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Introduction: Tyrosine kinase inhibitor drugs (TKIs) are highly effective cancer
drugs, yet many TKIs are associated with various forms of cardiotoxicity. The
mechanisms underlying these drug-induced adverse events remain poorly
understood. We studied mechanisms of TKI-induced cardiotoxicity by
integrating several complementary approaches, including comprehensive
transcriptomics, mechanistic mathematical modeling, and physiological assays
in cultured human cardiac myocytes.

Methods: Induced pluripotent stem cells (iPSCs) from two healthy donors were
differentiated into cardiac myocytes (iPSC-CMs), and cells were treated with a
panel of 26 FDA-approved TKIs. Drug-induced changes in gene expression were
quantified using mRNA-seq, changes in gene expression were integrated into a
mechanistic mathematical model of electrophysiology and contraction, and
simulation results were used to predict physiological outcomes.

Results: Experimental recordings of action potentials, intracellular calcium, and
contraction in iPSC-CMs demonstrated that modeling predictions were accurate,
with 81% of modeling predictions across the two cell lines confirmed
experimentally. Surprisingly, simulations of how TKI-treated iPSC-CMs would
respond to an additional arrhythmogenic insult, namely, hypokalemia,
predicted dramatic differences between cell lines in how drugs affected
arrhythmia susceptibility, and these predictions were confirmed experimentally.
Computational analysis revealed that differences between cell lines in the
upregulation or downregulation of particular ion channels could explain how
TKI-treated cells responded differently to hypokalemia.

Discussion: Overall, the study identifies transcriptional mechanisms underlying
cardiotoxicity caused by TKIs, and illustrates a novel approach for integrating
transcriptomics with mechanistic mathematical models to generate
experimentally testable, individual-specific predictions of adverse event risk.
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Introduction

Tyrosine kinase inhibitors (TKIs) have revolutionized the
treatment of several types of cancer. In contrast to conventional
chemotherapeutics, these drugs are targeted treatments designed to
inhibit particular protein kinases that are abnormally active in
specific cancers. TKIs, of which over 40 have been approved by
the US Food and Drug Administration (Gharwan and Groninger,
2016), effectively treat cancers in many organs. For instance,
imatinib has increased the survival rate of chronic myeloid
leukemia patients by more than 90% (Yun et al., 2016), and
trastuzumab has increased the survival of ERBB2+ breast cancer
patients by 20% (Slamon et al., 2001). Unfortunately, many TKIs
cause cardiotoxicity in small but significant numbers of cancer
patients. Heart failure, ventricular arrhythmia, and hypertension,
for example, have all been reported in response to treatment with
TKIs (Force and Kolaja, 2011; Ewer and Ewer, 2015; Shim et al.,
2017). Despite recent research efforts (Sharma et al., 2017; Wang
et al., 2019), mechanisms underlying these cardiotoxicites remain
poorly understood, and safety pharmacologists lack sensitive and
selective preclinical assays to test new compounds for potential
cardiotoxicity early in drug development.

Three major challenges inhibit both our understanding of TKI-
induced cardiotoxicity and our ability to detect this adverse event in
preclinical studies. One is the poor predictive value of animal models
such as rats and rabbits (Ewart et al., 2014; Milani-Nejad and Janssen,
2014; Van Norman, 2019). A second challenge arises with in vitro cell
culture assays, such as cardiomyocytes derived from human induced
pluripotent stem cells (iPSC-CMs). This approach has gained
considerable momentum recently, and several recent studies have
obtained important insight into TKI-induced cardiotoxicity (Sharma
et al., 2017;Wang et al., 2019). Studies in iPSC-CMs, however, still suffer
from the lack of obvious cellular endpoints. Cell viability can easily be
assessed after applying high concentrations of TKIs (Sharma et al., 2017),
but this extreme perturbation is not representative of the more subtle
changes that develop in patients’ hearts, generally over a time scale of
weeks to months. A third challenge is the fact that, as withmany adverse
events, TKIs only cause cardiotoxicity in a relatively small percentage of
patients. Thus, in addition to determining whether a new compound
increases the aggregate risk of cardiac events, pharmacologists and
clinicians would like to know which patients might be especially
susceptible or resistant to cardiotoxicity. Answering this question
may in the future allow TKIs to be administered more precisely, to
patients who are likely to tolerate particular drugs.

We sought to determine whether integrated analysis approaches
could successfully leverage molecular data to improve the use of
in vitro experiments for prediction and understanding of TKI-
induced cardiotoxicity. Specifically, we hypothesized that
incorporating transcriptomic data into mechanistic mathematical
models would generate experimentally-testable predictions and
provide new insight. To test these ideas, iPSC-CM cell lines from
two healthy donors were treated with 26 FDA-approved TKIs, and
drug-induced changes in gene expression were quantified by bulk
mRNAseq after 48 h. Based on changes in expression caused by
TKIs, we developed a computational pipeline that allowed us to
simulate, with a mechanistic model, how the drug-perturbed iPSC-
CMs would respond to additional pathophysiological stimuli. We
experimentally tested the modeling predictions and observed a

strong correspondence in physiological outcomes between
simulations and experiments. Somewhat surprisingly, we found
consistent and repeatable differences in the susceptibility of
specific iPSC-CM lines to particular drugs, and these could be
explained by differences in drug-induced transcriptional changes.
The results therefore demonstrate how mathematical models can be
used as a mechanistic bridge between transcriptomic data and
physiological outcomes, thereby improving our understanding of
individual-specific susceptibility to cardiotoxicity.

Materials and methods

Study overview

Induced pluripotent stem cells (iPSCs) from two healthy female
volunteers were differentiated into ventricular-like iPSC-CMs.
These iPSCs were from a library generated in a previous study
(Schaniel et al., 2021), which obtained skin fibroblasts from healthy
volunteers and reprogrammed the cells into iPSCs. That study was
approved by the Mount Sinai Institutional Review Board (protocol
HS# 14–00530).

