modifications involved in epigenetic regulation, m7G
modification has emerged as a subject of growing interest (Dai et al.,
2021). Numerous studies have demonstrated the wide-ranging
involvement of m7G modification in the pathogenesis and
development of various diseases, particularly cancers (Chen Y. et al.,
2022). For example, overactiveMETTL1 can promote the methylation
and maturation of m7G in let-7 miRNA, a tumor suppressor miRNA,
thereby inhibiting the metastasis of lung cancer cells (Pandolfini et al.,
2019). Conversely, the disruption of m7G modification resulting from
METTL1 knockout leads to global translation defects of oncogenes and
the loss of typical malignant transformationmarkers, thereby inhibiting
the occurrence and development of intrahepatic cholangiocarcinoma
(Dai et al., 2021). However, unlike other tumor types, the study of m7G
modification in OS remains largely unexplored. In this study, we
focused on clustering OS patients based on the prognostic value of
m7G-related genes determined by univariate Cox regression analysis.
Our findings revealed a significant association between m7G
modification and the prognosis of OS patients. To quantitatively

assess the impact of m7G modification on OS patients, we
constructed a prognostic model. The discriminatory power of this
model was validated in both training and testing groups, and its
performance was further evaluated in the merged group using
timeROC curves. Furthermore, the independence of the prognostic
model was demonstrated through multivariate Cox regression analysis
in the merged cohort. Additionally, we identified metastasis and the
primary tumor site as independent factors influencing the prognosis of
OS patients. To enhance the accuracy of prognosis prediction in OS
patients, we developed a nomogram that integrates the risk score
derived from the prognostic model with clinical characteristics,
including metastasis and primary sites. The calibration plots for the
3- and 5-year outcomes, as well as the timeROC curves, demonstrated
the efficacy and accuracy of the nomogram in predicting patient
prognosis. Furthermore, the timeDCA curve indicated the excellent
clinical utility of this nomogram, further supporting its potential as a
valuable predictive tool for clinicians. Consequently, our study
highlights the importance of m7G modification in OS and presents
a robust prognostic model and nomogram that incorporate m7G-
related genes and clinical characteristics for accurate prognostic
prediction. The findings underscore the potential clinical usefulness
of this approach in guiding treatment decisions and improving patient
outcomes in OS.

Notably, our prognostic model revealed an interesting association
between the expression of m7G-related genes in OS patients and their
immune status. Patients with better prognoses displayed more active
immune statuses, suggesting a potential correlation between m7G
modification and immune responses in OS. In recent years,
increasing evidence has emphasized the intricate interplay and
coevolution between tumor cells, immune components, and the
tumor stroma, underscoring their significant roles in cancer
pathogenesis, progression, and treatment (Gill and Gorlick, 2021;

FIGURE 5
Immune infiltration and drug sensitivity analysis. (A, B)Comparisons between the high- and low-risk groups regarding stromal score, immune score,
ESTIMATE score, and tumor purity. (C) MCP counter analysis. (D–G) Four potential drugs against OS.
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Heymann et al., 2021; Huang et al., 2022b; Huang R. et al., 2022).
Previous studies have highlighted the involvement of tumor stroma in
various processes, including neovascularization, inherent features for
tumor homing, microvesicle secretion, paracrine cross-feeding, and
immune modulation, all contributing toward tumor progression
(Cortini et al., 2017). Additionally, immune cells, such as myeloid-
derived suppressor cells, regulatory T cells, and tumor-associated
macrophages, have been identified as key players in regulating
tumorigenesis and tumor growth (Xia et al., 2022). To explore the
impact of m7G modifications on the TME, we used ESTIMATE and
MCP counter analyses. The results confirmed that the low-risk group,
as defined by our m7G-related risk scores, exhibited higher levels of
immune infiltration compared to the high-risk group. Furthermore,
functional enrichment analysis of DEGs and PPI network hub modules
provided additional evidence that the immune score of the low-risk
group was higher than that of the high-risk group. Collectively, these
findings suggested thatm7G-related risk scores could serve as a valuable
reference for guiding immunotherapeutic strategies in OS. Therefore,
our findings underscored the significance of considering m7G-related
gene expressions as potential indicators for immunotherapies, further
emphasizing the interplay between epigenetic modifications, immune
responses, and OS pathogenesis.

