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Over the years, many biological and synthetic agents have been explored and
tested in attempts to halt the spread of cancer and/or cure it. Currently, several
natural compounds have and are being considered in this regard. For example,
paclitaxel is a potent anticancer drug that originates from the tree Taxus brevifolia.
Paclitaxel has several derivatives, namely, docetaxel and cabazitaxel. These agents
work by disrupting microtubule assembling dynamics and inducing cell cycle
arrest at the G2/M phase of the cell cycle, ultimately triggering apoptosis. Such
features have helped to establish paclitaxel as an authoritative therapeutic
compound against neoplastic disorders. After the completion of compound
(hemi) synthesis, this drug received approval for the treatment of solid tumors
either alone or in combination with other agents. In this review, we explore the
mechanisms of action of paclitaxel and its derivatives, the different formulations
available, as well as the molecular pathways of cancer resistance, potential risks,
and other therapeutic applications. In addition, the role of paclitaxel in
hematological malignancies is explored, and potential limitations in the
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therapeutic use of paclitaxel at the clinical level are examined. Furthermore,
paclitaxel is known to cause increased antigen presentation. The
immunomodulatory potential of taxanes, alone or in combination with other
pharmacologic agents, is explored. Despite terpene-alkaloids derivatives’ anti-
mitotic potential, the impact of this class of drugs on other oncogenic
pathways, such as epithelial-to-mesenchymal transition and the epigenetic
modulation of the transcription profile of cancer cells, is also analyzed,
shedding light on potential future chemotherapeutic approaches to cancer.
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1 Introduction

The 20th century was a milestone in the history of human
healthcare, marked by a continuous improvement in human
longevity through reduced death rates from infectious diseases such
as pneumonia, tuberculosis, and influenza. However, this progress came
at the cost of an increased incidence of cancer (Jones et al., 2012). Paul
Ehrlich coined the term chemotherapy and rendered pharmacognosy
experimental. Posteriorly, the bombing of Bari harbor in World War II,
which led to the spill of sulfur mustards and caused mucositis and
granulocytopenia among survivors, allowed researchers to hypothesize
the utility of mustard compounds in the treatment of
lymphoproliferative malignancies and paved the way for the
introduction of chemotherapy into clinical practice (DeVita and Chu,
2008). The progressive burden of neoplastic disorders and discovery of
chemotherapeutic properties of natural, semi-synthetic, and repurposed
chemical compounds ushered in an era of utilization of bioactive agents
to fight lethal diseases. Paclitaxel (PTX) and its properties in neoplasms
were first analyzed in the 1960s by the U.S. National Cancer Institute.
This molecule was first obtained from the bark of Taxus brevifolia tree
and yielded promising results. However, the technical, environmental,
and economic challenges associated with the production and
distribution of this chemotherapeutic agent prompted investigation
into ways in which a more efficient production could be carried out
through a well-established semi-synthetic process. Unfortunately, to
date, combined efforts are still being carried out to develop a
bioreactor (Gallego-Jara et al., 2020). After compound hemisynthesis
was completed, the derivatives of the precursors obtained from Taxus
baccata leaves were taken to clinical trials. This ultimately led to the
approval of paclitaxel, and then some of its synthetic derivatives, either
alone or in combination with other agents against solid malignancies.
However, severe reactions from infusions were observed, resulting in the
need to develop formulations with less severe side effects that do not
require corticosteroids as a pre-medication (Desai et al., 2006a).

In this review, we explore the mechanism of action of PTX and
its derivatives, the pharmacokinetics of the drug, its different
formulations, cancer-related resistance mechanisms, and their
indications and exposure hazards. Keeping the long-time side-
effect of taxanes in mind, we analyzed the current evidence and
proposed a pathophysiological perspective that may explain such an
epidemiological correlation. Moreover, the effectiveness of taxanes
as immunomodulatory agents has also been highlighted.
Analogously, the extent to which taxanes and their derivatives
can halt the growth of tumor cells is also reviewed. The role of
taxanes has been established with the hallmarks of cancer like

reversing metastasis, overcoming immunosuppression, inducing
apoptosis, inhibiting angiogenesis, and restricting EMT.

2 Review methodology

A narrative review was performed. Electronic databases such as
Medline/PubMed, ScienceDirect, Scopus, TRIP database, and Web
of Science were verified to find both pre-clinical pharmacological/
immunological studies and clinical trials regarding Taxol
derivatives, using for searching the following MeSH terms:
“Antineoplastic Agents/chemistry,” “Antineoplastic Agents/
pharmacokinetics,” “Antineoplastic Agents/pharmacology,”
“Apoptosis/drug effects,” “Clinical Trials as Topic,” “Drug
Resistance,” “Neoplasm/physiology,” “Humans,” “Microtubules/
drug effects,” “Mitosis/drug effects,” “Neoplasms/drug therapy,”
“Taxoids/chemistry,” “Taxoids/pharmacokinetics,” “Taxoids/
pharmacology,” “Paclitaxel,” “Paclitaxel/administration and
dosage,” “Prostatic Neoplasms,” “Castration-Resistant/drug
therapy,” “Docetaxel,” and “Taxoids/therapeutic use.” This study
analyzed articles that explored the pharmacological, immunological
reprogramming, and subcellular analysis of drugs in pre-clinical
models using cell lines or animal models. It also assessed clinical
trials that addressed the efficacy of these drugs in treating
malignancies. Only studies published in English were included,
and the most significant findings were summarized in tables and
figures. The chemical formulas were validated using PubChem,
while the taxonomy of plant species was confirmed using the
World Flora Online.

3 Taxol derivatives: at a glance

Taxol derivatives promote the assembly of microtubules and
inhibit subsequent depolymerization, impairing the tubulin
dynamics that foster the mitotic spindle assembly during
interphase in mitosis (Figure 1).

