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Background: Glioma patients often experience unfavorable outcomes and
elevated mortality rates. Our study established a prognostic signature utilizing
cuproptosis-associated long non-coding RNAs (CRLs) and identified novel
prognostic biomarkers and therapeutic targets for glioma.

Methods: The expression profiles and related data of glioma patients were
obtained from The Cancer Genome Atlas, an accessible online database. We
then constructed a prognostic signature using CRLs and evaluated the prognosis
of glioma patients by means of Kaplan-Meier survival curves and receiver
operating characteristic curves. A nomogram based on clinical features was
employed to predict the individual survival probability of glioma patients.
Functional enrichment analysis was conducted to identify crucial CRL-related
enriched biological pathways. The role of LEF1-AS1 in glioma was validated in two
glioma cell lines (T98 and U251).

Results: We developed and validated a prognostic model for glioma with 9 CRLs.
Patients with low-risk had a considerably longer overall survival (OS). The
prognostic CRL signature may serve independently as an indicator of prognosis
for glioma patients. In addition, functional enrichment analysis revealed significant
enrichment of multiple immunological pathways. Notable differences were
observed between the two risk groups in terms of immune cell infiltration,
function, and immune checkpoints. We further identified four drugs based on
their different IC50 values from the two risk groups. Subsequently, we discovered
two molecular subtypes of glioma (cluster one and cluster two), with the cluster
one subtype exhibiting a remarkably longer OS compared to the cluster two
subtype. Finally, we observed that inhibition of LEF1-AS1 curbed the proliferation,
migration, and invasion of glioma cells.
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Conclusion: The CRL signatures were confirmed as a reliable prognostic and
therapy response indicator for glioma patients. Inhibition of LEF1-AS1 effectively
suppressed the growth, migration, and invasion of gliomas; therefore, LEF1-AS1
presents itself as a promising prognostic biomarker and potential therapeutic target
for glioma.

KEYWORDS
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1 Introduction

It has been estimated that glioma are the foremost cause of
fatality among individuals with brain neoplasms (Weller et al.,
2015). Currently, the treatment options for numerous glioma
patients involve maximal safe surgical resection, concomitant
with postoperative radiotherapy and chemotherapy (Ostrom
et al., 2014). Nonetheless, the outlook for glioma patients is far
from satisfactory, especially for those with glioblastoma (GBM),
where the 5-year relative survival rate is a mere 5% (Ostrom et al.,
2014). Additionally, the low-grade glioma (LGG) has a high
likelihood of transforming into high-grade gliomas, further
underscores the unsatisfactory prognosis for glioma (Louis et al.,
2016). This unfavorable prognosis is primarily due to the infiltrative
nature of gliomas, acquired resistance, high recurrence rates, and
intratumoral heterogeneity (Hou et al., 2006; Rajesh et al., 2017).
The rapid development of molecular biological technology has not
only enhanced our comprehension of glioma pathogenesis, but also
revealed genetic alterations and critical targetable pathways. To date,
there has been substantial interest in studying molecular therapeutic
strategies that may provide renewed hope and perspectives for
glioma patients (Rajesh et al., 2017). Accordingly, identifying new
prognostic factors and targets for gliomas is imperative.

It has been reported that pyroptosis (Chen et al., 2021),
necroptosis (Liu et al., 2022a; Yuan et al., 2022) and ferroptosis
(Wan et al., 2021) are pivotal in the development of glioma. For
instance, genes associated with pyroptosis have been demonstrated
to serve as prognostic indicators and signify the molecular
characteristics of distinct subtypes of glioma (Chen et al., 2021).
Further researches have indicated that genes related to necroptosis
can act as predictive markers for glioma patients, resulting in an
improved prognostic precision (Liu et al., 2022a; Yuan et al., 2022).
Additionally, a novel risk score connected with ferroptosis-related
genes has been reported to possess the capability of predicting the
prognosis and immunotherapy outcomes of patients with glioma
(Wan et al., 2021). Recently, a study has described cuproptosis
(Tsvetkov et al., 2022), an alternative form of cell death in
comparison to pyroptosis, necroptosis and ferroptosis (Chen
et al., 2021; Wan et al., 2021; Liu et al., 2022a; Yuan et al., 2022).
Copper can regulate intracellular homeostasis as a co-factor for
multiple enzymes, but excessive copper accumulation may prove
harmful and ultimately result in cell death (Kim et al., 2008).
Previous study has established a strong correlation between
copper accumulation and tumor cell growth, metastasis, and
angiogenesis, hinting that cuproptosis could participate in the
development of cancer (Brady et al., 2014; Blockhuys and
Wittung-Stafshede, 2017). Chen et al. (2022) have developed an

active cuproptosis score to determine the prognosis of glioma.
Nevertheless, new biomarkers linked to cuproptosis for the
prognosis and treatment of glioma have not yet been identified.
Therefore, we are committed to identifying new biomarkers for the
development of targeted therapies for glioma patients via this new
modality of cell death.

Several investigations have established the association between
long non-coding RNAs (lncRNAs) and the process of tumorigenesis
(Qin et al., 2021). Furthermore, lncRNAs have demonstrated their
utility as prognostic markers and potential therapeutic targets for
glioma in various studies (He et al., 2021; Ba et al., 2022). For
instance, researchers have identified and validated a lncRNA model
of necroptosis that effectively predicts the survival of patients with
glioma (Wu et al., 2022). Numerous studies have been published
highlighting the ability of cuproptosis-related lncRNAs (CRLs) to
predict the survival of patients with breast cancer (Jiang et al., 2022),
hepatocellular carcinomas (Zhu et al., 2022) and renal clear cell
carcinomas (Xin et al., 2022). However, to the best of our knowledge,
there has been no systematic evaluation of whether CRLs can be
utilized as biomarkers for the prognosis and treatment of glioma.

In this study, a clinical prognostic model consisting of 9 CRLs
was generated and validated using bioinformatics. We subsequently
evaluated the impact of the CRL signature on diverse cancer-related
pathways and the tumor immune microenvironment. Finally, we
identified LEF1-AS1 from the CRLs and tested the function of LEF1-
AS1 in glioma. Therefore, LEF1-AS1 could serve as a significant
prognostic biomarker and targeted treatment option for glioma.

2 Materials and methods

2.1 Data collection and identification of the
prognostic CRLs

Transcriptomes and data of glioma patients including LGG and
GBM were retrieved from the TCGA (https://portal.gdc.cancer.
gov/) and CGGA (http://www.cgga.org.cn/) database. Eventually,
701 glioma samples from TCGA and 1,018 samples from CGGA
(325 from the CGGA_325 cohort and 693 from the CGGA_
693 cohort) were used as the study cohort (last accessed:
11 November 2022). A total of 19 cuproptosis-associated genes
(CAGs) were identified based on previous publications (Tsvetkov
et al., 2022) (Supplementary Table S1), and their expression and role
in glioma were subsequently explored (Zhang et al., 2022a). Then,
Pearson correlation analysis was used to evaluate the relationship
between the expression levels of the 19 cuproptosis-related genes
and those of lncRNAs (|Pearson correlation coefficient| > 0.4 and
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p < 0.001). We screened lncRNAs associated with overall survival
(OS) in patients with glioma using univariate Cox regression
analysis for prognostic identification subsequently.