The emergence of chemotherapeutic resistance and the
propensity for metastasis and recurrence pose significant
challenges in the treatment of OS, necessitating the exploration of
novel therapeutic options. In our research, we identified four potential
drugs that hold promise for OS treatment: AZD 2014, AZD5153,
acetalax, and dactolisib. Previous studies have demonstrated the anti-
tumor effects of AZD5153, acetalax, and dactolisib in OS (Gobin et al.,
2014; Sun et al., 2020; Sheard et al., 2021). However, the impact of
AZD2014 on OS remains to be elucidated. AZD 2014, also known as
vistusertib, is an ATP-competitive mTOR1/2 inhibitor with broad-
spectrum anti-cancer properties, exhibiting a strong anti-proliferative
activity (Zheng et al., 2015; Pi et al., 2021). The PI3K/Akt/mTOR
signaling pathway has been implicated in the occurrence and
development of OS, suggesting that targeting this pathway may
hold promise for OS treatment (Gill and Gorlick, 2021).
Additionally, recent studies have indicated a link between m7G
modifications and the mTOR pathway in the pathogenesis and
progression of certain cancers (Chen J. et al., 2022; Han et al.,
2023). In our study, we demonstrated that AZD2014 induces the
G1-phase cell cycle arrest and apoptosis in OS cells through cell cycles
and apoptosis assays. These findings are consistent with the results
obtained by Pi et al. (2021), who observed similar effects of

FIGURE 6
AZD2014 blocks OS cell division and induces apoptosis. (A, B) Impact of AZD2014 on the OS cell cycle; (C, D) impact of AZD2014 on OS cell
apoptosis.
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AZD2014 in ovarian cancer. Collectively, our results suggested that
AZD2014 may represent a promising therapeutic option for OS
treatment, warranting further investigation.

Finally, our study identified CYFIP1 and EIF4A1 as two
independent risk factors for OS through multivariate Cox regression
analysis. We further confirmed the differential expression of CYFIP1
and EIF4A1 at both histological and cytological levels. CYFIP1, also
known as the SRA1 protein, is a component of the
CYFIP1–EIF4E–FMR1 complex, which binds to the mRNA cap and
regulates translational repression (De Rubeis et al., 2013). Recent studies
have demonstrated the significance of CYFIP1 in cancer development,
particularly in promoting invasion (Silva et al., 2009). EIF4A1 is an
ATP-dependent RNA helicase that participates in the assembly of the
EIF4F complex that is essential for cap recognition and mRNA binding
to ribosomes (Schmidt et al., 2023). During protein translation, EIF4A1
unwinds RNA secondary structures in the 5′-UTR of mRNA,
facilitating the efficient binding of small ribosomal subunits and
subsequent scanning for initiator codons (Tauber et al., 2020).
Increasing evidence has highlighted the oncogenic role of EIF4A1 in
various cancers, including prostate, pancreatic, and breast cancer
(Modelska et al., 2015; Ma et al., 2019; Wang et al., 2022). Given
the significant involvement of CYFIP1 and EIF4A1 in cancer
pathogenesis, including their potential roles in invasion and protein
translation, targeting thesemoleculesmay hold promise as a therapeutic
approach for OS. Developing therapies that specifically modulate the
functions of CYFIP1 and EIF4A1 could provide new avenues for
improving the treatment outcomes of OS patients.

Undoubtedly, there are several limitations that should be
acknowledged in the present study. First, the rare incidence of OS

poses challenges in recruiting a large cohort for comprehensive analysis,
which may limit the generalizability of the findings. Future studies
should aim to collaborate with multiple research centers or utilize
international databases to overcome this limitation. Second, it is
important to acknowledge that the RNA-seq and clinical data
utilized in this study were predominantly sourced from TCGA and
GEO databases, which primarily represent European and North
American populations. This may introduce inherent selection bias
and limit the applicability of the findings to other ethnic
populations (Tomczak et al., 2015). Therefore, it is crucial to
validate the results in diverse cohorts that encompass different
ethnic backgrounds and geographical regions. Furthermore, the
bioinformatic analysis performed in this study relies on publicly
available databases, which may contain inherent limitations and
inconsistencies. The accuracy and reliability of the results are
contingent on the quality and comprehensiveness of the data
sources. Therefore, caution should be exercised in the interpretation
and application of the findings. Last, the current study is based on
bioinformatic analysis and in vitro experiments, which provide valuable
insights into the role of m7G-related genes in OS. However, further in
vivo experiments and clinical studies are warranted to validate the
findings and assess the clinical feasibility of the identified m7G-related
risk model and potential therapeutic targets.

Conclusion

In summary, our study sheds light on the potential importance
of m7G-related genes in OS. Through the establishment of a

FIGURE 7
Validation of the m7G-related signatures. (A) Multivariate Cox regression analysis of the m7G-related signatures; (B) qPCR of CYFIP1 and
EIF4A1 between osteoblasts and OS cells; and (C) IHC of CYFIP1 and EIF4A1 between OS tissue and adjacent normal tissue. qPCR: quantitative PCR; IHC:
immunohistochemistry.
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prognostic model and investigation of drug responses, we obtained
valuable insights into the role of m7G modification in the
pathogenesis of OS and its impact on treatment outcomes.
Particularly, our findings suggest that AZD2014 holds promise as
a potential therapeutic agent for OS. Moreover, we identified
CYFIP1 and EIF4A1 as independent risk factors for OS. These
findings contribute to a better understanding of the molecular
mechanisms underlying OS and may pave the way for the
development of targeted therapies. Further research and clinical
validation are warranted to explore the full therapeutic potential of
m7G-related genes in OS.
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