3.1 Paclitaxel (PTX)

PTX was the first diterpene alkaloid isolated from the tree Taxus
brevifolia in the 1960s. Dr. Jonathan Hartwell carried out this work
at the scope of a National Cancer Institute U.S.A. (United States of
America) screening program of antitumor properties of products
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derived from the plant kingdom. Although clinical trials with the
diterpene alkaloid started in 1984, the high costs of extraction and
purification associated with the depletion of T. brevifolia trees
promoted a race toward developing a chemical semi-synthetic
process. Given its complexity, a private company took over to
attain completion (Gallego-Jara et al., 2020). It was not till the
1990s that the FDA (Food and Drug Administration) formally
approved the drug for treatment of ovarian and metastatic breast
cancer. This was followed by other neoplastic entities that benefitted
from treatment with the agent (Kampan et al., 2015). The search for
environmentally acceptable and economically profitable bioreactors
to move away from the semi-synthetic route began after the fungus
Taxomyces andreanae was identified as capable of producing PTX.
After the first discovery, other fungal agents, mostly belonging to
Ascomycetes, along with bacterial strains like Bacillus cereus,
Bacillus megaterium, Curtobacterium sp., and Sphingomonas sp.
were reported as PTX producers. Although the assembly of the
biosynthetic pathway in microbial heterologous hosts seems a
promising strategy to lower production costs and increase the
delivery of the chemotherapeutic agent, to date, no established
bioreactor is in a working condition, and conventional
production methods prevail (Flores-Bustamante et al., 2010).
Overall, paclitaxel acts as an antimitotic agent that disrupts
microtubule dynamics differently from vinca alkaloids. It
promotes the assembly of tubulin dimers, leading to microtubule
formation and stabilization. However, it subsequently inhibits their
depolymerization, disrupting the dynamics of mitotic spindle

formation and, ultimately, the cell cycle interphase. Exposed cells
are blocked in the G2/M phase of the cell cycle, eventually
undergoing apoptosis (Bates and Eastman, 2015) (Figure 2).

At low concentrations, PTX was shown to stimulate the priming
of dendritic cells through TLR (toll-like-receptors) binding,
ultimately fostering their maturation and function both in
in vitro and in vivo studies. This eventually led to increased
antigen presentation (Javeed et al., 2009). On the other hand,
regulatory cells are responsible for maintaining immunological
self-tolerance and are tendentiously increased in cancer patients,
leading to a defective anti-tumor immunological response. PTX,
inducing the expression of CD95 (cell-death receptor Fas), was
shown to decrease the number of circulating regulatory T-cells,
Tregs, at proportionally higher levels than in other lymphocyte
populations (Javeed et al., 2009). Given the not stochastic and
context-dependent role of PTX in immune cell-effector
populations, drug repurposing in cancer as an
immunotherapeutic adjuvant may be hypothesized. To this date,
only some PTX chemo-resistance mechanisms have been brought to
light. Upregulation of cytochrome P450 enzymes, namely,
CYPC8 and CYP3A4 (common in neoplastic tissues), is an
established resistance mechanism to drug action. Overexpression
of P-glycoprotein is the major cause of diminished intracellular
concentration of PTX, together with increased expression of the
ABC (ATP-binding cassette) drug efflux pump, which also leads to
increased extrusion of drug from neoplastic cells. ß-tubulin isoform
preponderance may also render resistance to taxane therapy. For

FIGURE 1
Illustrative scheme of the anticancer mechanisms of taxanes. They act as an antimitotic agent that promotes the assembly of tubulin dimers but
inhibits the subsequent depolymerization process, herein stabilizing the microtubules (acting differently from Vinca alkaloids).
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instance, ßIII-tubulin dimers exhibit a relatively low affinity to PTX
and express elevated microtubular dynamics in the extreme ends of
the mitotic fuse. They demand a higher ratio of tubulin to PTX-
bound so that the cell cycle can be disrupted. In addition to such
classical routes to cytotoxicity evasion, several cell-signaling
disrupting non-coding RNAs and the overexpressed HIF-1α
(hypoxia-inducible factor 1α) in neoplastic tissues have been
associated with chemo-resistance. In the last case, HIF-1α
signaling leads to a decreased pro-apoptotic mechanism and, in
some malignancies, to phenotypic trans-differentiation. This is
carried out through epithelial-to-mesenchymal transition (EMT)
which is partially dependent on the expression of tumor growth
factor β (TGF-β) and other cytokines (Maloney et al., 2020).

3.2 Docetaxel (DTX)

DTX was discovered by the French scientist Pierre Potier, who
coined the semi-synthetic pathway of PTX synthesis using 10-DAB
(10-deacetylbaccatin). In the abovementioned process, an
intermediate, DTX, was found. Docetaxel binds ß-tubulin dimers
in a 1:1 stoichiometric ratio, exhibiting a stronger dynamic
instability using its inhibitory effect in tubulin depolymerization.
Moreover, the drug exhibits better solubility and bioavailability (Xue
et al., 2020). Docetaxel shows significant activity against prostate
tumors. It has anti-neoplastic activity as it inhibits microtubular
depolymerization and attenuates the expression of BCL-2 (B cell
lymphoma 2 protein), and BCL-x genes. As a result, the cell cycle is
arrested at G2/M phase, triggering a cascade of reactions that induce
apoptotic cell death (Pienta, 2001). Beyond interfering with
microtubular dynamics, docetaxel also induces cytoskeletal
changes in malignant cells, overall contributing to a decreased

proliferation, invasion and migration of cancer. Docetaxel-based
chemotherapy is given to patients with gastric cancer. When
combined with cisplatin, trials have reported a response rate of
55%, with a median overall survival of 9 months (Roth and Ajani,
2003). Docetaxel is usually given intravenously. The dosage and
frequency are determined as per the type and size of the tumor. It
can be administered alone or given in combination with other drugs,
being of regard that docetaxel has increased side effects in patients
whose liver function is abnormal (Fulton and Spencer, 1996).

3.3 Cabazitaxel (CTX)

CTX displays a poor affinity for ATP-dependent drug efflux
pump P-glycoprotein (multidrug-resistant protein), herein
displaying an advantage toward other taxanes. The drug displays
bioactivity both in docetaxel-sensitive and -resistant cancers
(preclinical studies and clinical trials), being approved by the
FDA in 2010 in combination with prednisone for treatment of
patients with hormone-refractory metastatic prostate cancer who
have previously undergone treatment with docetaxel-containing
regimens (Galsky et al., 2010). Just like other taxanes, cabazitaxel
also works by binding to the microtubules. This prevents cellular
mitosis and stabilizes the tumor cells. As a result, the cells do not
divide. Cabazitaxel works by inhibiting androgen receptors by
binding to the microtubules and microtubule-associated motor
protein dynein. As a consequence, androgen receptor nuclear
translocation is prevented. The formula for cabazitaxel is
C45H57NO14. It is the second-generation derivative of taxanes
following docetaxel. It is synthesized from 10-deacetyl baccatin
III into a single diastereomer which is found in many Taxus
species. Cabazitaxel depicts considerable anti-tumor activity in

FIGURE 2
PTX influence on cell cycle regulation and immune responses. PTX hinders cell cycle progression at the G2 toM phase and from the G0 to G1 phase.
It also initiates an immunogenic response toward tumor cells. Abbreviations: TNF, tumor necrosis factor; IL, interleukin; NOS, nitric oxide synthase; COX2,
cyclooxygenase-2.
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castration-resistant prostate cancer cell lines along with mouse
models. Due to the over-expression of gp-1, cabazitaxel retains
cytotoxicity in docetaxel-resistant cell lines. Compared to the
other taxanes, cabazitaxel is soluble in water and able to
penetrate through the blood–brain barrier, herein achieving the
central nervous system (Galsky et al., 2010). In the clinical setting,
docetaxel and prednisone are approved for the treatment of
metastatic castration-resistant prostate cancer (mCRPC) (Tsao
et al., 2014a).