After differentiating the iPSCs into iPSC-CMs, cells were treated
with TKIs at Day 30 after differentiation initiation, and
comprehensive transcriptomic screening was performed using
mRNAseq to quantify how 48 h treatment with 26 FDA-
approved drugs influenced gene expression. Table 1 indicates the
drugs used in the study and the concentration of each drug applied
to the iPSC-CM cultures. Genes corresponding to parameters in a
mechanistic mathematical model were extracted, fold changes
compared with untreated cells were calculated, and simulations
were performed to predict drug-induced changes in cellular
action potentials, intracellular [Ca2+], contraction, and
vulnerability to proarrhythmic insults. Simulation results were
used to prioritize experimental tests, and physiological optical
recordings were performed to test key predictions. Experimental
methods describing cell generation and drug treatments are
described in Supplemental Methods; approaches that were
developed for this study, such as integration of mRNAseq data
with mathematical models, application of secondary insults, and
experimental prioritization, are described here.

Differentiation of iPSCs into cardiomyocytes

Methods for differentiation of iPSC-CMs and assessment of cell
purity, summarized briefly here, are described in detail in
Supplementary Materials and relevant citations. In brief, iPSCs
were differentiated using an established protocol (Yang et al.,
2008; Kattman et al., 2011) that included generation of embryoid
bodies and sequential activation and inhibition of WNT signaling.
This protocol robustly produced CMs, as assessed by expression of
12 cardiac genes (e.g., cTNT and MLC2v), beat frequency,
electrophysiology, and sarcomere formation. At day 20 EBs were
dissociated and plated on plastic coverslips to form monolayers.
Differentiation efficiency was then assessed by flow cytometry
analysis for SIRPA, a cell surface marker that permits iPSC-CM
identification and isolation (Dubois et al., 2011).
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To improve purity for downstream assays, we used a metabolic
selection protocol (Tohyama et al., 2013) that exploits the substrate
flexibility of CMs compared with other cell types present in the
cultures (primarily fibroblasts). Monolayers of cells were switched
from glucose-containing media to lactate-containing media for
4 days, which increased iPSC-CM purity to roughly 95% after
return to glucose media. See Supplementary Materials for details
regarding media components and timing.

Quantification of drug-induced changes in
gene expression

The mRNAseq libraries were prepared using a 3′-Digital Gene
Expression (DGE) method (Xiong et al., 2017). This method is a
modified version of Single Cell RNA Barcoding and Sequencing
method to handle extracted total RNA. The protocol starts with
converting poly(A) mRNA to cDNA decorated with universal
adapters, sample-specific barcodes and unique molecular
identifiers (UMIs) using a template-switching reverse
transcriptase. UMIs are unique to each transcript from which
cDNA is generated. The cDNAs from multiple samples are then
pooled and amplified for 10 PCR cycles. The pooled amplicons are
fragmented using a modified transposon-based method, then
prepared for multiplexed sequencing. Sequencing was performed
using a HiSeq 2,500 with the customized sequencing setting; paired
end with 26 base pairs was sequenced in the first read and the 46 base
pairs were sequenced in the second read. Transcriptomic sequences
were aligned with STAR (Dobin et al., 2013) and normalized with
edgeR (Robinson et al., 2010). Details of data processing and links to
SOPs are provided in the Supplementary Materials.

Transcriptomics-based EC coupling
simulations

The mathematical model utilized in this study was constructed
by integrating a model of human iPSC-CM electrophysiology and
Ca2+ handling (Paci et al., 2013) with a cardiac myofilament model
(Rice et al., 2008) such that the combined model simulated each step
from electrical excitation through contraction (Supplementary
Figure S1). Parameters controlling contraction were modified to
compensate for lower systolic [Ca2+] levels in iPSC-CMs compared
with adult ventricular myocytes (see Supplementary Methods).

To simulate how TKIs may influence iPSC-CM physiology, we
extracted from mRNA-seq datasets the genes that correspond to
parameters in the mathematical model (Table 2). The underlying
premise of our approach was that even if mRNA levels cannot
generally be mapped directly to model parameters, drug-induced
changes in ion transport pathways can be represented by calculating
mRNA fold changes in the drug-treated compared with the untreated
state. For the electrophysiology part of the model (Paci et al., 2013),
measurements of ion channel gene expression were used to scale
conductance parameters in the model. First, we computed the
weighted sum of channel genes for each parameter, then calculated
the fold change to determine how to modify each parameter in drug-
treated compared with control iPSC-CMs. These values were then used
as scale factors to modify each parameter by multiplication.

ScaleFactorTKI � Σ YTKI( )
Σ YCTRL( ),

Y � gene expression for relevant channel

Gion new � Gion default × ScaleFactorTKI

Each new conductance was used to compute the relevant ionic
current, with model equations otherwise unmodified.

Contractile gene integration was performed using troponin C,
actin, and myosin heavy chain (MHC) expression. Troponin C gene
expression was integrated in an identical manner to ion channels;
integration of actin and MHC involved more steps, as described in
Supplemental Methods.

Calculation of arrhythmia risk after
simulations of secondary insults

To predict how drug-induced changes in gene expression would
interact with environmental factors to influence arrhythmia risk, we
simulated the responses of drug-treated iPSC-CMs to three secondary
insults: 1) an increase in L-type Ca2+ current, 2) block of delayed rectifier
K+ current (IKr), and 3) hypokalemia. For hypokalemia simulations, we
initially verified that K+ currents in the Paci et al. model of iPSC-CM
electrophysiology (Paci et al., 2013) responded to changes in extracellular
[K+] in a similar manner to those seen in adult myocytes (Trenor et al.,
2018). Having established this, we then performed secondary insult
simulations by scaling relevant model parameters at 10 different values
representing mild to severe changes. Simulations of 1 Hz pacing were
run for 120 s, and the last 3 seconds of CaT and AP waveforms were
analyzed for morphology changes and the potential appearance of
arrhythmic behavior. Either early afterdepolarizations (EADs) or
failure to repolarize were considered arrhythmic events, and the
minimal perturbation level that produced arrhythmic behavior was
considered the threshold. For each TKI, we synthesized results from
all 3 secondary insults to compute an Arrhythmic Index (AI), as
described in Supplementary Methods.

For simulations to determine mechanisms underlying arrhythmic
susceptibility, we examined in 8 major ionic currents (IK1, Ito, IKr, IKs,
ICaL, INaK, INa, INCX). Over a single action potential, we integrated the
total charge through each current and calculated how drug -induced
gene expression changes affected the total amount of charge through that
current, compared with untreated cells. At each level of secondary insult,
this was expressed as ΔQ, the change in integrated current in the drug-
treated compared with the untreated state. For INCX, which reverses
during the action potential, we computed ΔQ for outward and inward
currents separately (Supplementary Figure S4). A negative ΔQ, which
can arise from either an increase in inward (negative) current or a
decrease in outward (positive) current, inhibits repolarization and is
considered proarrhythmic.