2.2 Prognostic model construction and
verification

The 701 glioma cases were randomized into a training set and a
testing set in a 1:1 ratio of 1:1 for systematic analysis by the R
package “caret” (Chen et al., 2022). The training set was utilized to
build the CRL signature. Both the testing set and the entire set were
used to validate the signatures. Moreover, the least absolute selection
operator (LASSO) Cox regression algorithm analysis (using the
penalty parameter estimated by 10-fold cross-validation and a
p-value of 0.05) was performed by the R package “glmnet”. The
risk score = Ʃ [Exp (lncRNA) x coef (lncRNA)]. Exp (lncRNA) and
coef (lncRNA) present the corresponding expression level of each
selected lncRNA and the regression coefficient, respectively. Based
on the risk scores (with the median risk score used as a cutoff), all the
glioma samples were separated into the low- and high-risk
group. The prognosis of patients with gliomas was assessed by
K–M curves and ROC curves (Sun et al., 2021).

2.3 Establishment of a nomogram for
patients with glioma

Based on the independent prognostic factors (risk, age, and
grade) in the TCGA cohort, we developed a nomogram to predict
the patient’s OS (1-, 3-, and 5-year) by utilizing the R package
“survival” and “regplot”. We also estimated the predictive power of
the nomogram models using the consistency index (C-index) and
calibration curve.

2.4 Analyses of PCA and GO, as well as KEGG

To visualize the spatial distribution of low- and high-risk
samples, the gene expression profile, CAGs, CRLs, and risk
model gene expression matrix were reduced in dimensionality
through principal component analysis (PCA). Simultaneously, a
3D plot was generated with the R package “scatterplot3d” in our
study to visualize the results. Then, we screened for differentially
expressed genes (DEGs) by the R package “limma”, which filters for
|log2fold-change (FC)| > 1 and adjusted p < 0.05. Moreover, we
analyzed this DEGs using the “clusterProfiler” R package for Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways (Huang et al., 2022).

2.5 Immune landscape analysis

The model and immune infiltration status were then compared
by calculating the immune infiltration profiles (Liu et al., 2022b).We
uncovered differences in the immune response using a heatmap
under different algorithms. We also used single-sample GSEA
(ssGSEA) to detect distinctions in immune cells infiltrating

tumors and immune function between two groups of patients
(Liu et al., 2022c). Furthermore, the immune checkpoint
expression was examined in these two groups and shown in box
plots. The stromal scores, ESTIMATE scores, and immune scores for
each sample were calculated using the ESTIMATE algorithm via the
R package “estimate” (Chen et al., 2018).

2.6 TMB, TIDE and evaluation of the
therapeutic drug efficacy for the treatment
of glioma

We determined the distinctions for the two groups concerning
tumor mutation burden (TMB) by the R package “maftools” (Ba et al.,
2022). Furthermore, our team estimated the difference in sensitivity to
immunotherapy between patients in those two groups using the Tumor
Immune Dysfunction and Exclusion (TIDE) scoring file obtained from
the TIDE website (http://tide.dfci.harvard.edu/) (Jiang et al., 2018).
Moreover, we used the half-maximal inhibitory concentration (IC50)
to predict the sensitivity of gliomas to a common set of drugs using R
packages that included “pRRophetic,” “limma,” “ggpubr,” and “ggplot2”
with p = 0.001 (Geeleher et al., 2014). Correlation analysis was also
conducted between each drugs and the risk score using Spearman
correlation analysis.

2.7 Consensus clustering analysis

Consensus cluster analysis was implemented to elucidate the
features of potential molecular subgroups responsive to
immunotherapy according to prognosis-related CRL expression
(Wilkerson and Hayes, 2010). The cumulative distribution
function (CDF) approach was used to identify the molecular
subtypes based on these prognostic CRLs. In the subsequent
analysis, we examined the distinctions in survival probability and
functions related to immunity among the two clusters.

2.8 Cell culture and reverse transcription
quantitative PCR (RT-qPCR)

We acquired the normal control cell line (normal human
astrocytes, NHA) and glioma cell lines (U251 and T98) from the
National Collection of Authenticated Cell Cultures (Shang Hai,
China) (Zhang et al., 2018). A TRIzol reagent was used to extract
total cellular RNA (Invitrogen, Carlsbad, CA, United States). The
data were normalized to glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) mRNA expression and calculated using
the 2−ΔΔCT method (Zhang et al., 2022b). The sequences of PCR
primers are presented in Supplementary Table S2.

2.9 Cell transfection

A negative control (si-NC) and two LEF1-AS1-targeted siRNAs (si-
LEF1-AS1) were generated by GenePharma (Shanghai, China). Six well
plates were seeded with three hundred thousand U251 or T98 cells. The
cells were transfected using Lipofectamine® 3,000 (Invitrogen) after 24 h
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of incubation. Briefly, 2 μL of 100 μM siRNA, 5 μL of lipofectamine
3,000, 5 μL of P3,000, and 250 µL of Opti-MEM (Gibco) were mixed,
incubated for 15 min, and then added to the 6-well plates. Each plate
contained two positive tests (si-LEF1-AS1) and negative controls (si-
NC) for each cell line. After incubation for 24 h, the cells were assayed
for knockdown efficiency using qPCR. The siRNA sequences are
presented in Supplementary Table S3.

2.10 Cell counting kit-8 assay and transwell
assay

Cell counting kit-8 assay and transwell assay were performed as
previously reported (Zhang et al., 2018). The cells well were cultured
for 2 hours at 0, 1, 2, and 3 days in a 10 μLcell counting kit-8 (CCK-
8) solution (Dojindo, Tokyo, Japan). A chamber of 24-well transwell
plates was seeded with 300,000 transfected cells or control cells in
DMEM without FBS to measure cell migration. To conduct the
invasion experiment, precoating with Matrigel solution in a
chamber was required. Finally, a microscope Olympus iX71 was
used for counting and imaging the cells.

2.11 Statistical analysis

We used R software (version 4.1.3) to generate all statistical
analyses and results. A chi-square test was performed for the

classification variables between the training and testing sets.
Pearson correlation was adopted to uncover the connections
between clinical factors, risk scores, immune infiltration levels.

3 Results

3.1 Identification of prognostic CRLs in
patients of glioma

Figure 1 shows the flow diagram for the research. First, we screened
16,876 lncRNAs from the TCGA glioma database. There were
701 gliomas and five normal samples in the dataset. Using Pearson
correlation analysis (PearsonR> 0.4 and p< 0.001), 1,178CRLs showed
large correlation with 19 CAGs. An interaction between CAGs and
CRLs was visualized using Sankey diagrams (Supplementary Figure
S1A). Finally, we identified 308 differentially expressed CRLs with
log2 FC > 2 and p < 0.005. We generated a heatmap to visualize how
CRLs are expressed differently in tumor and normal tissue
(Supplementary Figure S1B).