4 Medical properties of taxanes

Taxol has properties that inhibit or halt tumor growth,
including both solid and haematologic malignancies. PTX
injections are administered to treat advanced stages of breast,
ovary, non-small cell lung cancer, and Kaposi’s sarcoma. High
doses of PTX can cause mitotic arrest at the G2/M phase, while
low dosage induces apoptosis at the resting stage G0.
Programmed cell death can also occur at the G1/S phase
through the activation of Raf-1 kinase or p21/p53. The
pathway is determined through the concentration of the dose
and the neoplastic tissue intrinsic phenotype. On the other hand,
PTX is also a potent drug when it comes to treating other diseases
than cancer as well, accordingly to preclinical models. A low dose
of PTX can treat non-cancer diseases like renal and hepatic
fibrosis, skin disorders, inflammatory diseases, and coronary
artery restenosis, mainly through modulation of TGF-β
signaling pathway (Derynck and Zhang, 2003). A low dose of
PTX (0.3 mg/kg) twice weekly is effective in reducing
tubulointerstitial fibrosis in mouse models. In unilateral
obstruction models, PTX proved to have a reno-protective role.
Symptoms of pulmonary fibrosis were also reduced in rats
administered with PTX (0.6 mg/kg/d) (Tsukada et al., 2013).
Traumatic impacts can induce axonal damage in the central
nervous system and lead to disabilities. In a study conducted
by Sengottuvel and Fischer (2011), it was demonstrated that a low
dosage of PTX can cause regeneration of neurons as it causes the
stabilization of microtubules in the abovementioned cells. It was
also observed that the rate of infiltrating macrophages was
reduced, and glial scar formation was delayed. Overall, a dose
of 256 ng/day promoted axons re-growth in rodents suffering
from spinal injury (Hellal et al., 2011). Recent studies have also
shown that the use of PTX is able to reduce vascular restenosis at a
dose of 175 mg/mm2 (Tepe et al., 2007).

4.1 Taxanes reversing metastasis

PTX was first tested for its antitumor efficacy in lung cancer. A
phase II trial was designed for non-small-cell lung cancer and was
promoted to compare the efficacy of Taxol, merbarone, and
piroxantrone in patients with stage IV metastasis. A total of
25 patients were enrolled in the Taxol group and 47 enrolled in
the groups allocated to different drugs. In the Taxol group, patients
underwent PTX infusion of 250 mg/m2 every 3 weeks. After 1 year,
the survival rate was 41.7%, 21.6%, and 22.6% in patients treated
with Taxol, merbarone, or piroxantrone, respectively, while the

median survival times were 24.1, 19.9, and 29.3 weeks,
respectively (Chang et al., 1993). Currently, PTX remains a
prominent agent targeting metastasized squamous non-small-cell
lung cancer, with the combination of nanoparticle albumin-bound
[nab] PTX, a platinum agent, and the PD-1 inhibitor
pembrolizumab regimen supplanting the previous frontline
monotherapeutic approach consisting of either platinum-based
chemotherapy or pembrolizumab. This lead to an increased
response rate, free survival, and survival rate (Paz-Ares et al.,
2018). In patients without metastases but locally advanced non-
small-cell lung cancer (T2bN0, with a tumoral diameter higher than
4 cm), adjuvant chemotherapy with carboplatin and PTX may also
be considered (Remon et al., 2021).

DTX, together with trastuzumab, was tested in a study by
Baselga et al. (2012) which included 808 patients with HER2-
positive metastatic breast cancer. Some patients also received
treatment with docetaxel, trastuzumab, and pertuzumab. The
results revealed a progression-free survival to be 12.4 months in
the control group (docetaxel and transtuzumab with placebo) per
comparison to 18.5 months in the triple therapeutic aproach
group. Interim analysis revealed the overall survival trend to be
favorable for pertuzumab plus trastuzumab plus docetaxel. This
combination, as compared to the placebo, prolonged the
progression-free survival significantly (Baselga et al., 2012). For
inhibiting breast cancer metastasis, a docetaxel-loaded shrapnel
nanodelivery system coupled with a matrix metalloproteinases-
sensitive copolymer was properly developed. The drug was
loaded on the liposomes and a structure of 113.3 ± 2.7 nm was
created. It was observed that the drug was released simultaneously in
the tumor micro-environment along with MMPs and reductive
glutathione. This formulation significantly increased drug distribution
in mice, with a higher effectivity and apoptosis induction in those ones
having pulmonary metastasis (Xu et al., 2015).

CTX, as an anticancer drug, was loaded to form polymeric
micelles, and their anti-metastatic potential was assessed both in
vivo and in vitro. The average diameter of the micelle was 50.13 ±
11.96 nm, and the introduction of this drug had little effect on the
viability of 4T1 cells, but it did have a strong effect on cell migration.
The drug was posteriorly injected intravenously, and it resulted in
71.6% of tumor inhibition as well as 93.5% reduction in the lung
metastasis of breast cancer in orthotopic rodent models (Zhong
et al., 2017).

4.2 Taxanes overcoming
immunosuppression

The first trial addressing PTXmonotherapy in Kaposi´s sarcoma
patients with HIV infection consisted of the infusion of 135 mg/m2

of PTX over 3 h every 3 weeks, which increased at each infusion of
around 20 mg/m2 upon tolerability (granulocyte counts must
remain above 1,000 leucocytes/µL). In that trial, patients with
severe immunosuppression were included (mean CD4+ count at
diagnosis of 16/µL), both with and without antiretroviral therapy.
Around 65% of the patients achieved partial response (13 out of
20 enrolled) after an average of six cycles. Among responders, the
median Kaplan–Meier progression-free survival rounded 34 weeks,
and the median time to progression after discontinuation of
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chemotherapy was 10 weeks (SavilleLietzau et al., 1995). In
disseminated or locally aggressive Kaposi’s sarcoma, PTX is still
used in combination with a liposomal formulation of anthracycline
as a chemotherapeutic regimen (Lebbe et al., 2019).