Optical recordings of action potentials,
intracellular [Ca2+], and membrane
movement

To test predictions of mechanistic simulations, action potentials
and membrane movement were optically recorded in iPSC-CMs
loaded with the voltage sensitive dye FluoVolt, and intracellular
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[Ca2+] was recorded in separate experiments in cells loaded with the
Ca2+ indicator fluo3. The Supplemental Methods contain details on
cell plating, dye loading, solutions, and line scan recordings made
with a confocal microscope.

Recordings were first made during steady-state 1 Hz pacing with
5.4 mM extracellular [K+]. Hypokalemia was then applied by
progressively lowering extracellular [K+] to 4.1, then 2.9, then
2.5 mM. At each level of [K+], recordings were made after 1 Hz
pacing for 10 min. On each experimental cover slip, recordings were
made from 5–10 locations at each level of extracellular [K+]. Both the
total number of recordings (n) and the total number of cover slips
(N) are reported for each condition.

Metrics that were derived from FluoVolt membrane potential
measurements included action potential duration, action potential
triangulation, and membrane movement. Metrics computed from

fluo3 measurements were Ca2+ transient Decay Tau, Ca2+ transient
triangulation, and Ca2+ transient Area Under the Curve (AUC).
Membrane movement, an indirect measure of iPSC-CM
contraction, was quantified by deflections in line-scan
fluorescence recordings, as illustrated in Supplementary Figure
S3. Details are provided in Supplementary Methods and
illustrated schematically in Supplementary Figure S3.

Statistical analysis

All data presented with error bars are means ± σ and statistical
significance is reported at three levels: *p < 0.05, **p < 0.01 and
***p < 0.001. One tailed, two sample, unpaired t-test was performed
for evaluating potential differences between drug-treated and

TABLE 1 TKI treatment concentration and the solvent information. The stock solution of each TKI was diluted to the working concentration using the
corresponding solvent. The appropriate amount of working concentration was then added to the media in the Petri dish containing iPSC-CMs to arrive to the final
concentration.

Drug_ID DrugName Stock concentration (mM) Working concentration Final concentration Solvent

AFA Afatinib 10 50 uM 50 nM DMSO

AXI Axitinib 10 250 uM 200 nM DMSO

BEV Bevacizumab 0.168 0.5 mM 3uM Water

BOS Bosutinib 10 3 mM 100 nM DMSO

CAB Cabozantinib 10 1 mM 2 uM DMSO

CER Ceritinib 10 200 uM 1 uM DMSO

CRI Crizotinib 10 0.168 mM 0.25 uM DMSO

CTX Cetuximab 0.014 0.3 mM 1 uM Water

DAB Dabrafenib 10 100 uM 2.5 uM DMSO

DAS Dasatinib 10 2 mM 0.1 uM DMSO

ERL Erlotinib 12 3 mM 3 uM DMSO

GEF Gefitinib 10 30 mM 1 uM DMSO

IMA Imatinib 10 1 mM 5 uM Water

LAP Lapatinib 10 0.25 mM 2 uM DMSO

NIL Nilotinib 12 0.014 mM 3 uM DMSO

PAZ Pazopanib 10 125 uM 10 uM DMSO

PON Ponatinib 10 0.333 mM 100 nM DMSO

REG Regorafenib 10 2.5 mM 1 uM DMSO

RTX Rituximab 0.07 0.1 mM 3 uM Water

SOR Sorafenib 10 1 mM 1 uM DMSO

SUN Sunitinib 10 1 mM 1 uM DMSO

TOF Tofacitinib 10 10 mM 1 uM DMSO

TRA Trametinib 10 5 mM 100 nM DMSO

TRS Trastuzumab 3 1 mM 3 uM/10uM Water

VAN Vandetanib 10 10uM 333 nM DMSO

VEM Vemurafenib 10 1 mM 2uM DMSO
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vehicle-treated groups. The MATLAB function ttest2 was used to
perform the t-test, and unequal variance was assumed for two
sample comparisons. For studying interactions between the
secondary insult and TKI treatments, two-way ANOVA was
performed using MATLAB statistics function anovan with
‘model’ argument set to 2.

Results

Differentiation of iPSCs yields pure
populations of cardiomyocytes

Human iPSCs were generated by reprogramming skin
fibroblasts from two healthy donors. The cells were then
differentiated into cardiomyocytes (CMs) as illustrated
schematically in Figure 1A (see Supplemental Methods for
details). A lactate selection protocol (Tohyama et al., 2013),
applied between days 20 and 30, increased the percentage of
CMs in the culture, as assessed by flow cytometry for the CM
membrane marker SIRPA (Dubois et al., 2011) (Figure 1B). Across
the two iPSC lines, lactate selection increased the percentage of
SIRPA+ cells from 60%–75% before lactate selection to ~90% after
lactate selection (Figure 1C). The differentiation protocol yielded
iPSC-CMs that beat spontaneously and expressed canonical cardiac
markers, including α-actinin, Connexin-43, Troponin T, and
Myosin Light Chain 2v (Figure 1D). Purified iPSC-CM cultures
were used for all downstream experiments, including treatment with
TKIs, quantification of gene expression using mRNA-seq, and

optical measurements of action potentials (APs) and intracellular
Ca2+ transients (CaTs).

Integration of gene expression data with
mathematical modeling generates
individual-specific and experimentally-
testable predictions of TKI-induced effects

Figure 1E illustrates the overall strategy of the study,
described in more detail in Methods and Supplementary
Materials. After iPSC-CMs were treated with 26 FDA-
approved TKIs for 48 h, mRNAseq was performed to quantify
drug-induced changes in gene expression. From these genome-
wide transcriptomic measurements, a subset of genes was
extracted that corresponds with parameters in an integrated
model of iPSC-CM electrophysiology and contraction (Rice
et al., 2008; Paci et al., 2013) (see Table 2 and Methods).
From these selected genes, fold changes were calculated to
quantify, for the two cell lines, how much each TKI either
increased or decreased each model parameter compared with
vehicle-treated control iPSC-CMs. Simulations were then
performed to predict how these TKI-induced changes in gene
expression affected APs, CaTs, and sarcomere length shortening
(Figure 1E, bottom). Differences between the two cell lines in
TKI-induced gene expression produced differences in
physiological predictions.