3.2 Establishment and confirmation of the
prognostic CRLs

The univariate analysis revealed the positive correlation between
60 CRLs and OS. As shown by the forest map (Supplementary Figure

FIGURE 1
Flow diagram of the study design.
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S1C) and heatmap (Supplementary Figure S1D), 19 CRLs
were considered as factors related to poor prognosis for
patients with glioma (hazard ratio [HR] > 1), whereas the
remaining CRLs showed no association with increased
risk. However, the Sankey diagram reveals a global trend
for CRL upregulation (Supplementary Figure S2A). To decrease
the risk of overfitting, we conducted a LASSO regression analysis
on the CRLs (Supplementary Figures S2C, D).
Furthermore, multivariate Cox regression analysis
narrowed the count to 9 CRLs (HCG15, AC007950.2, PTPRN2-
AS1, TRHDE-AS1, LEF1-AS1, AC021739.2, AC008915.2,
ARHGAP42-AS1, and LINC01571) that were used to
establish the OS prognostic signature. The Risk scores =
(0.356486617130629 × HCG15 expression)− (0.733438839952268 ×
AC007950.2 expression) + (0.332295121384822 × PTPRN2-AS1
expression)− (0.910093784674468 × TRHDE-AS1 expression) +
(0.499808915964012 × LEF1-AS1 expression)−(0.294440386492078 ×

AC021739.2 expression) + (0.455982744814798 ×
AC008915.2 expression)−(0.537789146806874 ×
ARHGAP42-AS1 expression) + (0.451090068728355 ×
LINC01571 expression). The association between CAGs
and the 9 lncRNAs is also illustrated by the
correlation heatmap (Supplementary Figure S2B).

Patients with glioma were categorized into the high-risk
and low-risk groups using the median of the risk score as a
cut-off value. Using the K-M curve, OS and progression-free
survival (PFS) was remarkable longer among patients in
the low-risk group (Figures 2A–C; Supplementary
Figure S5A). The mortality in glioma patients
increases progressively with increasing risk
scores (Figures 2D–I). Finally, a heatmap indicated
that five CRLs were expressed higher in the high-risk
group, while four others showed reversed expression
(Figures 2J–L).

FIGURE 2
Validation of the prognostic signature of CRLs (A–C). Kaplan–Meier curves for OS in the training sets (A), testing sets (B), and entire set (C) (D–F).
Distribution of the CRL-model-based risk score for the training sets (D), testing sets (E), and entire set (F) (G–I). Patterns of survival time and survival status
ranked by risk score in the training sets (G), testing sets (H), and entire set (I) (J–L). Heatmap showing the display levels of the ten lncRNA for each patient
in the training sets (J), testing sets (K), and entire set (L). CRL, cuproptosis related lncRNA; OS, overall survival.
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3.3 Correlation analysis between CRLs
model and clinical features

Then, we stratified subgroups based on age, sex, and cancer
grade to examine the relations between OS and risk scores. It was of
great significance that the prognostic value of this risk model is
dependent on the clinicopathological features of CRLs. These
findings demonstrate that high-risk patients were correlated with
age, sex, grade, and isocitrate dehydrogenase (IDH) as shown in
Figure 3; Supplementary Figures S3A–C.

Additionally, we evaluated the diagnostic value and accuracy
of CRLs in glioma patients by drawing a ROC curve. The AUC of
CRLs was 0.879, which was significantly higher than those other
clinical features such as age (0.809), sex (0.495), and grade
(0.696) (Figure 4A). In addition, AUC values for predicting
1-, 3-, and 5-year survival were 0.879, 0.907, and 0.854,
respectively (Figure 4B). Overall, these findings suggest that
the 9 CRLs can be relied upon to provide patients with
reliable prognoses.

3.4 Construction and confirmation of a
nomogram

Furthermore, univariate and multivariate Cox regression
analyses were performed on age, gender, grade, and risk score
to identify whether the signature of CRLs could be regarded as an
independent prognostic indicator for OS. As seen in
Supplementary Figure S3D, the model could predict OS for
glioma patients (HR = 1.099; 95% confidence interval [CI],

1.076–1.122; p < 0.001). Following adjustment for age, gender,
and grade, the risk signature was a crucial independent
prognostic factor for glioma via multiple Cox regression
(HR = 1.070, 95% CI, 1.045–1.096, p < 0.001) (Supplementary
Figure S3E). Additionally, the prognostic model had a higher
concordance index than other clinical features (such as age, sex,
and grade) (Figure 4C). Besides, the nomogram was established
to predict the rates of OS for patients with glioma at 1, 3, and
5 years. The results showed that the OS rates of 1, 3, and 5 years
were 0.82, 0.342, and 0.105, respectively (Figure 4D). In addition,
the calibration curves showed a great agreement between the
predicted and actual survival (Figure 4E).

3.5 PCA and functional enrichment analyses

Then, we used PCA to investigate the differences between
the low- and high-risk groups. The results of PCA displayed that
9 CRL risk signature had an excellent ability to discriminate
between the two groups patients (Supplementary Figures
S4A–D). Next, DEGs between the two score subgroups were
first explored and were then utilized to elucidate the enrichment
analyses. Specifically, GO analysis demonstrated a significant
enrichment for leukocyte-mediated immunity, T-cell
activation, and collagen-containing extracellular matrix
(Figure 5A). Simultaneously, KEGG functional analysis
revealed several pathways for interactions between cells, such
as cytokine–cytokine receptor interaction, focal adhesion, and
cell adhesion molecules (Figure 5B). These results confirmed the
involvement of DEGs in the immune responses of glioma.

FIGURE 3
Correlation between the prognostic CRLs signature and clinicopathological characteristics (A–F). Kaplan–Meier curve for overall survival in different
clinical features such as age (A,B), gender (C,D), and tumor grade (E,F).
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3.6 Tumor immune microenvironment in
different risk groups

Considering the enrichment of immune-related functions in
DEGs, we examined their correlation with prognostic CRLs. Several
immune cells including B cells, CD4+ T cells, macrophages and NK
cells were largely correlated with CRL scores (Figure 6A).
Additionally, low-risk patients had a significantly higher NK cells
counts, but a lower abundance of activated dendritic cells (aDCs),
B cells, macrophages and so on (Figure 6B). Moreover, immune
function scores were different in both risk groups (Figure 6C;
Supplementary Figure S5B).

High-risk individuals’ immune checkpoints were expressed
more strongly, which may account for the poorer OS of this
group (Supplementary Figure S5C). Furthermore, we found that
the various CRL-score groups exhibit different immune
characteristics (Figures 6D–F). There were lower scores in the
low-risk patient group for stroma, ESTIMATE, and immune
function. In addition, we also explored the association between
these CRLs and programmed cell death 1 ligand 1 (PD-L1). The
results showed that CRLs have different degrees of correlation with

PD1 or PD-L1 (Supplementary Figure S5D). In conclusion, such
tumor-immune relationships in glioma could facilitate personalized
immunotherapy, potentially helping to better guide the
individualization of therapeutic choices.

3.7 TMB analysis, TIDE and therapeutic drug
sensitivity evaluation of glioma

We further compared the TMB-specific genes in the two groups.
Individuals with low-risk group had mutations in the 15 genes with
the highest mutation rates (Figures 7A, B). In addition, TMB scores
were used to categorize glioma patients into high- and low-TMB
groups. We therefore further compared the TMB in the high- and
low-risk groups and observed that high-risk group had a higher
TMB (Supplementary Figure S6A). Those with low TMB had a
largely longer OS than those with high TMB (Figure 7C).
Furthermore, TMB and CRL-scores were assessed for their
synergistic effects on prognostic stratification. The most
successful survivors were high-risk patients with a high TMB,
while those at low risk with a low TMB had the best survival

FIGURE 4
ROC curves and establishment of a nomogram (A). The AUC values of the risk factors include risk scores, age, gender and tumor grade (B). The AUC
of the CRL signature for 1-, 3-, and 5-year survival rates in glioma (C). The concordance index of the risk factors including risk scores, age, gender, and
tumor grade (D). A nomogram predicting the 1-, 3- and 5-year survival rates for glioma using independent prognostic factors (grade, age, and risk score)
(E). Calibration curves show the concordance between the prediction by nomogram and actual survival. AUC, an area under the curve; CRL,
cuproptosis-related lncRNA; OS, overall survival.
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rates. Interestingly, patients of high-risk TMBs have a worse
prognosis than those with low-risk TMBs regardless of the TMB
status (Figure 7D). TIDE was used to investigate the sensitivity to

immunotherapy for glioma patients. Nevertheless, our results
revealed no significant differences between the high- and low-risk
groups (Supplementary Figure S6B).

