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The Wnt/β-catenin signaling pathway is a classical Wnt pathway that regulates the
stability and nuclear localization of β-catenin and plays an important role in adult
heart development and cardiac tissue homeostasis. In recent years, an increasing
number of researchers have implicated the dysregulation of this signaling pathway
in a variety of cardiac diseases, such as myocardial infarction, arrhythmias,
arrhythmogenic cardiomyopathy, diabetic cardiomyopathies, and myocardial
hypertrophy. The morbidity and mortality of cardiac diseases are increasing,
which brings great challenges to clinical treatment and seriously affects patient
health. Thus, understanding the biological roles of the Wnt/β-catenin pathway in
these diseases may be essential for cardiac disease treatment and diagnosis to
improve patient quality of life. In this review, we summarize current research on
the roles of β-catenin in human cardiac diseases and potential inhibitors of Wnt/β-
catenin, which may provide new strategies for cardiac disease therapies.
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1 Introduction

Wnt signaling pathways are highly conserved pathways that are well known for their
regulatory roles in embryonic development, tissue regeneration and adult tissue homeostasis
(Hayat et al., 2022). Wnt signaling pathways are categorized into two groups: canonical and
non-canonical pathways. The canonical pathway is β-catenin dependent and is known as the
Wnt/β-catenin signaling pathway. The non-canonical Wnt pathway is β-catenin-
independent and mainly includes the non-canonical Wnt planar cell polarity (Wnt/PCP)
and Wnt/Ca2+ pathways. Canonical Wnt/β-catenin is primarily involved in the regulation of
cell fate decisions and proliferation during embryonic development and tissue homeostasis
in adults, while non-canonical pathways mainly regulate the polarity, mobility andmigration
of the cell (Majidinia et al., 2018; Li et al., 2022). Cardiovascular diseases are still a serious
threat to human life and health. The presence of cardiac diseases can increase the risk of
sudden death (Bagnall et al., 2020). Although the medical strategies are gradually improving,
the treatment of these diseases still faces severe challenges. In recent years, many studies have
shown that activation of the Wnt/β-catenin signaling pathway could further participate in
the healing and repair of myocardial infarction, myocardial hypertrophy, myocardial
fibrosis, ventricular remodeling, heart failure and other pathophysiological processes
(Umbarkar et al., 2021; Zhang Q. et al., 2022; Zhang Y. et al., 2022). This review aims
to summarize the mechanism of the Wnt/β-catenin pathway in cardiac diseases and
potential inhibitors of Wnt/β-catenin discovered in recent years, which may provide new
strategies for cardiac disease therapies.
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2 The Wnt/β-catenin signaling pathway

The Wnt/β-catenin pathway is composed of four segments:
extracellular ligand protein Wnts, receptors on the cell
membrane, the cytoplasmic segment for signal transduction, and
the nuclear segment for transcriptional regulation. The main
components of the Wnt/β-catenin signaling pathway include
Wnts, low-density lipoprotein receptor-related protein receptors
5/6 (LRP5/6), frizzled (Fzd), dishevelled (Dvl), GSK-3β, Casein
kinase 1α (CK1α), Axin, Adenomatosis Escherichia coli (APC),
Protein phosphatase 2A (PP2A), E3-ubiquitin ligase β-TrCP, β-
catenin, and T-cell factor/lymphoid enhancer factor (TCF/LEF).
Wnts are secreted lipoglycoproteins. Nineteen Wnt proteins have
been identified in mammals. Among them, Wnt1, Wnt3a, Wnt7a,
Wnt7b, Wnt 8 and Wnt 10a act as ligands to activate the canonical
Wnt/β-catenin pathway (Balatskyi et al., 2023). Wnts require
glycosylation and palmitoylation to acquire the ability to be
secreted, and these factors act in both an autocrine and paracrine
manner. Fzd are class F G protein-coupled receptors and act as
receptors of Wnts. LRP5/6 are coreceptors of Wnts and are located
on the plasma membrane. Dvl is the cytoplasmic protein that acts as
a key signal transducer from receptors to downstream effectors. In
addition, another role of Dvl has been discovered. Dvl functions as
an adaptor to recruit the negative regulators zinc and RING finger 3
(ZNRF3)/RING finger protein 43 (RNF43) to promote Wnt
degradation and prevent pathway overactivity (Jiang et al., 2015).
The destruction complex, which is composed of GSK-3β, CK1α,
Axin, APC, PP2A and β-TrCP, is responsible for β-catenin
proteasomal degradation in the absence of Wnt stimulation
(Bagchi and MacDougald, 2021). β-catenin is a key downstream
effector of the Wnt/β-catenin pathway. The Wnt/β-catenin pathway
leads to the accumulation of β-catenin in the cytoplasm, which
allows β-catenin nuclear translocation and subsequently induces the
transcription of target genes via TCF/LEF transcription factors (Liu
et al., 2022). In addition, β-catenin can participate in the formation
of the E-cadherin/β-catenin complex to mediate the linkage of
cadherins and cell conjugation (Xu et al., 2016). Interestingly,
there are two functional pools of β-catenin, one associated with
transcription and one associated with adhesion, and these pools are
not completely separated (van der Wal and van Amerongen, 2020).