Simulations predict individual-specific
alterations to AP, CaT, and SL shortening
waveforms

Simulations performed with the integrated iPSC-CM
mathematical model (Rice et al., 2008; Paci et al., 2013) predicted
how measured TKI-induced gene expression changes in each cell
line modified AP and SL shortening waveforms. For each drug and
each cell line, we examined drug-induced changes in simulated time
courses (compared with untreated cells) and ranked predicted
alterations in AP triangulation (a known indicator of
proarrhythmia) and sarcomere shortening (Figures 2A,B). The
top ten rankings of AP triangulation revealed little overlap
between the cell lines from the two individuals (Figure 2Ci
versus Figure 2Di). In contrast, the rankings for the fold
reduction of SL shortening appeared more similar between the
two cell lines (Figure 2Cii versus Figure 2Dii). These impressions
were confirmed by calculations of Spearman’s rank correlation (ρ =
-0.16 for triangulation, and ρ = 0.64 for SL shortening). Example
simulations from drugs that caused triangulation or contractile
failure are shown in Figures 2E,F. In subject A (Figure 2E),
trametinib and gefitinib are shown to cause depolarization of the
resting membrane potential, AP triangulation (top), moderate
triangulation of Ca2+ transients (middle), and moderate
reductions in contraction (bottom). In subject B, in contrast,
trastuzumab and bevacizumab were predicted to cause AP
triangulation (Figure 2F). Interestingly, in the trastuzumab
simulations, spontaneous depolarization preceded the electrical
stimulus, which is classified as a form of arrhythmia when cells

TABLE 2 Genes used to compute scaling factors for the 15 model parameters.

Parameters Gene ID

GNa SCN5A

GCaL CACNA1C * all voltage gated calcium channel *

CACNA1S,CACNA1D,CACNA1B,
CACNA1I,CACNA1G,CACNA1H,
CACNA1A,CACNA1E,CACNA1F,
CACNA1C,CACNA2D1

GRYR RYR2

Gto KCND2, KCND3, KCNA4, KCNA7

GKs KCNQ1, KCNE1

GKr KCNH2

GK1 KCNJ2, KCNJ12

PNaK ATP1A1

Iup ATP2A2

GpCa ATP2B4

Gf HCN2, HCN4

KNaCa SLC8A1

Trop_Conc TNNC1

Myosin MYH6, MYH7

Actin ACTC1
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FIGURE 1
Preparation of purified iPSC-CMs and computational pipeline for simulation analysis. (A) Schematic of differentiation and metabolic selection of
human pluripotent stem cells. (B) Flow cytometry analysis for SIRPA (cardiomyocyte marker) and CD90 (fibroblast marker) at day 20 (before lactate
selection) and day 30 (after lactate selection). (C) Quantification of SIRPA+ cells before and after lactate selection in the two cell lines, based on n =
3 differentiations in each cell line. (D) IF analysis of iPSC-CMs after lactate selection at day 30, Cells were stained with antibodies against α-actinin,
Connexin 43 (CX43), cardiac Troponin T and MLC2v. (E) Study workflow illustrates how iPSCs derived from two healthy human volunteers were
differentiated into cardiac myocytes, then treated with 26 FDA-approved tyrosine kinase inhibitor drugs. Gene expression was quantified in each cell line
with mRNA-seq, and genes relevant to iPSC-CM excitation-contraction coupling were extracted and converted into fold changes, indicating relative
changes resulting from drug treatment. These fold changes corresponded to alterations inmathematical model parameters, specific to each cell line, and
simulations predicted changes in action potentials, intracellular Ca2+ transients, and sarcomere shortening caused by drugs.

Frontiers in Pharmacology frontiersin.org06

Shim et al. 10.3389/fphar.2023.1158222

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1158222


are paced at 1 Hz (Figure 2F). In terms of drug effects on
contraction, nilotinib and regorafenib are predicted to virtually
eliminate contraction in cells from subject A, whereas nilotinib
and pazopanib are predicted to do the same in subject B.
Interestingly, contractile failure can be accompanied by a severe
reduction in Ca2+ transient amplitude (e.g., nilotinib in either
subject), or little change in Ca2+ transient amplitude (regorafenib
in subject A and pazopanib in subject B). These simulations
therefore generate predictions that can be both tested
experimentally and examined in mechanistic detail.

Cellular physiology experiments confirm
individual-specific drug responses

To test the modeling predictions, we loaded iPSC-CMs with
fluorescent dyes and used confocal microscopy to record APs,
intracellular [Ca2+], and membrane movement (Figure 3A; see
Methods for details). We tested 4 TKIs in each cell line and used
simulation results to prioritize experimental tests by selecting drugs that
were predicted to: 1) cause AP triangulation, impaired contraction, or
both, and 2) when possible, cause divergent effects between the two cell

FIGURE 2
Individual specific predictions of physiological alterations caused by TKIs. (A) To examine TKI-induced effects on electrophysiology, we computed
triangulation of AP waveforms from the simulation output for each drug. In the diagram, the green curve, representing drug-induced changes, shows a
more triangular waveform than the black curve, representing the baselinemodel, which indicates an increase in triangulation. (B) TKI-induced contractile
dysfunction was evaluated using sarcomere length shortening simulation results. Because the drug-treated purple curve exhibits reduced
shortening compared with the black (control) curve, this change is summarized as a decrease in contraction strength. (C, D) Individual specific, top
10 rankings for log-transformed AP triangulation and contractile failure metrics. Amongst the top 10 most highly-ranked TKIs, there was higher level of
correlation between subject A and B in contractile dysfunction (Spearman’s rank correlation, ρ=0.64, p= 0.054) than AP triangulation rankings (ρ= -0.16,
p = 0.65). (E, F) Example AP, CaT, and SL shortening simulation results in the two cell lines showing examples of drug-induced AP triangulation and
contractile failure. Dashed black curves represent untreated cells, and colored lines represent predictions for, from left to right, trametinib, gefitinib,
nilotinib, and regorafenib in Cell Line A, and trastuzumab, bevacizumab, nilotinib, and pazopanib in Cell Line B.
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lines. For arrhythmia related metrics, we evaluated the time constant of
[Ca2+] decay (Decay Tau) and CaT triangulation (CaD90/CaD50). These
metrics are associated, respectively, with the reduced SERCA activity that
occurs in heart failure (Kho et al., 2012), and AP triangulation, an
established proarrhythmic index (Shah and Hondeghem, 2005). To
evaluate effects onmyocyte contraction, we examined the area under the
CaT waveform (CaT AUC), a rough approximation of the amount Ca2+

available to produce contraction, and cell shortening, defined as
sarcomere shortening in simulations and membrane movement in
experiments.