FIGURE 5
Enrichment analyses (A). GO functional enrichment analysis with bubble plot (BP, biological process; CC, cellular component; MF, molecular
function) (B). KEGG pathway enrichment analysis with bubble plot. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Then, we evaluated the drug sensitivity of each patient in the
different groups. There was a remarkable difference in the
IC50 values of bryostatin 1, gemcitabine, midostaurin, and
rapamycin in the comparison between the two groups of
participants (Figures 7E–H). Moreover, the IC50 values of four
drugs were negatively correlated with risk scores (Supplementary
Figures S6C–F).

3.8 Consensus cluster analysis according to
prognostic CRLs

The 701 glioma samples were regrouped to compare the immune
landscape of different tumor subtypes. According to the CRL signature,
we grouped the patients into two clusters to conduct a consensus cluster
analysis (Figure 8A; Supplementary Figure S7G). As illustrated in the

FIGURE 6
Immune landscapes of CRLs prognostic signature (A). Heatmap for immune infiltration among high- and low-risk groups based on xCELL, TIMER,
quanTIseq, MCP-counter, EPIC, CIBERSORT-ABS, and CIBERSORT algorithms (B). SsGSEA analysis showing the extent of immune cell infiltrations in the
high- and low-risk groups (C). SsGSEA analysis displaying the functions of immune cell subpopulations between high-risk and low-risk groups (D–F).
Stromal score, ESTIMATE score, and immune score in the high- and low-risk groups. *p < 0.05, **p < 0.01, ***p < 0.001. SsGSEA, single-sample gene
set enrichment analysis.
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Sankey diagram in Figure 8B, those with low risk were mostly
categorized into cluster 1, while those with high risk were mainly
grouped into cluster 2. The cluster 1 patients had a markedly longer OS
than those in cluster 2 (Figure 8C). The PCAprovided a clear separation
of risk groups and clusters, and the tSNE confirmed statistical equality
between the two groups (Supplementary Figures S7A–D).

Additionally, Supplementary Figure S7E showed the immune
infiltration of two clusters was different based on various algorithms,
whereas a lot of immune checkpoint genes are more expressed in
cluster 2 (Supplementary Figure S7F). The results presented in the
boxplots in Figures 8D–F displayed that cluster 2 had dramatically
higher stromal, ESTIMATE, and immune scores.

FIGURE 7
TMB analyses and drug sensitivity between high- and low-risk groups (A, B) Waterfall plots showing the mutational information for the genes with
high mutation frequencies in the high- (A) and low- (B) risk groups (C). Kaplan–Meier curve for OS of patients with glioma in high- and low-TMB groups
(p < 0.001) (D). Kaplan–Meier curve for OS of patients with glioma based on the TMB and the risk signature of CRLs (E–H). The sensitivity of drugs such as
bryostatin 1 (E), gemcitabine (F), midostaurin (G), and rapamycin (H), for the treatment of glioma, based on the IC50. CRL, cuproptosis-related
lncRNA; OS, overall survival; TMB, tumor mutation burden.
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3.9 Identifying LEF1-AS1 as a prognostic
biomarker for glioma

As a further step toward identifying a prognostic biomarker for
glioma related to cuproptosis, we examined the expression level of
the 9 CRLs created to formulate the prognostic signature for glioma
using the TCGA dataset. HCG15, AC007950.2, PTPRN2-AS1,
LEF1-AS1, AC021739.2, ARHGAP42-AS1, and LINC01571 were
found to be highly expressed in glioma tissues, while TRHDE-AS1
and AC008915.2 were highly expressed in normal cells
(Supplementary Figure S8). Low LEF1-AS1 expression patients
had remarkably longer OS and PFS (Figure 9A; Supplementary
Figure S8B). Additionally, the AUCs values of LEF1-AS1 at 1 year,
3 years, and 5 years were 0.8244, 0.8311, and 0.737, respectively
(Figure 9B). Moreover, we further assessed the potential of LEF1-
AS1 as a prognostic predictor for glioma patients using the CGGA
(mRNAseq_325 and mRNAseq_693) dataset and the results were
consistent with those from the TCGA database (Supplementary
Figure S9), suggesting that LEF1-AS1 level was highly predictive of
the prognosis of patients.

3.10 Inhibition of LEF1-AS1 prevented cell
proliferation, migration, and invasion in
glioma

Our first step was to test the LEF1-AS1 expression level by
RT-qPCR in two glioma cell lines (T98 and U251). The LEF1-
AS1 was considerably less expressed in NHA cells than in
T98 and U251 cells (Figure 9C). Then, we inhibited LEF1-AS1
using two siRNAs in the glioma cell lines and RT-qPCR
displayed that two independent siRNAs effectively silenced
LEF1-AS1 (Figure 9D). The growth curves displayed that
depletion of LEF1-AS1 remarkably impaired the growth of
glioma cells (Figures 9E, F). Besides, a transwell assay was
conducted to confirm whether LEF1-AS1 inhibition affects
glioma cells’ migration and invasion abilities. We confirmed
that LEF1-AS1 inhibition prevented T98 (Figures 9G, H) and
U251 (Figures 9I, J) cells from migrating and invading.
Collectively, these findings hinted that LEF1-AS1 is related
to the promotion of glioma cell growth and migration in vitro
and it could be a future treatment target for glioma.

FIGURE 8
Consensus clustering analysis of CRLs and immune correlation analysis (A). Consensus clustering matrix for k = 2 (B). Sankey diagram showing the
interaction between clusters and risk (C). K–M curves for overall survival (OS) of clusters 1 and 2 (D–F). Immune-related scores in clusters.
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FIGURE 9
Knockdown of LEF1-AS1 inhibited cell proliferation, migration, and invasion in glioma (A). Overall survival (OS) curves for glioma patients with high
and low LEF1-AS1 expression (B). Time-dependent ROC curves and AUC values for 1-year, 3-year, and 5-year OS prediction (C). RT-qPCR analysis was
applied to detect LEF1-AS1 expression in two glioma cell lines (T98 and U251) and a normal human astrocyte (NHA) cell line (D). The efficiency of si-LEF1-
AS1 transfection in T98 andU251 cells was assessed by RT-qPCR (E–F). Cell proliferation of T98 (E) and U251 (F) cells transfectedwith control (si-NC)
or si-LEF1-AS1 was measured via CCK8 assay (G–J). Migratory and invasive capacities of LEF1-AS1-deficient T98 (G,H) and U251 (I,J) cells were
determined using Transwell cell migration and invasion assays. Scales bar, 100 μM. ***p < 0.001.
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4 Discussion

Glioma patients frequently experience dismal outcomes and
elevated mortality rates (Yang et al., 2022a). The persistent problems
of unexpected recurrence and inadequate survival plague individuals
suffering from glioma (Yang et al., 2022b). Despite the advancements
made in survival rates, the prognosis for glioma patients remains
unfavorable. Recently, researchers have devised a CRLs-based risk
model to forecast treatment outcomes for glioma patients, which
indicates the potential significance of CRLs in future glioma therapy
(Wang et al., 2022). To illustrate, certain scholars have constructed and
confirmed a new risk model using CRLs to determine the therapy
response and prognosis of glioma patients (Zhang et al., 2022c; Wu
et al., 2023). However, no specific CRLs biomarkers have been identified
for glioma therapy and prognosis.