Adoptive cell therapy (ACT) is a promising strategy for treating
cancer. However, this immunotherapeutic approach often leads to
the accumulation of myeloid-derived suppressor cells (MDSCs) in
the tumor microenvironment, which can counteract the desired
immunogenic response. To overcome the immunosuppressive effect
of MDSCs in ACT, docetaxel was used in a murine colon and breast
cancer model to downregulate the recruitment and overall increase
of MDSCs in the neoplastic microenvironment, thus boosting the
effects of ACT mediated by T cells (Hu et al., 2020).

CTX is a second-generation semisynthetic taxane that is used to
bypass the resistance induced by docetaxel and paclitaxel. The drug
is administered by solubilizing it in polysorbate and ethanol.
Cabazitaxel has also been assembled in nanoparticles and
delivered in the form of a chemo-immunotherapeutic delivery
system. The nanosystem works best in suppression of the growth
of tumors and by remodeling the sensitivity of cancer cells toward
chemotherapeutic drugs. All in all, the use of cabazitaxel is a good
strategy for chemo-immunotherapy against solid prostate cancer
tumors (Shi X. et al., 2022). Moreover, cabazitaxel is also known to
promotes an inflammatory tumor microenvironment by inducing
the activation of TLR3 in murine models (Deveci Ozkan et al., 2022).

4.3 Taxanes and induction of apoptosis

PTX stimulates the apoptotic modulating genes to promote
programmed cell death of tumor cells. This is also interlinked
with the transcription of genes that cause inflammation, DNA-
damage response proteins, and cytokines that play a role in
cellular proliferation. The rate of apoptosis of tumor cells is
dependent on the time of exposure as well as the concentration
of the drug. For instance, a concentration of 10 nM directly
induces cell death through S phase induction without going
through arresting at the mitotic stage, accordingly to in vitro
assays (Chang et al., 1993).

The ability of DTX and vinorelbine to induce apoptosis of
human prostate cancer cells was examined initially in two
different LNCaP cell lines, C-33 and C-81. Vinorelbine and
docetaxel have different binding sites on microtubules, which
then trigger activation of distinct proapoptotic pathways
(Zelivianski et al., 2003). Marked cell apoptosis and G2/M phase
arrest were observed after treatment with docetaxel. High-dose
(0.1 μM) docetaxel- and paclitaxel-treated cells resulted in a G2/
M arrest, followed by generation of polyploidy or apoptosis;
however, low-dose (0.01 μM) treatment induced apoptosis
without G2/M arrest. These results suggest that, following the
activation of NF-κB by docetaxel, apoptosis is elicited through a
mitochondria-dependent pathway (Geng et al., 2003).

CTX is a taxane drug that can induce apoptosis or autophagy by
inhibiting the phosphorylation of PI3K/Akt/mTOR and is effective
in some drug-resistant tumors. It was demonstrated that cabazitaxel
is highly toxic to hepatocellular carcinoma cell lines in a time- and
dose-dependent manner by inducing G2/M phase arrest and
apoptosis in vitro. Mechanistically, cabazitaxel induced

hepatocellular carcinoma cells G2/M phase arrest via the
Cdc25C/Cdc2/cyclin B1 pathway and apoptosis through the Bcl2/
PARP pathway, consistent with its effect on other cancer cells (Chen
et al., 2018).

4.4 Taxanes and inhibition of angiogenesis

PTX is known for exhibiting anti-angiogenic effects. At a low
concentration of about 6 mg/Kg (intra-perithoneal), a considerable
decrease in the vascular endothelial growth factor (VEGF) was
observed in mouse models (Klauber et al., 1997).

Gastric cancer cell lines (BGC-823) were exposed to metronomic
concentrations of DTX for 144 h. The abovementioned drug caused a
reduction in the secretion of VEGF by BGC-823, which means that it
could restrict the angiogenic potential of cancer (Wu et al., 2011).

In cellular models of glioma, cabazitaxel disrupted filamentous
actin cytoskeleton dynamics and abrogated tumor-induced
angiogenesis. These findings raise awareness not only about the
cytotoxic effects of the drug but also about its potential to contain the
spreading of cancer by reducing invasion andmigration (Ghoochani
et al., 2016).

4.5 Taxanes, molecular cascades, and
targeted signaling pathways

Overall, paclitaxel inhibits the activation of Akt (downstream
effector of the PI3K pathway), thus reducing the phosphorylation of
mTOR and decreasing cell proliferation at the expense of increased
cell death. The drug also activates C-Jun N-terminal kinase (JNK),
ultimately boosting cell death (Rakovitch et al., 1999).

DTX can affect many signaling pathways and molecular
pathways in cancer, which are involved in survival and growth of
cancer. The mechanism of action of docetaxel involves the
disruption of microtubule dynamics and interfering with cell
division. This leads to apoptosis and cell cycle arrest. Docetaxel
mainly targets molecular pathways like Akt/mTOR and NF-kB
(Chen et al., 2014).

CTX downstream signaling is associated with the induction of
apoptosis, activation of cell cycle checkpoints, and inhibition of
signaling pathways like AKt/mTOR. It is also able to reverse EMT in
the treatment of prostate cancer (Huo et al., 2016).

4.6 Taxanes and epigenetic changes

The epigenetic regulation of the genome can modulate the
transcriptional profile of cancer cells, which is highly dependent
on DNA methylation, histone modifications, and non-coding RNA
molecules. This phenomenon, by changing the expression of tumor
suppressor or oncogenic genes and their promoters and/or
enhancers, is involved in cancer initiation, progression, and even
chemoresistance. In experimental models of breast cancer, exposure
of MCF-7 cells to paclitaxel in a low-concentration gradient
induction method (aimed at promoting chemoresistance) showed
an overall increase in DNAmethylation pattern (Shi et al., 2020). To
overcome this chemoresistance, the co-exposure of breast cancer cell
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lines to taxanes and phenethyl isothiocyanate (an epigenetic agent)
was able to restore chemosensitivity (Liu et al., 2013).

Similarly, pre-treatment of DU145 prostate cancer cell lines,
which were resistant to docetaxel and cabazitaxel, with 5-azacytidine
(a hypomethylating agent) induced chemosensitivity to cabazitaxel
(Ramachandran et al., 2016). Overall, evidence suggests that taxanes
may impact on epigenetic regulation in cancer cells. The
combination of taxanes with epigenetic modifier agents may,
soon, overcome chemoresistance; and clinical trials in this regard
are needed.