Modeling predictions and experimental measurements of Decay
Tau and cell shortening are shown in Figures 3B,C; the remaining
metrics are shown in Supplementary Figure S7. To validate the initial
impression that most predictions were validated, we quantified

prediction accuracy in two ways. First, we classified each simulation
as predicting an increase (>20%), a decrease (<20%), or no change, for
each combination of metric, drug, and cell line. Experimental recordings
were then defined as either consistent with or inconsistent with
predictions, based on whether statistically significant changes in the
same direction were produced. Combining both proarrhythmia and
contraction metrics, we observed confirmation of 75% of predictions
(12/16) in cell line A and 87.5% of predictions (14/16) in cell line B.
Second, we calculated the TKI-induced change in eachmetric, relative to
vehicle-treated control cells, in both simulations and experiments, and
observed a strong correlation between model predictions and data (R2 =
0.87, Figure 3D). Overall, the consistency of physiological recordings
with model predictions bolsters the validity and robustness of our
computational approach.

FIGURE 3
Experimental testing of transcriptomic based simulation predictions. (A) Schematic illustrating that iPSC-CMs were loaded with either fluo3 or
FluoVolt for CaT or membrane movement recordings, respectively. Metrics were extracted from fluorescence time course measurements for
comparison with simulation results. (B, C) Comparison between simulations of Decay Tau (left bar graphs) and SL shortening (right bar graphs) in the two
cell lines. Simulation results for control conditions and four drugs in each cell line are shown above experimental results under the same conditions.
Results from Cell Lines A and B are displayed in panels (B) and (C), respectively. Error bars indicate standard deviation, and asterisks indicate significantly
different from control, based on two sample, unpaired t-test (*p < 0.05, **p < 0.01 and ***p < 0.001). The number of experimental samples in each group
is provided beneath the experimental bar graphs. (D) Direct comparison of modeling predictions (abscissa) with experimental data (ordinate), with each
expressed as the logarithm of the change in drug-treated relative to vehicle-treated iPSC-CMs. Each dot represents a change in a time course metric
(Decay Tau, CaT triangulation, CaT AUC, and SL shortening) caused by changes in gene expression induced by a particular drugs. Results fromCell Lines A
and B are grouped together, and the calculated R2 of 0.87 includes 3 data points that induce extreme changes to metrics and are not visible on this scale.
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FIGURE 4
Simulations and recordings show that the response of iPSC-CMs to arrhythmogenic secondary insults is drug-specific and cell line-specific. (A)
Schematic illustrating the calculation of iPSC-CM susceptibility to secondary insults. In simulations, the degree of insult is progressively increased, and the
level at which arrhythmic dynamics such as early afterdepolarizations are seen is taken as the threshold. (B) Arrhythmic index (AI), for each drug and in
each cell line, is calculated as a weighted average of threshold values for three insults applied, with data transformations applied such that positive AI
represents increased susceptibility, and negative AI represents reduced susceptibility. (C, D) Bar graphs show the 5 drugs with the largest and smallest
values of AI, in Cell Lines A and B respectively. Note that AI was computed for all 26 drugs tested in the study; results from 16 simulations in each cell line
are not shown. (E) Schematic illustrating that APs were recorded in iPSC-CMs loaded with the fluorescent membrane potential indictor FluoVolt. (F, G)
Simulated AP traces in Cell Lines A and B, respectively, showing results in untreated cells, in cells treatedwith a TKI predicted to increase susceptibility, and
in cells treated with a TKI predicted to decrease susceptibility. Results are shown at four different levels of hypokalemia, ranging from normal (5.4 mM) to

(Continued )
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Modeling provides insights into mechanisms
underlying contractile failure

A striking finding in Figure 3 was the prediction that certain
drugs (regorafenib in Cell Line A, pazopinib in Cell Line B,
nilotinib in both cell lines) caused the virtual elimination of
cellular contraction, predictions that were confirmed in
experimental measurements of membrane movement. Because
myocyte contraction is initiated by the binding of Ca2+ to cardiac
troponin-C, which enables actin and myosin to interact,
elimination of contraction could occur through a severe
reduction in intracellular [Ca2+], or through reduced
expression of genes encoding contractile proteins (e.g.,
MYH7, ACTC1, TNNC1). Some TKIs, such as nilotinib, were
predicted to produce contractile failure through a combination
of reduced CaT AUC and downregulation of contractile genes.
In contrast, simulations predicted much smaller changes in CaT
AUC resulting from regorafinib in Cell Line A or pazopinib in
Cell Line B, and experiments failed to observe significant
changes in this metric. In these cases, contractile failure
resulted from dramatic downregulation of genes such as
MYH7 and ACTC1.

Secondary insults can potentiate TKI-
induced arrhythmogenicity

An interesting finding from the simulations was that none of
the TKIs, with the exception of trastuzumab in Cell Line B, was
predicted to induce cellular arrhythmias. However, several TKIs
were predicted to cause AP prolongation and triangulation,
both of which are associated with higher arrhythmic risk (Shah
and Hondeghem, 2005). Based on these results, we
hypothesized that some TKIs might alter cell state such that
myocytes become more susceptible to secondary insults. To test
this idea, we performed simulations in which potentially-
arrhythmogenic insults were applied to iPSC-CMs whose
physiology had been altered by TKI-induced changes in gene
expression. Specifically, we predicted the response of TKI-
treated iPSC-CMs to three arrhythmogenic perturbations: 1)
hypokalemia, i.e., a decrease in extracellular [K+]; 2) an increase
in the magnitude of L-type Ca2+ current; and 3) block of the
rapid delayed rectifier current, IKr. In each case, we
progressively increased the magnitude of the insult and
documented the level that produced arrhythmic dynamics
(Figure 4A). To synthesize results, we computed a risk score,
arrhythmogenic index (AI), for each drug in each cell line, based
on whether TKI-induced changes in gene expression made cells
more or less susceptible to simulated proarrhythmic insults (see
Materials and Methods).