In the absence of Wnt signals, a destruction complex is formed.
AXIN and APC provide a scaffold for the recruitment of GSK3β,
CK1α, and β-catenin (Stamos and Weis, 2013). Once bound, GSK-
3β phosphorylates β-catenin at Thr41, Ser33, and Ser37, and CK-1α
phosphorylates β-catenin at Ser45. Then, phosphorylated β-catenin
detaches from the complex and undergoes ubiquitin degradation via
β-TrCP. As a result, β-catenin is maintained at a low level in the
cytoplasm and nucleus. In the presence of Wnt signals, the Wnt
protein binds to the extracellular N-terminal domain under the
synergistic action of LRP5/6. During this process, FZD is
homodimerized, and FZD-LRP5/6 is heterodimerized.
Subsequently, Dvl proteins in the cytoplasm are recruited to the
cell membrane and further oligomerized. DvL contains three main
domains: the N-terminal DIX domain, central PDZ domain and
C-terminal DEP domain. Dvl oligomerization recruits AXIN.
Therefore, AXIN-bound GSK3β and CK1α can get close to
LRP5/6 and phosphorylate it. Phosphorylated LRP5/6 can
provide an AXIN binding site (Liu et al., 2022). Dvl binds to

phosphorylated LRP5/6 Axin and inactivates the destruction
complex. Accumulated β-catenin in the cytoplasm translocates
into the nucleus and binds to the TCF/LEF cofactor to induce
the transcription of target genes, such as cyclin D1, MMPs and
c-Myc (Yu et al., 2021).

3 The role of β-catenin in cardiac
development and function

TheWnt/β-catenin pathway is an important regulator of cardiac
development and growth, and its activity in healthy adult hearts is
low. Even so, this state of low activity is essential for maintaining
normal heart function. Acute activation of the Wnt/β-catenin
pathway is thought to play a cardioprotective role after infarction
through the upregulation of prosurvival genes and metabolic
reprogramming (Wang Q. et al., 2021). However, long-term high
Wnt/β-catenin pathway activity may lead to prefibrosis and
hypertrophy in the adult heart (Wang Q. et al., 2021). Wnt/β-
catenin coordinates normal heart formation through spatiotemporal
activation or inhibition (Piven and Winata, 2017). A previous study
identified ectopic heart formation following conditional β-catenin
inactivation in the final endoderm of mouse embryos, revealing the
inhibitory role of Wnt/β-catenin signaling in vertebrate heart
specification (Lickert et al., 2002). However, studies of zebrafish
and mouse embryos and mouse and human embryonic stem cells
(hESCs) have established that Wnt/β-catenin signaling induces
differentiation early in vertebrate heart development but inhibits
differentiation later (Ozhan and Weidinger, 2015). In addition, β-
catenin was reported to promote cardiomyocyte proliferation in
mice and zebrafish (Tseng et al., 2006; Bertozzi et al., 2022).