4.7 Taxanes and their role in EMT

The epithelial-to-mesenchymal transition (EMT) is a biological
process in which epithelial cells lose their polarity and adhesion
properties, resulting in the downregulation of epithelial markers and
the upregulation of mesenchymal ones. Although EMT is highly
implicated in embryonic development, tissue differentiation, and
wound healing, it also occurs in neoplastic tissues. EMT frequently
depends on the TGF-β signaling pathway and contributes to the
increased invasiveness and metastasis of cancer cells (Dongre and
Weinberg, 2019).

Relapse is an important issue faced during the treatment of breast
cancer patients. Blocking EMT has been reported to suppress PTX-
induced cancer stem cell (CSC) properties in cancer cell lines. Indeed,
blocking TGF-β signaling reduces PTX-induced EMT and CSC-like
characteristics in experimental in vitro assays of breast cancer (Park et al.,
2015). Overtime treatment of neoplastic cells with sublethal doses of
taxanes, beyond resistance, may lead to EMT. The exposure of colorectal
cancer cell lines to sublethal doses of paclitaxel fostered an epithelial-to-
mesenchymal transition, which was antagonized by all-trans retinoic
acid (ATRA) co-treatment. ATRA was able to reduce EMT by
upregulating gap junctions in cancer cells, while simultaneously
downregulating NF-κB (Shi et al., 2019).

Clinical trials are warranted to adjust the dosage of taxane to
patients’ pharmacokinetic profiles. Exploring chemoresistance and
metastization potential mitigation strategies with combinatorial
approaches with other drugs (such as ATRA) may also improve
outcomes in the clinical setting.

Table 1 summarizes the most representative data of taxane
efficacy in cancer.

5 Treatment regimens of taxanes: Data
from clinical trials

Given its incidence and social awareness, breast cancer stayed on
the frontline of neoplasms in which taxanes’ bioproperties were
more prematurely and intensively assessed. In an early trial, a
population with equally distributed pre-menopausal and post-
menopausal status only including pre-treatment cases
(chemotherapy with or without radiotherapy and/or
hormonotherapy) with metastatic disease (skin 36%, lymph
nodes 34%, bone 42%, and visceral 97%) underwent PTX
135 mg/m2 versus 175 mg/m2 infusion over 3 h every 3 weeks.
Histologically, 28% were negative for estrogen and progesterone
receptors, while 38% were positive. The overall response rate was

27%, with 27 partial responses and three complete responses. Drug-
induced peripheral neuropathy presented a dose-dependent onset,
affecting 61% of patients in the higher-dose group and 34% of those
in the lower-dose group (Spielmann, 1994). Considering the
promising results of the drug, duplets of PTX with doxorubicin
were started in an attempt to achieve better clinical outcomes.
Between 1993 and 1995, on behalf of the Eastern Cooperative
Oncology Group, patients with advanced breast adenocarcinoma
(metastasized or locally advanced), who had undergone prior
chemotherapeutic regimens (containing neither taxanes nor
doxorubicin) in a time frame not inferior to at least 6 months,
were enrolled in a trial comparing PTX (175 mg/m2/24h),
doxorubicin (60 mg/m2), or a combined regimen (PTX 150 mg/
m2/24h, doxorubicin 50 mg/m2, and prophylactic granulocyte-
colony stimulating factor) with infusions every 3 weeks. Patients
were randomized, and the arms were matched for race, estrogen
receptor status, performance status, regimens, and timeframe of the
appliance. Once progression occurred in single-agent groups,
patients were crossed over. Overall, results showed that the
combinatory regimen versus sequential single-agent treatment
improved the overall response rate (47% versus 36% and 34% for
patients in doxorubicin and PTX, respectively) and increased time to
treatment failure (median time of 8 months versus 5.8 and 6 months
for patients in doxorubicin and PTX, respectively), although not
significantly affecting the overall survival and quality of life of
patients (Sledge et al., 2003). To date, taxanes remain an efficient
strategy in the chemotherapeutic approach to metastatic breast
cancer (MBC). An early phase II trial in MBC patients who were
positive for human epidermal growth factor 2 (HER-2) and naïve to
chemotherapeutic approaches demonstrated the superiority of the
combinatorial trastuzumab and docetaxel regimen. The study
showed an increase in overall survival by more than 8 months
(31.2 versus 22.7 months for the combinatorial regimen and
docetaxel alone, respectively) and time to disease progression
(11.7 versus 5.7 months for the combinatorial regimen and
docetaxel alone, respectively) (Marty et al., 2005). In patients
with HER-2 positive MBC, the first-line therapeutic approach
typically involves a triplet combination of pertuzumab, docetaxel,
and trastuzumab. In the phase III CLEOPATRA trial, this triplet
combination increased median progression-free survival by more
than 15 months and progression-free survival by more than
6 months compared to docetaxel and trastuzumab alone. Overall,
the median OS reached 56.5 months in the triplet group compared
to an average of 49.3 months (Swain et al., 2015). In metastasized
triple-negative breast cancer (mTNBC), tumors lack estrogen
receptors, progesterone receptors, and amplification of HER-2,
and the addition of immune-checkpoint inhibitors (either alone
or combined with taxanes) is recomendend in patients where more
than 1% of neoplastic cells express PD-L1 (assessed by
immunohistochemistry) or when there is no overexpression of
PD-L1 and gBRCAm-wild-type (Gennari et al., 2021). Herein, a
phase III trial included patients with irresectable mTNBC, who were
randomized to nab-PTX (at 100 mg/m2 at days 1, 8, and 15 of each
28-day cycle) with or without atezolizumab (every 2 weeks) till
progression or intolerance, and performed a hierarchical analysis
in the intention to treat population and in the PD-L1 positive
population. Globally, atezolizumab plus nab-PTX increased
progression-free survival and survival rate in the ITT group
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(although, in the former case, it was not in a statistically significant
pattern). In patients whose cells expressed PD-L1 at a higher rate
than 1%, the combinatorial regimen increased OS significantly
(25 versus 15.1 months).