We probed both the role and value of CRLs in glioma using
comprehensive analyses. First, based on 9 CRLs associated with
glioma prognosis, we created and verified the prognostic signature
for glioma. Regardless of the training or testing set, OS was
remarkable longer in the low-risk patients. Next, we confirmed
two molecular subtypes of glioma using consensus cluster analysis,
with the cluster one subtype exhibiting a remarkably longer OS than
the cluster two subtype. Additionally, our team examined the
involvement of immune infiltration in glioma and potential drugs
for glioma therapy based on the prognostic signature. Finally, we
identified the CRL LEF1-AS1 as being important and validated its
role in glioma, as knockdown of the protein inhibited cell growth,
migration, and invasion.

According to the emerging evidence, immune cell infiltration
has been a critical element in glioma progression and significantly
influences patients’ survival (Yu et al., 2021). In the current study,
DEGs exhibited an enhanced affinity for immune response-related
biological processes such as leukocyte-mediated immunity, and
cytokine–cytokine receptor interaction. These results suggest that
tumor-infiltrating immune cells are primarily responsible for
creating the tumor microenvironment, which is significantly
related to glioma progression. In addition, Wang et al. found that
using NK cells might be a hopeful approach to treating the glioma
patients (Wang et al., 2021). Our study revealed NK cells were found
in large numbers in the low-risk group, linking the CRL signature to
both a good prognosis and efficacious glioma treatment. An
immunomodulatory molecule called PD-1 is an extremely
negative factor, and its ligands include PD-L1 and PD-L2 (Ribas
and Wolchok, 2018). By attaching to PD-1 on the surface of
activated T lymphocytes, PD-L1 on the surface of tumor cells
reduces T cell-mediated cytotoxicity and promotes the
proliferation and immune escape of the tumor cells (Litak et al.,
2019). Furthermore, immune checkpoint-associated gene
expression differed markedly between the two risk groups,
meaning our work might provide a promising regimen for
identifying glioma patients who may gain more from the
blockade of immune checkpoint. These results might add a new
and accurate immunotherapeutic approach for the glioma patients.

To our knowledge, a major obstacle to improving the prognosis
of the patients of glioma may be the incomplete and poor
understanding of glioma heterogeneity and its TMB
characteristics in therapeutic intervention (Wu et al., 2018);
therefore, we subsequently conducted a TMB analysis. TMBs of

15 genes with the highest mutation rates were largely different for
the two risk groups. Besides, several research reported that
IDH1 mutation gliomas were likely to respond well to radiation
and alkylating chemotherapy (Yan et al., 2009; Wang et al., 2015).
Additionally, patients of low-risk group had better prognoses
regardless of TMB status, indicating the CRL signature was
highly predictive of the glioma patients’ prognosis even with
other confounding factors. As evidence suggests, the TIDE
algorithm was performed to predict the clinical effectiveness of
patients to immune checkpoint inhibitors (ICI) therapy. A higher
TIDE score indicates greater likelihood of immune escape, which
implies that durable responses might still not be seen in ICI-treated
patients. However, no significant association was observed in TIDE
between the high- and low-risk groups in our study. This
phenomenon may be caused by the biased data from the TCGA
database or the tissue heterogeneity. The mechanisms remain
unproven and more research are warranted to definite its
mechanisms.

Drug sensitivity testing is crucial for determining how effective
some chemotherapy agents are. It has been noticed that bryostatin 1 can
increase the radiosensitivity of malignant gliomas andmake themmore
sensitive to certain chemotherapeutic drugs (Dagur et al., 2015).
Gemcitabine, a nucleoside analog, was reported to inhibit the
elongation of the DNA chain and can be used as an agent for the
therapy of various tumors, especially glioma (Morfouace et al., 2014).
Bastiancich et al. found that gemcitabine can be a powerful
radiosensitizer that could increase antitumor immune activity
(Bastiancich et al., 2018). Rapamycin has been discovered to have
substantial anti-neoplastic activity in GBM and affects the glioma
growth and proliferation (Cloughesy et al., 2008). Another drug,
midostaurin, has shown promising efficacy in the
immunomodulatory process in some tumors, such as colon cancer,
ovarian cancer, and glioma (Stone et al., 2017; Ke et al., 2022; Lai et al.,
2022). Our study indicated that the IC50 values of these four drugs were
markedly higher in patients with low-risk glioma, hinting CRL
signature could add promising value for predicting the treatment
response in glioma.

In line with our results, other research groups have built a CRLs
signature for predicting glioma prognosis and immunotherapy
response (Yan et al., 2022a; Wang et al., 2022; Xu et al., 2022).
However, what we have learned about the contribution of lncRNAs
to cuproptosis is only the tip of the iceberg. As far as we know,
specific biomarkers for the treatment of gliomas based on CRLs have
never been reported. In our current study, the CRL prognostic
signature included 9 CRLs, which have been related to glioma
growth and progression (Yuan et al., 2022). HCG15 (human
leukocyte antigen complex group 15) facilitates proliferation and
invasion by enhancing ZNF641 transcription in hepatocellular
carcinoma (Yan et al., 2022b). A study has shown that TRHDE-
AS1 is a low-expression gene in lung cancer and overexpression of
TRHDE-AS1 affects the cell growth through the miRNA-103/
KLF4 axis (Zhuan et al., 2019). A study has shown that LEF1-
AS1 regulates the growth and migration of hypopharyngeal
squamous cell carcinoma cells (Fan et al., 2022). Additionally,
Cheng et al. (2020) demonstrated that LEF1-AS1 promotes
glioma tumorigenesis by sponging miR-489-3p. Currently, few
studies have investigated whether these 9 lncRNAs contribute to
the progression of gliomas.
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To confirm whether the 9 CRLs could be prognostic markers for
glioma, we examined their expression levels using TCGA dataset.
HCG15, AC007950.2, PTPRN2-AS1, LEF1-AS1, AC021739.2,
ARHGAP42-AS1, and LINC01571 were highly expressed in glioma
tissues. The low LEF1-AS1 expression patients had remarkably longer
OS and PFS, suggesting that LEF1-AS1 level was highly predictive of the
prognosis of glioma. Next, LEF1-AS1 was considerably less expressed in
NHA cells than in T98 and U251 cells. Depletion of LEF1-AS1
remarkably impaired the growth of glioma cells. Moreover, we
confirmed that LEF1-AS1 inhibition prevented T98 and U251 cells
from migrating and invading. These findings hinted that LEF1-AS1 is
associated with promotion of cell growth and migration in vitro and it
could represent a useful therapeutic target of glioma patients.

Nevertheless, this study had some limitations. First, because of
the intrinsic restriction of bioinformatics analysis in predicting drug
sensitivity, prospective validation studies are needed to confirm our
predictions for medication sensitivity. Then, the exact molecular
mechanism by which LEF1-AS1 affects glioma growth, migration,
and invasion has not been entirely clarified. Our future studies will
examine the regulatory mechanism of LEF1-AS1 in vitro and in vivo.

5 Conclusion

CRL signatures were verified in this study as a prognostic and
treatment response indicator for glioma patients. LEF1-AS1
inhibition can prevent the growth, migration, and invasion of
gliomas. LEF1-AS1 may be an effective prognostic biomarker and
treatment for glioma.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found in the article/Supplementary Material.