β-Catenin was confirmed to affect the development and function
of the heart by participating in the metabolism of cardiomyocytes
(Balatskyi et al., 2020; Balatskyi et al., 2021). A recent review showed
that β-catenin could affect perinatal cardiometabolic maturation by
altering glucose and fatty acid utilization (Balatskyi et al., 2023). β-
catenin ablation caused mitochondrial insufficiency in perinatal
cardiomyocytes, and hearts with heterozygous β-catenin ablation
failed to increase mitochondrial numbers in response to exercise
training (Balatskyi et al., 2020; Balatskyi et al., 2021). Additionally,
the ablation of emerin, an inhibitor of β-catenin nuclear import,
leads to heart dysfunction and aggravates cardiac remodeling
following pressure overload (Stubenvoll et al., 2015). During the
developmental stage of the heart, β-catenin ablation could lead to
metabolic failure and significantly inhibit glycolysis in perinatal
cardiomyocytes (Balatskyi et al., 2023). In the prenatal stage, oxygen
partial pressure is relatively low, the heart is dependent on hypoxia-
inducible factor 1α (HIF-1α) and rapamycin-driven metabolic
patterns of mammalian/mechanical targets, and energy
production occurs primarily through glycolysis (Liang and Ward,
2006). Synergies of β-catenin with HIF-1α and other TFs are thought
to be required for metabolic patterning of the developing heart,
which promotes cardiomyocyte proliferation in dense myocardium
(Balatskyi et al., 2023). In the adult heart, β-catenin activation
appears to result in a similar cardiac response to utilize more
glucose (Balatskyi et al., 2023). Moreover, the regulatory effect of
β-catenin on cardiomyocyte proliferation may also be related to the
Hippo pathway (Heallen et al., 2011). In mouse embryonic hearts,
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Hippo pathway inactivation results in heart enlargement, resulting
in increased cardiomyocyte quantity and cardiomyocyte
proliferation (Heallen et al., 2011; Di Sante et al., 2023). The
expression of β-catenin was upregulated in this heart, and
deleting one copy of β-catenin could rescue the cardiac
overgrowth phenotype. Overall, the Wnt/β-catenin pathway plays
an irreplaceable role in cardiac development and function.
Dysregulation of the Wnt/β-catenin pathway has catastrophic
effects on the heart. The phenotypes in cardiac development and
function caused by Wnt/β-catenin pathway-related genomic
knockout are shown in Table 1.

4 β-catenin and cardiac diseases

4.1 β-catenin and myocardial infarction

At present, myocardial infarction (MI) is a cardiac disease with
high morbidity and mortality. Acute MI is an event associated with
myocardial necrosis caused by ischemia and hypoxia in the coronary
arteries. MI is usually accompanied by oxidative stress,
inflammatory responses and the transformation of cardiac
fibroblasts to cardiac myofibroblasts (Frangogiannis, 2015). The
Wnt/β-catenin pathway is silent in normal hearts but activated in
human infarcted hearts (Wang Q. et al., 2021). It was reported that
this pathway was not activated during the first 24 h after infarction
but was gradually activated after 24 h, peaked at 7 days, and
disappeared 3 weeks after infarction (Aisagbonhi et al., 2011).
The Wnt/β-catenin pathway could be involved in multiple

pathophysiological processes related to MI (Daskalopoulos and
Blankesteijn, 2021).

4.1.1 β-catenin and oxidative stress in MI
Changes in the defense mechanism against oxygen free radicals

during myocardial infarction and myocardial reperfusion can cause
oxidative stress damage (Chen, 2021). Wnt/β-catenin pathway
activation was observed in an in vitro model of oxidation-
damaged cardiomyocytes. Reactive oxygen species (ROS) can
activate phosphatidylinositol 3 kinase (PI3K)/protein kinase B
(AKT) by inhibiting phosphatase and tensin homolog deleted
from chromosome (PTEN). Phosphorylated AKT was shown to
activate the Wnt/β-catenin pathway by phosphorylating GSK-3β
(Vallée and Lecarpentier, 2018). In addition, oxidative stress can
activate the Wnt/β-catenin pathway by inhibiting the binding of
nucleoredoxin (a thioredoxin family protein) to the Dvl PDZ
domain. This binding of nucleoredoxin and PDZ blocks the
downstream transduction of Wnt proteins transduced by Dvl and
the stabilization of cytoplasmic β-catenin (Funato et al., 2006).
Activation of the nuclear β-catenin/c-Myc axis promoted DNA
damage and p53-mediated apoptosis induced by oxidative stress
(Liu et al., 2017). Inhibition of the Wnt/β-catenin pathway
attenuated DNA damage and apoptosis induced by oxidative
stress (Qiu et al., 2017). Furthermore, the transfection of β-
catenin plasmids in cardiomyocytes could increase the expression
of apoptosis-related proteins, including Bax, cytochrome c and
caspase-3 (Lin et al., 2017). In the MI model of β-catenin-
knockout mice, the levels of proapoptotic active caspase-3 and
Bax were significantly lower and antiapoptotic Bcl-2 levels were

TABLE 1 Sevaral phenotypes associated with cardiac development and function caused by Wnt/β-catenin pathway-related genomic knockout.