Besides the paradox of the chemotherapeutic approach to
advanced breast cancer, taxanes are also approved in the
adjuvant approach to the early-stage disease. A clinical trial
demonstrated that in the early stages right after surgery (up to
T2-T3, N0-N1, and M0), addition of PTX to doxorubicin, followed by
administration of cyclophosphamide, methotrexate, and
fluorouracil (CMF), significantly improved the relapse-free
survival compared with doxorubicin standalone followed by
CMF. At 7 years of follow-up, the combination of PTX and
anthracycline yielded a 76% vs. 69% of relapse-free survival rate
and 85% vs. 82% of overall survival in the combinatorial versus
anthracycline-based regimens (Gianni et al., 2009). Moreover, PTX
is also approved as an adjuvant chemotherapeutic agent in early-
stage HER2-positive breast cancers in combination with
trastuzumab (Tolaney et al., 2015) or the adjuvant approach to
non-invasive and resectable triple-negative breast cancer in
combination with platinum agents (Yu et al., 2020).

Pivotal trials of PTX in ovarian cancer addressed its role as a
single agent in heavily pre-treated patients with refractory disease
when administered in a dose of 135 mg/m2 every 3 weeks upon
intolerance or progression. Among 68 enrolled patients, 15%

showed partial response (whose duration ranged from 8 to more
than 23 months), and 40% of patients presented a stable disease
(with a median duration of response of 6.4 months) (Uziely et al.,
1994). The current European orientations still advocate that in
patients with granulosa cell tumor (at least stage IC2), after
debulking, adjuvant chemotherapy is recommended with
bleomycin, etoposide, and cisplatin (BEP) or with carboplatin
and PTX. In the same way, in Sertoli–Leydig cell tumors (at least
stage IB or IA if the neoplasm is poorly differentiated), after surgery/
debulking, adjuvant chemotherapy with BEP or carboplatin and
PTX is also recommended (Ray-Coquard et al., 2018).

The search for the role of Taxol derivatives in hematological
malignancies has also been initiated, mainly focusing on relapsed or
refractory non-Hodgkin lymphoma. In early trials, as a single
chemotherapeutic agent, PTX achieved modest overall response
rates, that ranged from 15% to 23% (Casasnovas et al., 2000)
(Kahl et al., 2005), herein being disregarded due to classical
chemotherapeutic regimens that target these malignancies and
display better response rates and outcomes. In addition to the
initial results, an in vitro preclinical work was conducted using a
cell line derived from a patient with diffuse large B cell lymphoma
who was resistant to doxorubicin. Results showed promising activity
of PTX and docetaxel in the setting of anthracycline resistance
acquisition in this lymphoproliferative disorder (Wu et al., 2014)
(Table 2).

TABLE 1 Approaching the role of taxanes in cancer pathophysiology.

Type of
taxane

Immunomodulation Apoptosis
induction

Effects on
angiogenesis

Targeted
molecular
cascades

Epigenetic
changes

Effects
on EMT

Ref

PTX Stimulates the priming of
dendritic cells;
Activates macrophages;
Induced expression of CD95;
Decreases T regulatory cells

↓VEGF p38 mitogen-
activated protein

↑Raf-1 ↓TGF-β J. Remon
et al.
(2021)

↑DNA damage

JNK

↑p21

Xu et al.
(2015)

↑inflammatory cytokines

TLR-4

↑p53
↓ALK5

Zhong
et al.
(2017)

↑cell cycle arrest

DTX Increases the number of
tumor-infiltrating T cells in
neoplastic tissues;
Enhances interferon signaling

↑cell cycle arrest in G2/M ↓TSP-1/VEGF Disruption of
microtubular
dynamics

↑epithelial
markers

C. Lebbe
et al
(2019)

Tepe et al.
(2007)

↓NF-κB

AKT/mTOR
NF-kB

↑genes involved in
apoptosis

↓mesenchymal
markers

Chang
et al.
(1993)

Ma Z. et al.
(2022)

CTX Promotes an inflammatory
tumor microenvironment by
inducing the activation of
TLR3 in mCRPC

↑autophagy ↓PAI ↓Maspin
↓TSP1

AKt/mTOR
Disruption of
microtubule
dynamics

In vitro assays with
DU145 cell line: pre-
exposure to 5-AZA
was able to restore
chemosensitivity

Reversal of
cancer cell
migration

J. Remon
et al.
(2021)
Ozkan
et al.
(2022)

↓PI3K/Akt/mTOR

Phosphorylation

↑G2/M phase arrest

↓Cdc25C/Cdc2/cyclin B1

↓ BCL-2/↑ c-PARP

Abbreviations and symbols: ↑stimulation; ↓ inhibition; epithelial-to-mesenchymal transition (EMT); vascular endothelial growth (VEGF), thrombospondin-1/vascular endothelial growth

factor; Jun N-terminal kinase (JNK); Raf-1, proto-oncogene, serine/threonine kinase (Raf-1); transforming growth factor-β (TGF-β); deoxyribonucleic Acid (DNA); activin receptor-like kinase
5 (ALK5); phosphatidylinositol-3-kinase (PI3K)/Akt and the mammalian target of rapamycin (mTOR); thrombospondin 1 (TSP1); toll-like receptor 4 (TLR4).
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The National Cancer Institute of Canada Trials Group (NCIC-
CTG) carried out a study regarding the toxicity as well as the efficacy
of the DTX drug with metastatic breast cancer (MBC). A total of 51
patients were enrolled in the study. The docetaxel was administered
each 3 weeks at a dose of 100 mg/m2 or 75 mg/m2. Almost 60% of
patients developed hypersensitivity reactions, with the
administration of H1 and H2 blockers preventing them. The
response rate observed at 75 mg/m2 was 40%. However, the
response rate was 63% for patients receiving the dose of 100 mg/
m2 (Trudeau et al., 1996). Analogously, thirty seven patients with
the diagnosis of gastric carcinoma and a median age of 59 years were
included in a phase II clinical trial with DTX. The dose given to them
was 100 mg/m2 each 3 weeks. A total of 8 patients (in 33 evaluable)
experienced partial remission for a period of about 7.6 months. On
the other hand, 11 patients had their disease stabilized with this
approach. This concludes that docetaxel is an active agent in
advanced gastric cancer (Sulkes et al., 1994).

CTX was used for treating various solid tumors (Tsao et al.,
2014b). Concerning the case of metastatic castration-resistant
prostate cancer, a dose of cabazitaxel of 10–25 mg/m2 allowed the
achieving of a median survival of 15.1 months (Bahl et al., 2013).