Ethics statement

ADeclaration ofHelsinki informed consent was obtained under the
supervision of The First Affiliated Hospital of Zhengzhou University.

Author contributions

DC, YX, and DY designed the project and wrote the manuscript.
XG performed the experiments and downloaded the data. XZ and
XL collated and analyzed the data. All authors read and approved the
final manuscript.

Funding

This research has been provided from the Henan Natural
Science Fund Project, China (grant numbers 212300410401).

Acknowledgments

Thank all members of the TCGA database for providing a good
platform for researchers.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphar.2023.1158723/
full#supplementary-material

References

Ba, Y., Su, J., Gao, S., Liao, Z., Wu, Z., Cao, C., et al. (2022). The identification of
necroptosis-related subtypes, the construction of a prognostic model, and the
characterization of the tumor microenvironment in gliomas. Front. Oncol. 12,
899443. doi:10.3389/fonc.2022.899443

Bastiancich, C., Bastiat, G., and Lagarce, F. (2018). Gemcitabine and glioblastoma:
Challenges and current perspectives. Drug Discov. Today 23 (2), 416–423. doi:10.1016/j.
drudis.2017.10.010

Blockhuys, S., and Wittung-Stafshede, P. (2017). Roles of copper-binding proteins in
breast cancer. Int. J. Mol. Sci. 18 (4), 871. doi:10.3390/ijms18040871

Brady, D. C., Crowe, M. S., Turski, M. L., Hobbs, G. A., Yao, X., Chaikuad, A., et al.
(2014). Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature
509 (7501), 492–496. doi:10.1038/nature13180

Chen, B., Khodadoust, M. S., Liu, C. L., Newman, A. M., and Alizadeh, A. A. (2018).
Profiling tumor infiltrating immune cells with CIBERSORT. In: L. VonStechow, editor.
Cancer systems biology: Methods and protocols. Methods in molecular biology. 17112018.
243–259.

Chen, B., Zhou, X., Yang, L., Zhou, H., Meng, M., Zhang, L., et al. (2022). A
Cuproptosis Activation Scoring model predicts neoplasm-immunity interactions and
personalized treatments in glioma. Comput. Biol. Med. 148, 105924. doi:10.1016/j.
compbiomed.2022.105924

Chen, P., Li, Y., Li, N., Shen, L., and Li, Z. (2021). Comprehensive analysis of
pyroptosis-associated in molecular classification, immunity and prognostic of glioma.
Front. Genet. 12, 781538. doi:10.3389/fgene.2021.781538

Cheng, Z., Wang, G., Zhu, W., Luo, C., and Guo, Z. (2020). LEF1-AS1 accelerates
tumorigenesis in glioma by sponging miR-489-3p to enhance HIGD1A. Cell Death Dis.
11 (8), 690. doi:10.1038/s41419-020-02823-0

Cloughesy, T. F., Yoshimoto, K., Nghiemphu, P., Brown, K., Dang, J., Zhu, S., et al.
(2008). Antitumor activity of rapamycin in a phase I trial for patients with recurrent
PTEN-Deficient glioblastoma. Plos Med. 5 (1), e8–e51. doi:10.1371/journal.pmed.
0050008

Dagur, R. S., Hambarde, S., and Chandna, S. (2015). Bryostatin-1 causes
radiosensitization of BMG-1 malignant glioma cells through differential activation

Frontiers in Pharmacology frontiersin.org14

Chen et al. 10.3389/fphar.2023.1158723

https://www.frontiersin.org/articles/10.3389/fphar.2023.1158723/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2023.1158723/full#supplementary-material
https://doi.org/10.3389/fonc.2022.899443
https://doi.org/10.1016/j.drudis.2017.10.010
https://doi.org/10.1016/j.drudis.2017.10.010
https://doi.org/10.3390/ijms18040871
https://doi.org/10.1038/nature13180
https://doi.org/10.1016/j.compbiomed.2022.105924
https://doi.org/10.1016/j.compbiomed.2022.105924
https://doi.org/10.3389/fgene.2021.781538
https://doi.org/10.1038/s41419-020-02823-0
https://doi.org/10.1371/journal.pmed.0050008
https://doi.org/10.1371/journal.pmed.0050008
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1158723


of protein kinase-C delta not evident in the non-malignant AA8 fibroblasts. Mol. Cell.
Biochem. 401 (1-2), 49–59. doi:10.1007/s11010-014-2291-0

Fan, J., Wang, C., Zhai, X., Li, J., Ju, J., Zhu, Y., et al. (2022). lncRNA LEF1-AS1 acts as
a novel biomarker and promotes hypopharyngeal squamous cell carcinoma progression
and metastasis by targeting the miR-221-5p/GJA1 Axis. Dis. Markers, 2022.

Geeleher, P., Cox, N., and Huang, R. S. (2014). pRRophetic: an R package for
prediction of clinical chemotherapeutic response from tumor gene expression levels.
PLoS One 9 (9), e107468. doi:10.1371/journal.pone.0107468

He, Y., Ye, Y., Tian, W., and Qiu, H. (2021). A novel lncRNA panel related to
ferroptosis, tumor progression, and microenvironment is a robust prognostic indicator
for glioma patients. Front. Cell Dev. Biol. 9, 788451. doi:10.3389/fcell.2021.788451

Hou, L. C., Veeravagu, A., Hsu, A. R., and Tse, V. C. K. (2006). Recurrent glioblastoma
multiforme: A review of natural history and management options. Neurosurg. focus 20
(4), E5–E. doi:10.3171/foc.2006.20.4.2

Huang, T., Wang, K., Li, Y., Ye, Y., Chen, Y., Wang, J., et al. (2022). Construction of a
novel ferroptosis-related gene signature of atherosclerosis. Front. Cell Dev. Biol. 9,
800833. doi:10.3389/fcell.2021.800833

Jiang, P., Gu, S., Pan, D., Fu, J., Sahu, A., Hu, X., et al. (2018). Signatures of T cell
dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24 (10),
1550–1558. doi:10.1038/s41591-018-0136-1

Jiang, Z-R., Yang, L-H., Jin, L-Z., Yi, L-M., Bing, P-P., Zhou, J., et al. (2022).
Identification of novel cuproptosis-related lncRNA signatures to predict the
prognosis and immune microenvironment of breast cancer patients. Front. Oncol.
12, 988680. doi:10.3389/fonc.2022.988680

Ke, P., Bao, X., Liu, C., Zhou, B., Huo, M., Chen, Y., et al. (2022). LPCAT3 is a
potential prognostic biomarker and may be correlated with immune infiltration and
ferroptosis in acute myeloid leukemia: A pan-cancer analysis. Transl. Cancer Res. 11,
3491–3505. doi:10.21037/tcr-22-985

Kim, B-E., Nevitt, T., and Thiele, D. J. (2008). Mechanisms for copper acquisition,
distribution and regulation. Nat. Chem. Biol. 4 (3), 176–185. doi:10.1038/nchembio.72

Lai, C-T., Chi, C-W., Wu, S-H., Shieh, H-R., Yen, J-C., and Chen, Y-J. (2022).
Midostaurin modulates tumor microenvironment and enhances efficacy of anti-PD-
1 against colon cancer. Cancers 14 (19), 4847. doi:10.3390/cancers14194847

Litak, J., Mazurek, M., Grochowski, C., Kamieniak, P., and Rolinski, J. (2019). PD-L1/PD-
1 Axis in glioblastoma multiforme. Int. J. Mol. Sci. 20 (21), 5347. doi:10.3390/ijms20215347

Liu, A., Li, Y., Shen, L., Li, N., Shen, L., and Li, Z. (2022). Pan-cancer analysis of a
novel indicator of necroptosis with its application in human cancer. Aging (Albany NY)
14 (18), 7587–7616. doi:10.18632/aging.204307

Liu, F., Tu, Z., Liu, J., Long, X., Xiao, B., Fang, H., et al. (2022). DNAJC10 correlates with
tumor immune characteristics and predicts the prognosis of glioma. Biosci. Rep. 42 (1), 1–14.