Simulation results, shown in Figure 4C for Cell line A and
Figure 4D for Cell Line B, showed several interesting features.
First, TKI-induced changes in gene expression could either
increase susceptibility (left bar plots), or decrease
susceptibility and protect cells from arrhythmia (right plots).
Second, we observed only moderate correspondence between
the susceptibility rankings and the AP triangulation rankings
shown in Figure 2. Third, and most surprisingly, dramatic
differences were seen between the two cell lines in the drugs
predicted to increase (or decrease) susceptibility. For instance,
trametinib was predicted to be the most dangerous drug in Cell
Line A but one of the most protective drugs in Cell Line B.
Conversely, trastuzumab was predicted to decrease
susceptibility in Cell Line A but increase susceptibility in
Cell Line B. These simulations therefore support a “two-hit”
hypothesis that myocyte dysfunction may be produced through
a combination of TKI treatment and secondary perturbations.
Moreover, these results provide individual-specific,
experimentally-testable predictions.

Action potential and intracellular [Ca2+]
recordings validate the two-hit hypothesis
with hypokalemia as the secondary insult

To test the surprising predictions that particular TKIs could
either increase or decrease susceptibility to arrhythmogenic
insults, depending on cell line, we recorded APs and
intracellular [Ca2+] while subjecting iPSC-CMs to
hypokalemia, a condition that can lead to AP prolongation
and early afterdepolarizations (Weiss et al., 2017).
Experiments were performed with two TKIs predicted to
increase susceptibility, and two predicted to decrease
susceptibility, in each cell line. When possible, we
interrogated the individual-specific predictions by choosing
TKIs whose predictions diverged between the cell lines. The
protocol consisted of four levels of extracellular [K+] that span a
range from normal [K+] to moderate hypokalemia: 5.4 mM
(normal), 4.1 mM, 2.9 mM, and 2.5 mM. Simulation time
courses (top) and exemplar AP recordings (bottom) are
shown in Figures 4F–I, with additional results shown in
Supplementary Figures S9, S10. Experimental results were cell
line-specific and in agreement with modeling predictions. In the
example shown, trametinib produced arrhythmic dynamics at
4.1 mM [K+] in Cell Line A, consistent with the increased
susceptibility predicted by simulations, whereas normal
dynamics were observed at all levels of [K+] in Cell Line B,
consistent with the predicted protective effect.

Summary data, shown in Figure 5, consist of CaT Decay Tau,
AP triangulation, and the percentage of cells exhibiting

FIGURE 4 (Continued)
severe hypokalemia (2.5 mM). (H, I) Exemplar AP recordings in Cell Lines A and B, respectively, showing results in untreated cells, in cells treated with
a TKI predicted to increase susceptibility, and in cells treated with a TKI predicted to decrease susceptibility. Results are shown at four different levels of
hypokalemia, ranging from normal (5.4 mM) to severe hypokalemia (2.5 mM).
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arrhythmic dynamics at each level of [K+]. Consistent with
expectations, reductions in extracellular [K+] led to increases
in Decay Tau and AP triangulation in all groups. These changes,
however, were larger in cells treated with the drugs predicted to
increase susceptibility, whereas cells treated with drugs in the
protective group showed values close to vehicle-treated control
cells (Figures 5A,B). Two-way ANOVA reported significant

interaction between TKI treatment and hypokalemia,
indicating that the TKI-induced increase of Decay Tau and
AP triangulation can be augmented by hypokalemia. Figures
5C,D, plotting arrhythmia percentages from all cells tested,
confirm that trametinib and gefitinib increased susceptibility
to hypokalemia in Cell Line A, whereas trastuzumab and
bevacizumab increased susceptibility in Cell Line B. Figure 5E

FIGURE 5
Summary data indicating differential response to hypokalemia between cell lines. (A, B) Violin plots indicating the distributions of Decay Tau (top
plots), and AP triangulation (bottom plots), as a function of extracellular [K+], in Cell Lines A and B, respectively. To facilitate statistical comparisons, drug
treatments are grouped as either “toxic” drugs or “mitigative” drugs predicted to increase or decrease susceptibility, respectively. Asterisks indicate
conditions statistically different from vehicle-treated control cells at the same level of extracellular [K+], using a two sample, unpaired t-test (*p <
0.05, **p < 0.01 and ***p < 0.001). (C, D) Percentage of samples exhibiting arrhythmic dynamics, as a function of extracellular [K+], in Cell Lines A and B,
respectively. Drugs predicted to be toxic, namely, trametinib and gefitinib in Cell Line A, and trastuzumab and bevacizumab in Cell Line B, exhibited an
increase in arrhythmia percentage at all levels of extracellular [K+]. (E)Comparison of arrhythmia percentage between cell lines, as a function of [K+], under
different conditions. The numbers of cells and cover slips under each condition are provided in Supplementary Table S1.
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replots arrhythmia percentages for individual conditions to
highlight differences between cell lines. In vehicle-treated
control cells, arrhythmic dynamics were never observed at
5.4 or 4.1 mM [K+], then seen in 22%–26% of samples in
either cell line at 2.9 mM [K+], and 36%–41% of samples at
2.5 mM [K+]. For the 3 drugs that were tested in both cell
lines–trametinib, gefitinib, and trastuzumab–we observed a
markedly higher percentage of arrhythmic dynamics in one
cell line but a decrease in the other cell line, consistent with
the modeling predictions (Figures 4C,D).