6 Pharmacokinetics, limitations, and
strategies to increase the bioavailability
and efficacy of taxanes

6.1 Pharmacokinetics of taxanes

In humans, PTX exhibits pharmacokinetics that are non-linear. This
means that changes in dosage result in disproportionate alterations in
both the peak paclitaxel concentrations in plasma and the areas under
the curve when compared to the time profile. Many pharmacokinetics
models do not succeed in truly describing the disposition of paclitaxel in
the body of human beings. Although the safety profile of the drug is

generally good, in cases of neutropenia, the concentration of paclitaxel in
plasma frequently exceeds the threshold values, for example. Scientists
and researchers are still making efforts to define the disposition of the
paclitaxel drug along with its therapeutic efficacy (Kearns et al., 1995).
The bioavailability of paclitaxel has been enhanced by coupling it with
P-glycoprotein inhibitor KR30031. Analogously, the administration of
paclitaxel with ketoconazole increased the bioavailability of the drug by
about 1.60–1.7 fold per comparison with the controls (Woo et al., 2003).

CTX displays triphasic kinetics, with each phase having a
distinct half-life. Although it has a good safety profile, certain
health-related issues have been reported over time, including a
high frequency of hematologic toxicity and infectious diseases.
Additionally, some gastrointestinal issues such as vomiting,
nausea, diarrhea, and constipation have been reported (Tsao
et al., 2014b).

DTX exhibits low bioavailability, which is mainly attributed to
its affinity for binding to the P-glycoprotein and its metabolism by
cytochrome P450 (CYP3A4) in the liver. Experimental works
showed that coupling docetaxel with cyclosporine (P-glycoprotein
inhibitor and CYP3A4 substrate) increased docetaxel bioavailability
by 90% (Malingré et al., 2001). The pharmacokinetics of docetaxel
indicate that the plasma-concentration curve increases
proportionally with the dose. Additionally, it should be noted
that the clearance of docetaxel becomes more challenging with
increasing age. This is why older patients should receive a
reduced dosage of the drug (Clarke and Rivory, 1999).

6.2 Strategies to increase bioavailability of
taxanes

6.2.1 Nanoformulations
Paclitaxel is administered intravenously and has low water

solubility. This explained why the first commercial formulation
included a vehicle of non-ionic surfactant (polyoxyethylated

TABLE 2 Role of taxanes in the therapeutics of different cancers.

Tested
taxane

Type of cancer Dose Patients enrolled Outcomes

PTX Lung cancer 250 mg/m2 every
3 weeks

25 patients enrolled in the paclitaxel group and
47 in groups with different drugs (merbarone and
piroxantrone)

After 1 year, the survival rate was 41.7%, 21.6%, and
22.6%, respectivelyChang et al.

(1993)

PTX
Monotherapy

Kaposi´s sarcoma in
patients with HIV

135 mg/m2 of PTX
over 3 h every
3 weeks

13 out of 20 enrolled 65% of the patients achieved partial response after an
average of six cycles

Saville et al.
(1995)

Docetaxel Metastatic breast
cancer

100 mg/m2 versus 51 patients enrolled The response rate registered was of 40% for
75 mg/m2 versus 63% for the 100 mg/m2 dosing
regimen.

ME Trudeau et al.
(1996)

75 mg/m2 every
3 weeks

Docetaxel Advanced gastric
carcinoma

100 mg/m2 of
docetaxel once every
3 weeks

37 patients with a median age of 59 years Eight of the 33 evaluable patients (24%) achieved a
partial remission. Eleven patients achieved stable
disease

A Sulkes et al.
(1994)

Cabazitaxel mRCPC 25 mg/m2 378 enrolled in cabazitaxel group and 377 in the
mitoxantrone group

For a median follow-up higher than 2 years, the odds
ratio of survival for the cabazitaxel treated group was
of 2.11 (CI 95% 1.33–3.33).

Bahl et al. (2013)
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castor oil—Cremophor EL). Although this increased the
bioavailability of the drug, it did it at the expense of side effects
like hypersensitivity reactions, increased erythrocyte aggregation,
and peripheral neuropathy (Gelderblom et al., 2001) (Figure 3).
Nanotechnological PTX vehicles have emerged with the dominance
of nanoparticle albumin-bound-(nab-) PTX. In addition to
increasing solubility and decreasing adverse reactions, this
albumin nanoparticle activates Gp60 albumin-specific receptors
on endothelial cells, leading to increased endothelial binding,
transcytosis, and increased drug concentration in neoplastic
tissues (Desai et al., 2006b). On the other hand, the low-
hypersensitivity reactions with nab-PTX infusion in comparison
with diluted polyoxyethylated castor oil PTX excluded the need for
corticosteroid pre-medication and/or treatment, a fact that prunes
the nab-PTX as a more attractive agent to combine with immune-
modulators, as is the case of the PD-1 inhibitors in lung or breast
cancer. Liposome-entrapped PTX (LEP-ETU), when compared with
PTX formulation with polyethoxylated castor oil, displayed a similar
pharmacokinetic profile, but it was associated with less toxicity and
an overall similar efficacy. Liposomal entrapment technologies allow
electrically charged lipids to interact with a drug (with an opposite
charge), creating a carrying formulation. Generally, the benefits in
terms of reduced adverse events along with the administration of the
drug, better bioavailability and tolerability allow the administration
of higher cumulative doses of entrapped PTX. As (nab-) PTX, LEP-
ETU does not generally require corticosteroids as pre-medication
(Slingerland et al., 2013).

Genexol PM is a polymeric micelle formulation of paclitaxel
approved for the treatment of non-small-cell lung carcinoma as well
as breast cancer. It is a low-molecular di-block co-polymer. Genexol
PM has a lower toxicity profile than the other Taxol derivatives.
Genexol PM is mainly used for chemoradiation therapy for NSLC
(Werner et al., 2013). The NK-105 is a micelle nanoparticle
formulation of paclitaxel. It enhances the anti-tumor activity of
paclitaxel through self-association. PTX is found in the inner core of
the micelle system through hydrophobic interactions with the drug
as well as the co-polymer of PTX. The AUC (area under the curve)
values were higher for the NK-105 than for paclitaxel.
Experimentation has proved that NK-105 has more potent anti-
tumor activity in the cancer cell line Ht-29 per comparison with
paclitaxel alone, also displaying a reduced neurotoxic potential
(Hamaguchi et al., 2005).

SB05 is a liposomal formulation of about 200 nm in diameter. It
is formed from the cationic phospholipid DOTAP as well as neutral
DOPC in the molar ratio of 53:47. Currently, phase III trials are
being conducted for SB05 for triple-negative breast cancer patients
(Sofias et al., 2017).