Liu, L., Huang, L., Chen, W., Zhang, G., Li, Y., Wu, Y., et al. (2022). Comprehensive
analysis of necroptosis-related long noncoding RNA immune infiltration and
prediction of prognosis in patients with colon cancer. Front. Mol. Biosci. 9, 811269.
doi:10.3389/fmolb.2022.811269

Louis, D. N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D.,
Cavenee, W. K., et al. (2016). The 2016 world health organization classification of
tumors of the central nervous system: A summary. Acta Neuropathol. 131 (6), 803–820.
doi:10.1007/s00401-016-1545-1

Morfouace, M., Shelat, A., Jacus, M., Freeman, B. B., III, Turner, D., Robinson, S.,
et al. (2014). Pemetrexed and gemcitabine as combination therapy for the
treatment of Group3 medulloblastoma. Cancer Cell 25 (4), 516–529. doi:10.
1016/j.ccr.2014.02.009

Ostrom, Q. T., Bauchet, L., Davis, F. G., Deltour, I., Fisher, J. L., Langer, C. E., et al.
(2014). The epidemiology of glioma in adults: A "state of the science" review. Neuro-
Oncology. 16 (7), 896–913. doi:10.1093/neuonc/nou087

Qin, J., Jiang, C., Cai, J., andMeng, X. (2021). Roles of long noncoding RNAs in conferring
glioma progression and treatment. Front. Oncol. 11, 688027. doi:10.3389/fonc.2021.688027

Rajesh, Y., Pal, I., Banik, P., Chakraborty, S., Borkar, S. A., Dey, G., et al. (2017).
Insights into molecular therapy of glioma: Current challenges and next generation
blueprint. Acta Pharmacol. Sin. 38 (5), 591–613. doi:10.1038/aps.2016.167

Ribas, A., and Wolchok, J. D. (2018). Cancer immunotherapy using checkpoint
blockade. Science 359 (6382), 1350–1355. doi:10.1126/science.aar4060

Stone, R. M., Mandrekar, S. J., Sanford, B. L., Laumann, K., Geyer, S., Bloomfield, C.
D., et al. (2017). Midostaurin plus chemotherapy for acute myeloid leukemia with a
FLT3 mutation. N. Engl. J. Med. 377 (5), 454–464. doi:10.1056/NEJMoa1614359

Sun, J., Yue, W., You, J., Wei, X., Huang, Y., Ling, Z., et al. (2021). Identification of a
novel ferroptosis-related gene prognostic signature in bladder cancer. Front. Oncol. 11,
730716. doi:10.3389/fonc.2021.730716

Tsvetkov, P., Coy, S., Petrova, B., Dreishpoon, M., Verma, A., Abdusamad, M., et al.
(2022). Copper induces cell death by targeting lipoylated TCA cycle proteins. Science
375 (6586), 1254–1261. doi:10.1126/science.abf0529

Wan, R. J., Peng, W., Xia, Q. X., Zhou, H. H., and Mao, X. Y. (2021). Ferroptosis-
related gene signature predicts prognosis and immunotherapy in glioma. CNS Neurosci.
Ther. 27 (8), 973–986. doi:10.1111/cns.13654

Wang, J., Toregrosa-Allen, S., Elzey, B. D., Utturkar, S., Lanman, N. A., Bernal-
Crespo, V., et al. (2021). Multispecific targeting of glioblastoma with tumor
microenvironment-responsive multifunctional engineered NK cells. Proc. Natl. Acad.
Sci. U. S. A. 118 (45), e2107507118. doi:10.1073/pnas.2107507118

Wang, L., Li, Y., Wang, Y., Li, J., Sun, Y., Chen, J., et al. (2022). Identification of
cuproptosis-related lncRNAs for prognosis and immunotherapy in glioma. J. Cell Mol.
Med. 26 (23), 5820–5831. doi:10.1111/jcmm.17603

Wang, P., Wu, J., Ma, S., Zhang, L., Yao, J., Hoadley, K. A., et al. (2015).
Oncometabolite D-2-hydroxyglutarate inhibits ALKBH DNA repair enzymes and
sensitizes IDH mutant cells to alkylating agents. Cell Rep. 13 (11), 2353–2361.
doi:10.1016/j.celrep.2015.11.029

Weller, M., Wick, W., Aldape, K., Brada, M., Berger, M., Pfister, S. M., et al. (2015).
Glioma. Nat. Rev. Dis. Prim. 1, 15017. doi:10.1038/nrdp.2015.17

Wilkerson, M. D., and Hayes, D. N. (2010). ConsensusClusterPlus: A class discovery
tool with confidence assessments and item tracking. Bioinformatics 26 (12), 1572–1573.
doi:10.1093/bioinformatics/btq170

Wu, S., Ballah, A. K., Che, W., and Wang, X. (2023). A novel cuprotosis-related
lncRNA signature effectively predicts prognosis in glioma patients. J. Mol. Neurosci.
doi:10.1007/s12031-023-02102-5

Wu, S., Wang, S., Gao, F., Li, L., Zheng, S., Yung, W. K. A., et al. (2018). Activation of
WEE1 confers resistance to PI3K inhibition in glioblastoma. Neuro-Oncology 20 (1),
78–91. doi:10.1093/neuonc/nox128

Wu, Z., Liu, M., Fu, J., Li, J., Qin, L., Wu, L., et al. (2022). A novel necroptosis-related
lncRNA signature for predicting prognosis and immune response of glioma. Biomed
Res. Int. 2022, 3742447. doi:10.1155/2022/3742447

Xin, S., Mao, J., Cui, K., Li, Q., Chen, L., Li, Q., et al. (2022). A cuproptosis-related
lncRNA signature identified prognosis and tumour immune microenvironment in
kidney renal clear cell carcinoma. Front. Mol. Biosci. 9, 974722. doi:10.3389/fmolb.2022.
974722

Xu, Y., Wang, C., Li, S., Zhou, H., and Feng, Y. (2022). Prognosis and immune
response of a cuproptosis-related lncRNA signature in low grade glioma. Front. Genet.
13, 975419. doi:10.3389/fgene.2022.975419

Yan, H., He, N., and He, S. (2022). HCG15 is a hypoxia-responsive lncRNA and
facilitates hepatocellular carcinoma cell proliferation and invasion by enhancing
ZNF641 transcription. Biochem. Biophysical Res. Commun. 608, 170–176. doi:10.
1016/j.bbrc.2022.03.143

Yan, H., Parsons, D.W., Jin, G., McLendon, R., Rasheed, B. A., Yuan, W., et al. (2009).
IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360 (8), 765–773. doi:10.1056/
NEJMoa0808710