Simulations reveal that drugs may increase
arrhythmia susceptibility through
downregulation of repolarizing ionic
currents

The results shown above, while demonstrating differences in
how individual drugs influence arrhythmia susceptibility between
cell lines, do not fully reveal the underlying mechanisms, a question

that can be explored through additional model simulations. To
address potential mechanisms, we simulated action potentials and
ionic currents in iPSC-CMs treated with drugs that increased
susceptibility: trametinib and gefitinib in Cell Line A, and
trastuzumab and bevacizumab in Cell Line B. At the level of
extracellular [K+] that immediately preceded arrhythmia, we
computed the integral of each ionic current during the AP and
compared this with the integrated current in untreated cells, thereby
calculating the difference in charge, or ΔQ, through each current.
Plots of ΔQ for the model’s ionic currents reveals changes in ionic
currents that are potentially responsible for increased susceptibility
to hypokalemia in the two cell lines (Figures 6A,B). For instance, in
Cell Line A both drugs produce an increase in rapid delayed rectifier
IKr and a reduction in inward current through the Na+-Ca2+

exchanger, INCX. These alterations produce positive ΔQ, which
would protect cells from arrhythmia. These changes are offset,
however, by reductions in transient outward current Ito and
inward rectifier current IK1, alterations that increase susceptibility
through negative ΔQ. Drug-induced changes to ionic currents in
Cell Line B are somewhat similar in that both toxic drugs induce

FIGURE 6
Mechanisms underlying increased arrhythmia susceptibility caused by individual drugs in the two cell lines. (A, B) Calculations of changes in total
charge, ΔQ, passing through individual ionic currents, in Cell Lines A and B, respectively. Simulations were performed at the level of extracellular [K+]
immediately before arrhythmias occurred in drug-treated cells, and the integral of each current during the action potential was computed. Bars represent
the difference in integrated current, or charge (Q), between drug-treated and untreated cells. (C, D) Summary of changes in ionic currents that
accounted for increased susceptibility in the two cell lines. Each panel shows the changes in ionic currents that act to increase arrhythmia risk in red,
contrasted with the changes that act to decrease arrhythmia risk in blue.
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negative ΔQ though IK1 and a protective positive ΔQ through IKr. In
Cell Line B, however, increased Ito is potentially protective (positive
ΔQ) whereas negative ΔQ though L-type Ca2+ current ICaL. may
contribute to increased arrhythmia susceptibility. These changes,
summarized schematically in Figure 6C, illustrate how mechanistic
models can generate quantitative hypotheses for differences in
susceptibility between drugs and between individuals, insights
that cannot generally be obtained through the analysis of
transcriptomic data alone. Simulations performed with additional
drugs, including those that are protective, and illustrations of ΔQ
calculations, are provided in Supplementary Figures S12, S13.

Discussion

Evidence supporting a new approach for
addressing TKI-induced cardiotoxicity

The mechanisms underlying cardiotoxicity in some patients
treated with TKIs remain unclear, and the elucidation of these
mechanisms is a major research focus in cardio-oncology.
Although the observed rates of adverse events are relatively low,
a literature review conducted in 2017 found that 26 out of then
30 FDA-approved TKIs list some form of serious cardiotoxic effect
in their black box warnings (Shim et al., 2017). Several issues,
however, have inhibited our understanding of underlying
cardiotoxic mechanisms. One is that animal models are only
partially predictive of adverse events observed in humans (Ewart
et al., 2014; Milani-Nejad and Janssen, 2014; Van Norman, 2019).
A second complication is that TKI-induced adverse events develop
over a time scale of weeks to months and are thought to involve
drug-induced cardiac remodeling. The generally limited time scale
of in vitro experiments, such as those performed with iPSC-CMs,
calls into question their direct clinical utility. To attempt to
overcome these limitations, we developed an integrative approach
that combines the broad coverage provided by transcriptomic
measurements in human iPSC-CMs with the mechanistic insights
gained from dynamical modeling and physiological experiments.
Our underlying premise is that 48 h drug treatments at clinically-
relevant concentrations do not cause overt toxicity, but can produce
changes in cell state that prime cells for pathophysiological
responses to additional stimuli. The results that we obtained,
through experimental tests of simulation predictions, corroborate
this “two-hit” hypothesis and support our approach to TKI-induced
cardiotoxicity as a strategy for screening and improved
understanding.

One of our surprising simulation results was that predictions were
specific to the cell lines obtained from different individuals. Whether we
examined changes in AP shape due to TKI-induced changes in gene
expression (Figure 2) or the response of iPSC-CMs to additional insults
such as hypokalemia (Figure 4), we observed pronounced differences
between cell lines in the rankings of drugs that were predicted to cause
substantial effects. These differences informed our choices of which
predictions to test in physiological experiments, allowing us to select
drugs that were predicted to cause divergent outcomes between the cell
lines. The experimental confirmation of these substantial differences
between cell lines is illustrated most clearly in Figure 5E, which shows
results from 3 drugs that increase susceptibility to hypokalemia in one

cell line while decreasing susceptibility in the other cell line. Individual
drugs could either cause upregulation of potentially protective currents,
such as Ito, or an arrhythmogenic downregulation of currents such as IK1,
thereby providingmechanistic grounding for the differences between cell
lines (Figure 6 and Supplementary Figures S12, S13). Currents that have
been shown to be influenced by certain TKIs, such as the funny current If
(Wu and Cohen, 1997), were also analyzed, but drug-induced changes
were smaller than with the currents mentioned (Supplementary Figures
S12, S13). Overall, the strong correspondence that we observed between
modeling predictions (Figures 2, 4) and experimental results (Figures 3,
5) provides confidence that changes in gene expression can be combined
with mechanistic models to produce individual-specific, experimentally-
testable predictions. At one level, the cell line-specific results confirm
what we already know intuitively; responses to drugs can be idiosyncratic
(Vogenberg et al., 2010). More broadly, however, the research suggests
how the strategy can be extended to gain insight into the small
percentage of patients who may be especially susceptible to adverse
events caused by a particular drug.

Integration of omics data with mechanistic
mathematical models

Statistical analyses of large scale Omics data on one hand, and
mechanistic mathematical models on the other hand, are often
considered the two main pillars of systems biology (Sobie et al.,
2011; Janes and Lauffenburger, 2013). Our study illustrates a
strategy to integrate these fundamentally different approaches in
a manner that allows for experimental tests and mechanistic insight.
Although it makes intuitive sense that changes in cell state captured
by an Omics assay can inform the conditions for model simulations
(Iyengar et al., 2012), the best methods for such quantitative
integration have remained unclear. We adopted a simple strategy
by assuming that changes in mRNA could be directly converted into
changes in model parameters, as previous studies have done to
examine phenomena such as treatment of colorectal cancer (Hector
et al., 2012), electrophysiology of failing ventricular myocytes
(Walmsley et al., 2013), and sex differences in arrhythmia
susceptibility (Yang et al., 2017). Our work builds on these prior
studies and takes a step forward by simulating, and then validating,
predictions of how individual cell lines respond to secondary insults.