Genes/Proteins Models Specific cell Phenotypes Ref

Ctnnb1/β-catenin neonatal mouse cardiomyocyte 1. Died within 7 days Balatskyi et al. (2021)

2. Decreased genes associated with lipid catabolism in the heart

3. Decreased genes associated with anaerobic glycolysis in the heart

4. Mitochondrial dysfunction in the heart

Ctnnb1/β-catenin adult mouse cardiomyocyte 1. Reduced cardiomyocytes size Balatskyi et al. (2020)

2. Decreased heart rate

3. Decreased expression of genes associated with hypertrophic response

Ctnnb1/β-catenin Fetal mouse cardiomyocyte 1. Fetal survival rate decreased Ye et al. (2015)

2. Smaller hearts and thinner ventricular walls

3. Decreased mRNA levels of Cyclin D2 in fetal hearts at embryonic Day
13.5 and 17.5

Ctnnb1/β-catenin adolescent
mouse

cardiomyocyte 1. Decreased expression of c-Myc and c-Fos Chen et al. (2006)

2. Decreased hypertrophic response to thoracic aortic constriction (TAC)

Ctnnb1/β-catenin mouse embryo embryonic stem
cell

1. Ectoderm developmental disorder Haegel et al. (1995)

2. Mesoderm was absent

Ppp2ca/PP2A adult mouse cardiomyocyte Developed cardiomyocyte hypertrophy, fibrosis and heart failure Li et al. (2016)

Gsk3b/GSK-3β adult mouse cardiomyocyte Anterior wall hypertrophy Stachowski-Doll et al.
(2022)

Frontiers in Pharmacology frontiersin.org03

Ni et al. 10.3389/fphar.2023.1157043

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1157043


increased (Wo et al., 2016). These results suggest that β-catenin can
promote oxidative stress injury.

However, an inconsistent conclusion also exists. Some studies have
confirmed that β-catenin/TCF-mediated transcription can play an
antiapoptotic role after MI (Al-Salam et al., 2020; Zheng et al.,
2021). After injecting active β-catenin into the infarct border zone of
the mouse MI model, the infarct size was reduced. This effect occurred
through increased nuclear translocation of β-catenin, enhanced
transcriptional activity, and enhanced expression of survivin, Bcl-2,
cyclin D, and cyclin E2, which ultimately led to an antiapoptotic effect
on cardiomyocytes and cardiac fibroblasts (Zheng et al., 2021). This
phenomenon was also confirmed in the hypoxia model. In a state of
intense oxidative stress or hypoxia, the amount of β-catenin decreases,
and the activity of the Wnt/β-catenin pathway is impaired. After
scavenging accumulated ROS, the Wnt/β-catenin pathway is
reactivated to produce an antiapoptotic effect (Zhou et al., 2017;
Zhu and Lu, 2019). These inconsistent results may be due, on the
one hand, to the use of different animal and cell models. On the other
hand, activation of theWnt/β-catenin pathway after MI is time-, space-
and cell type-specific (Aisagbonhi et al., 2011). In short, oxidative stress
and β-catenin activity may interact with each other and undergo
dynamic changes. β-Catenin plays an important role in DNA
damage and cell necrosis induced by oxidative stress afterMI (Figure 1).

4.1.2 β-catenin and inflammation in MI
The postmortem inflammatory response is important for

postinfarction repair, but excessive inflammation is an important
reason for myocardial remodeling and heart failure. Apoptosis and
necrosis in myocardial cells after MI are the main factors that
activate the inflammatory response. Inflammatory cell infiltration
is usually observed in the infarct area (Chen and Frangogiannis,
2021). Macrophages in the infarct area react first, engulf necrotic
myocardial cells, and secrete cytokines and chemokines. TheWnt/β-
catenin pathway is inactive in normal cardiac macrophages.
Increased levels of dissociative β-catenin in the cytoplasm were
observed in cardiac macrophages, especially Ly6C +
proinflammatory macrophages post MI (Huang et al., 2018).
Activated β-catenin upregulated the expression of IL-1b, IL-6,
TNF-a and IL-23 p19, which could then promote the
macrophage-mediated inflammatory response (Huang et al.,
2018). β-catenin might play a role in regulating MI inflammation
through its interaction with NF-κB. Both the Wnt/β-catenin
pathway and NF-κB were activated after MI (Song et al., 2022).
NF-κB is a major transcription factor in the inflammatory response
that can promote the expression of proinflammatory factors and
enzymes. β-catenin promotes NF-κB target gene expression via the
binding of the β-catenin-TCF/LEF complex to the promoters of NF-