6.2.2 Oral formulations
The common oral formulations of taxanes are Oraxol, DHP107,

and ModraDoc001—administered at a fixed dose. Most of them are
formulated with a polymer that can easily dissociate in plasma, thus
maintaining plasma concentrations for a longer duration. However,
adverse reactions such as nausea, fatigue, gastrointestinal issues, and
neurotoxicity have been reported. The other limitations include the
bioavailability and safety profiles as well as the coupling of inhibitors
with the formulations.

6.2.2.1 Oraxol
Oraxol is an oral formulation of paclitaxel administered with a

novel, minimally absorbed P-glycoprotein inhibitor, Encequidar
(HM30181A). This phase Ib study was conducted to determine
the maximum-tolerated dose (MTD) of Oraxol administered at a
fixed dose for up to 5 consecutive days in patients with advanced
malignancies. There were certain side effects like fatigue, nausea,
vomiting, and neutropenia. However, no hypersensitive reactions
were observed. Out of 28 patients, only two achieved a partial
response, and 18 were able to attain a stable disease. Overall, the
oral administration was considered safe and depicted anti-tumor
activity (Ma W. W. et al., 2022).

6.2.2.2 DHP 107
DHP 107 is a novel formulation for oral paclitaxel, which has the

mucoadhesive lipid-free Cremophor ElL. Administering DHP
107 orally results in enhanced absorption and tissue distribution
of paclitaxel without the need to couple the administration with P-gp
inhibitors. DHP 107 is a mucoadhesive lipid that enhances the drug
delivery process as well as absorption in the epithelial cells of the
intestinal tract (Hong et al., 2013).

6.2.2.3 ModraDoc001
The ModraDoc001 (DTX) is a solid dispersion formulation

hydrophilic polymer. This particular formulation significantly
enhances the rate of dissolution along with the extent of the
pharmaceutical ingredient of interest. The ModraDoc001 has
been synthesized through the freeze–drying method. The most
suitable carrier for ModraDoc001 is polyvinylpyrrolidone K-30.
The surfactant is necessary for increasing the dissolution rate of
docetaxel. The pharmacokinetics showed that the solid
dispersion formulation had better plasma concentrations than
the simple docetaxel drug (Jibodh et al., 2013).

7 Limitations

PTX and its various formulations possess certain limitations, with
hypersensitivity reactions being a primary concern. Additional adverse
effects associated with paclitaxel include peripheral neuropathy,
myalgias, neutropenia, and arthralgia. These side effects can cause
significant discomfort and complications for patients undergoing
treatment. In recent years, advancements in nanoparticle technology
have provided protection against surfactant or solvent-related adverse
reactions. PTX is known for its poor solubility, necessitating its
combination with a solvent or surfactant during the manufacturing
process. The development of nanoparticle formulations has mitigated
some of the side effects related to these added components.
Furthermore, the administration of H2 blockers has been shown to
be effective in minimizing the risk of life-threatening hypersensitivity
reactions. This approach has been instrumental in improving the safety
profile of paclitaxel-based therapies for patients. Despite these
improvements, it is essential to recognize that both traditional and
nanoparticle formulations of PTX can still cause side effects such as hair
loss, muscle pain, and joint pain (Figure 3). These side effects may be
experienced by patients regardless of the specific formulation utilized
(Naganuma et al., 2019).
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8 Conclusion

Taxol derivatives disrupt the microtubule assembling
dynamics, arrest the cell cycle at the G2/M phase, and trigger
apoptosis (Kampan et al., 2015). Such properties led to increased
awareness about the potential of these derivatives in neoplastic
disorders. This was confirmed by multiple clinical trials which
unveiled their potential in pre-defined settings that encompassed
solid malignancies. The journey to a sustainable and economical
manufacturing process will ultimately lead to a decrease in
the production and distribution time and cost (making it
easier to access and afford these drugs worldwide), either
by empowering semi-synthetic processes or the usage of
genetically engineered bioreactors (Flores-Bustamante et al.,
2010). Given the transitional phase of oncology that we are
facing today, a shift from classical chemotherapy to
immunomodulatory drugs and precision medicine has posed a
challenge to the repurposing of taxanes and their refinement. The
successful combination of PTX with PD-1 inhibitors was only
possible due to the development of different formulations that
shared a similar pharmacokinetic profile. These formulations
displayed fewer infusion-related adverse reactions than PTX
formulated with polyethoxylated castor oil, thereby sparing
the use of corticosteroids (Slingerland et al., 2013) that would,
otherwise, partially abrogate the desired immunological
stimulus. The pathophysiological basis of cancer burden and
the mechanism of action of taxanes raise awareness toward
the potential risk for secondary neoplasms. For instance,
Taxol derivatives are known to induce therapy-related
myelodysplasia (t-MDS) or give rise to treatment-related acute

myeloid leukemia (t-AML) as a toxicity side effect. The
hematological neoplasms generally present with a complex
karyotype (translocations involving chromosome 16 are
frequent), a fact that, pathophysiologically, agrees with the
blockage of the microtubular dynamics induced by Taxol
derivatives in cellular populations with higher turnover, as
myeloid cells. Herein, a putative co-existence of defective
DNA damage repair mechanism, together with the therapy-
specific DNA damage, may explain the role of Taxol
derivatives in t-SMD/t-AML that arise from cellular
populations with an incredibly higher turnover (Smith, 2003).
To date, we are deciphering the genomic landscape of cancer.
According to epidemiological data, several malignancies are
associated with germline variants affecting DNA damage
repair in a proportion that, for example, averages from 10% of
breast cancer cases up to 14–18% of ovarian cancer cases (Jiang
et al., 2020). Considering that such defects are not routinely
searched in every patient and the regulome of the DNA repair
machinery is not fully understood, it is fair to speculate that
inhibiting the microtubular depolymerization process in highly
proliferating non-neoplastic cells could potentially lead to
therapy-related malignancies. Although some of these cells do
not repair the inflicted damage, they may exhibit a transcriptional
program that enables them to escape apoptosis and proliferate in
the form of an aberrant clone, leading to the development of
neoplasms such as myeloid malignancies. The germline DNA
damage repair machinery defects in oncological patients will
potentiate the chemotoxic effects of specific chemotherapeutic
agents. The need to search for these germline variants in
oncological patients is a pressing question that will be

FIGURE 3
Summarized scheme regarding the most representative therapeutic limitation of taxanes in medical oncology. Abbreviation: red blood cell, RBC.

Frontiers in Pharmacology frontiersin.org11

Sousa-Pimenta et al. 10.3389/fphar.2023.1157306

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1157306


imposed in the not-too-distant future, in line with targeted and
precision medicine approaches.
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