Yan, X., Wang, N., Dong, J., Wang, F., Zhang, J., Hu, X., et al. (2022). A cuproptosis-
related lncRNAs signature for prognosis, chemotherapy, and immune checkpoint
blockade therapy of low-grade glioma. Front. Mol. Biosci. 9, 966843. doi:10.3389/
fmolb.2022.966843

Yang, K., Wu, Z., Zhang, H., Zhang, N., Wu, W., Wang, Z., et al. (2022). Glioma
targeted therapy: Insight into future of molecular approaches. Mol. Cancer 21 (1), 39.
doi:10.1186/s12943-022-01513-z

Yang, Z., Chen, Z., Wang, Y., Wang, Z., Zhang, D., Yue, X., et al. (2022). A novel
defined pyroptosis-related gene signature for predicting prognosis and treatment of
glioma. Front. Oncol. 12, 717926. doi:10.3389/fonc.2022.717926

Yu, Q., Tang, X., Zhao, W., Qiu, Y., He, J., Wan, D., et al. (2021). Mild hyperthermia
promotes immune checkpoint blockade-based immunotherapy against metastatic
pancreatic cancer using size-adjustable nanoparticles. Acta Biomater. 133, 244–256.
doi:10.1016/j.actbio.2021.05.002

Yuan, Y. S., Jin, X., Chen, L., Liao, J. M., Zhang, Y., Yu, K. W., et al. (2022). A novel
model based on necroptosis-related genes for predicting immune status and prognosis
in glioma. Front. Immunol. 13, 1027794. doi:10.3389/fimmu.2022.1027794

Zhang, G., Sun, J., and Zhang, X. (2022). A novel Cuproptosis-related LncRNA
signature to predict prognosis in hepatocellular carcinoma. Sci. Rep. 12 (1), 11325.
doi:10.1038/s41598-022-15251-1

Zhang, Y., Dai, X., and Li, Z. (2022). Molecular subtypes of cuproptosis regulators and
their correlation with clinical prognosis and immune response in glioma. Am. J. Transl.
Res. 14 (11), 8085–8102.

Zhang, Y., Feng, J., Fu, H., Liu, C., Yu, Z., Sun, Y., et al. (2018). Coagulation factor X
regulated by CASC2c recruited macrophages and induced M2 polarization in
glioblastoma multiforme. Front. Immunol. 9, 1557. doi:10.3389/fimmu.2018.01557

Zhang, Z., Zhang, W., Wang, Y., Wan, T., Hu, B., Li, C., et al. (2022). Construction
and validation of a ferroptosis-related lncRNA signature as a novel biomarker for
prognosis, immunotherapy and targeted therapy in hepatocellular carcinoma. Front.
Cell Dev. Biol. 10, 792676. doi:10.3389/fcell.2022.792676

Zhu, H., Mao, F., Wang, K., Feng, J., and Cheng, S. (2022). Cuproptosis-related
lncRNAs predict the clinical outcome and immune characteristics of hepatocellular
carcinoma. Front. Genet. 13, 972212. doi:10.3389/fgene.2022.972212

Zhuan, B., Lu, Y., Chen, Q., Zhao, X., Li, P., Yuan, Q., et al. (2019). Overexpression of
the long noncoding RNA TRHDE-AS1 inhibits the progression of lung cancer via the
miRNA-103/KLF4 axis. J. Cell. Biochem. 120 (10), 17616–17624. doi:10.1002/jcb.29029

Frontiers in Pharmacology frontiersin.org15

Chen et al. 10.3389/fphar.2023.1158723

https://doi.org/10.1007/s11010-014-2291-0
https://doi.org/10.1371/journal.pone.0107468
https://doi.org/10.3389/fcell.2021.788451
https://doi.org/10.3171/foc.2006.20.4.2
https://doi.org/10.3389/fcell.2021.800833
https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.3389/fonc.2022.988680
https://doi.org/10.21037/tcr-22-985
https://doi.org/10.1038/nchembio.72
https://doi.org/10.3390/cancers14194847
https://doi.org/10.3390/ijms20215347
https://doi.org/10.18632/aging.204307
https://doi.org/10.3389/fmolb.2022.811269
https://doi.org/10.1007/s00401-016-1545-1
https://doi.org/10.1016/j.ccr.2014.02.009
https://doi.org/10.1016/j.ccr.2014.02.009
https://doi.org/10.1093/neuonc/nou087
https://doi.org/10.3389/fonc.2021.688027
https://doi.org/10.1038/aps.2016.167
https://doi.org/10.1126/science.aar4060
https://doi.org/10.1056/NEJMoa1614359
https://doi.org/10.3389/fonc.2021.730716
https://doi.org/10.1126/science.abf0529
https://doi.org/10.1111/cns.13654
https://doi.org/10.1073/pnas.2107507118
https://doi.org/10.1111/jcmm.17603
https://doi.org/10.1016/j.celrep.2015.11.029
https://doi.org/10.1038/nrdp.2015.17
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1007/s12031-023-02102-5
https://doi.org/10.1093/neuonc/nox128
https://doi.org/10.1155/2022/3742447
https://doi.org/10.3389/fmolb.2022.974722
https://doi.org/10.3389/fmolb.2022.974722
https://doi.org/10.3389/fgene.2022.975419
https://doi.org/10.1016/j.bbrc.2022.03.143
https://doi.org/10.1016/j.bbrc.2022.03.143
https://doi.org/10.1056/NEJMoa0808710
https://doi.org/10.1056/NEJMoa0808710
https://doi.org/10.3389/fmolb.2022.966843
https://doi.org/10.3389/fmolb.2022.966843
https://doi.org/10.1186/s12943-022-01513-z
https://doi.org/10.3389/fonc.2022.717926
https://doi.org/10.1016/j.actbio.2021.05.002
https://doi.org/10.3389/fimmu.2022.1027794
https://doi.org/10.1038/s41598-022-15251-1
https://doi.org/10.3389/fimmu.2018.01557
https://doi.org/10.3389/fcell.2022.792676
https://doi.org/10.3389/fgene.2022.972212
https://doi.org/10.1002/jcb.29029
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1158723

	A novel signature of cuproptosis-related lncRNAs predicts prognosis in glioma: Evidence from bioinformatic analysis and exp ...
	1 Introduction
	2 Materials and methods
	2.1 Data collection and identification of the prognostic CRLs
	2.2 Prognostic model construction and verification
	2.3 Establishment of a nomogram for patients with glioma
	2.4 Analyses of PCA and GO, as well as KEGG
	2.5 Immune landscape analysis
	2.6 TMB, TIDE and evaluation of the therapeutic drug efficacy for the treatment of glioma
	2.7 Consensus clustering analysis
	2.8 Cell culture and reverse transcription quantitative PCR (RT-qPCR)
	2.9 Cell transfection
	2.10 Cell counting kit-8 assay and transwell assay
	2.11 Statistical analysis

	3 Results
	3.1 Identification of prognostic CRLs in patients of glioma
	3.2 Establishment and confirmation of the prognostic CRLs
	3.3 Correlation analysis between CRLs model and clinical features
	3.4 Construction and confirmation of a nomogram
	3.5 PCA and functional enrichment analyses
	3.6 Tumor immune microenvironment in different risk groups
	3.7 TMB analysis, TIDE and therapeutic drug sensitivity evaluation of glioma
	3.8 Consensus cluster analysis according to prognostic CRLs
	3.9 Identifying LEF1-AS1 as a prognostic biomarker for glioma
	3.10 Inhibition of LEF1-AS1 prevented cell proliferation, migration, and invasion in glioma

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