The use of iPSC-CMs as an experimental
model for cardiotoxicity caused by cancer
therapeutics

In addition to mechanistic mathematical modeling, a second
important aspect of our study was the use of iPSC-CMs as a model
system for the study of cardiotoxicity. Despite the fact that iPSC-
CMs exhibit an “immature” phenotype compared with adult cardiac
myocytes, the human origin of these cells provides advantages
compared with animal experiments, as iPSC-CMs contain the
same processes and pathways as adult myocytes (Gintant et al.,
2019). Several recent studies have demonstrated the utility of iPSC-
CMs for elucidating mechanisms of cardiotoxicity caused by cancer
therapeutics, including anthracyclines (Holmgren et al., 2015;
Burridge et al., 2016) and more recently TKIs (Jacob et al., 2016;
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Sharma et al., 2017;Wang et al., 2019). These studies have shown the
value of the iPSC-CMmodel for allowing both Omics assays, such as
gene expression and protein expression, and physiological assays,
such as action potentials (Sharma et al., 2017), contractile force
(Jacob et al., 2016), or oxygen consumption (Wang et al., 2019).
These investigations have provided important novel insight into
potential cardiotoxic mechanisms, such as the suggestion that
insulin-induced signaling may be protective when specific
pathways are inhibited by TKIs (Sharma et al., 2017), and the
finding that downregulation of oxidative phosphorylation may
contribute to sorafenib-induced cardiotoxicity (Wang et al.,
2019). Our study improves upon this prior work by rigorously
linking the Omics to the physiology through simulations with
mechanistic models. This strategy allowed us to: 1) examine
changes in cellular behavior that resulted from drug-induced
changes in gene expression rather than from direct block of ion
channels; 2) effectively prioritize the low-throughput physiology
experiments; and 3) examine mechanisms underlying divergent
predictions between the two cell lines. An important
improvement that needs to be made in this area, however, is the
more widespread adoption of engineered cell culture systems
exhibiting a reproducible and mature phenotype, as drug
responses in these systems are more likely to mimic those seen
in adult patients. Efforts to improve maturity of the cellular system
(Charwat et al., 2022; Huebsch et al., 2022) can be combined with
computational approaches to translate drug responses across cells
with different properties (Gong and Sobie, 2018; Tveito et al., 2018;
Jaeger et al., 2019), thereby providing additional confidence in the
results.

Quality control issues in iPSC-CM
experiments and steps taken to promote
reproducibility

iPSC-CMs have generated considerable enthusiasm in recent
years as a valuable model system for examining drug-induced
pathophysiology (Sharma et al., 2017; Blinova et al., 2018; Gong
and Sobie, 2018). Experiments using iPSC-CMs, for instance, are an
integral part of the Comprehensive in vitro Proarrhythmia Assay
(CiPA) initiative, which aims to improve the testing of drugs for
potential risk of Torsades de Pointes due to ion channel block
(Fermini et al., 2016; Blinova et al., 2018). When iPSC-CMs are used
for drug screening purposes, however, it is important to have
appropriate quality control steps implemented to ensure the
reliability of the differentiation and the quality of the cells. For
this study, we differentiated iPSC-CMs in house, using well-
established procedures (Kattman et al., 2011) and a metabolic
selection step (Tohyama et al., 2013) to generate preparations
with approximately 95% cardiomyocytes. To validate purity, we
assessed each differentiation by flow cytometry for the cardiac-
specific membrane protein SIRPA (Dubois et al., 2011). During
physiological experiments, we implemented additional quality
control steps to verify that myocytes would exhibit similar
behavior across the different batches of cells generated over the
course of the study. Specifically, we performed electrophysiology
recordings only when cells met following criteria: 1) no apparent

blebbing of the cells anywhere on the coverslip; 2) cells were plated
in close proximity with total cell count of approximately
35,000–40,000; and 3) cells beat spontaneously at 37°C. These
quality control steps ensured that we obtained reproducible
results, even though multiple iPSC-CM differentiations were
performed from the same original donor iPSC clones, sometimes
several months apart. Arrhythmia susceptibility to hypokalemia, for
instance, was assessed with both CaT and AP recordings, in different
experimental series, using cells from multiple differentiations. The
remarkable concordance of these two sets of experiments
(Supplementary Figure S11) provides reassurance that the results
we obtained were not specific to individual iPSC-CM
differentiations.

Limitations and future work

Besides the issue of iPSC-CMmaturity mentioned above, several
of the study’s limitations suggest avenues that can be pursued in
future research on TKI-induced cardiotoxicity. For instance, the
expense of comprehensive mRNA sequencing forced us to test only a
single concentration of each TKI, with that concentration
determined based on estimated plasma concentrations in patients
following standard dosing (van Hasselt et al., 2020). Although the
lack of concentration-response data is a limitation at present, the
experimental and computational pipeline we outlined demonstrates
how individual drugs can be prioritized for in depth follow-up
studies. Another limitation is the fact that the model outputs are
limited to changes in electrophysiology, Ca2+ handling, and
contraction. Although this model allowed for straightforward
tests of experimental predictions, it only simulates a small part of
myocyte biology. As more information becomes available, additional
reactions can be quantitatively considered, which will allow for the
development of an integrated, multiscale mathematical model that
also simulates other processes potentially involved in drug-induced
cardiotoxicity, such as hypertrophy (Ryall et al., 2012) and apoptosis
(Shin et al., 2014). Examination of such a larger model that can
simulate cross talk between pathways would provide the opportunity
to identify targets that can potentially mitigate cardiotoxicity, which
may allow for the design of combination therapies in which a second
drug ameliorates the cardiotoxic effects of a TKI.

Finally, we should note that although the differences that were
predicted and observed between the two cell lines are intriguing, a
much more comprehensive study will be required to characterize
drug responses across a population. The strategy we have pursued
should help provide a road map for how broad coverage can be
balanced with mechanistic rigor in such an investigation.

Conclusion

In summary, we have integrated transcriptomic data with
mathematical modeling and physiological assays to elucidate
individual-specific responses to TKI-induced EC coupling
abnormalities. This study is a step forward for individualized
drug prescription that can potentially minimize the probability of
drug-induced cardiotoxicity.
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