FIGURE 1
The regulatory mechanism of Wnt/β-catenin pathway in myocardial infarction. (A) In the absence of Wnt ligands, Wnt/β-catenin pathway is
suppressed. (B) In the presence of Wnt ligands, Wnt/β-catenin pathway is activated. Then isolated β-catenin can translate into nucleus and bind to TCF/
LEF, which will result in gene transcription such as Bcl-2, survivin, cyclin D1, c-Myc, etc. The exression of Bcl-2, survivin and cyclin D1 could inhibit
oxidative stress injury, while c-Myc exhibits an opposite effect. (C) ROS promotes the phosphorylation of GSK-3β and then active theWnt/β-catenin
pathway, while intense oxidative stress or hypoxia can decrease the level of β-catenin. (D) β-catenin promotes NF-κB target genes expression through
forming complex with NF-κB, which then promote post-infarction inflammation. (E) β-catenin can promote the TGF-β-mediated IL-11 expression in
some way, which then induces the fibroblast-to-myofibroblast transition; β, β-catenin.
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κB target genes (Figure 1). Overexpression of β-catenin in
cardiomyocytes increased the expression of the inflammatory
markers TNF-α, p-NF-κB and IL-8 and promoted the
accumulation of NF-κB in the nucleus, suggesting that β-catenin
promoted the occurrence of inflammation by activating NF-κB (Lin
et al., 2016). Despite the complex relationship between β-catenin
and inflammation, β-catenin may be a potential regulatory target for
postinfarction inflammation.

4.1.3 β-catenin and myocardial repair after MI
The restorative fibrosis response to injury at the early stage after

MI is an important step in myocardial repair. Necrotic
cardiomyocytes are replaced by proliferating fibroblasts and
extracellular matrix (ECM), which effectively prevents cardiac
rupture. β-Catenin plays an important role in myocardial fibrosis.
It was found that overexpression of β-catenin could upregulate
various fibrosis markers in fibroblasts (Liu et al., 2021).
Moreover, Bing Zou et al. (Zou et al., 2021) showed that
activation of the Wnt/β-catenin pathway was related to
improving cardiac function in hypoxia cell models and MI rats.
High β-catenin expression could promote the epithelial
mesenchymal transition (EMT), which might be an important
source of angiogenesis and muscle fiber cells and play an
important role in tissue repair (Moheimani et al., 2015). The
expression of Wnt1 and β-catenin in epicardial cells and
fibroblasts increased within 2 weeks after acute ischemic heart
injury. EMT in epicardial cells promoted fibroblast proliferation
and increased the expression of profibrotic genes (Col1, Col3 and
ET-1) (Duan et al., 2012). The interruption of the Wnt/β-catenin
pathway in epicardial and fibroblast cells could lead to EMT
deficiency and decrease fibroblast proliferation in mice, resulting
in epicardial dilatation and impaired cardiac function (Duan et al.,
2012).

It was also reported that β-catenin overexpression could not
only induce fibroblast DNA replication and increase the number of
fibroblasts but also induce the differentiation of fibroblasts into
myofibroblasts (Dong et al., 2018). Several studies have indicated
that β-catenin promotes fibrosis in myofibroblasts through
transforming growth factor-β1 (TGF-β) (Carthy et al., 2011; Hao
et al., 2016; Zhu et al., 2021). TGF-β was reported to be a key protein
regulating fibroblast-to-myofibroblast differentiation (Tarbit et al.,
2019). TGF-β is activated by mechanical damage and stimulation of
the cellular environment after MI (Hanna and Frangogiannis, 2019).
The Wnt/β-catenin pathway promotes TGF-β-mediated fibroblast-
to-myofibroblast transition by enhancing interleukin-11 (IL-11)
production at the transcriptional level (Działo et al., 2021). The
expression of IL-11 is associated with activation of the TGF-β-
mediated Smad signaling pathway (Yin et al., 2019). IL-11 is a
downstream effector of TGFβ1 in fibroblasts and is required for
extracellular-regulated kinase (ERK)-dependent autocrine signaling
to drive fibrogenic protein synthesis (Schafer et al., 2017) (Figure 1).
In addition, β-catenin could promote the differentiation of cardiac
fibroblasts into myofibroblasts by increasing vascular endothelial
growth factor (VEGF) expression (Li et al., 2021). Multiple studies
have demonstrated that early inhibition of the Wnt/β-catenin
pathway after MI can reduce myocardial fibrosis, reduce infarct
size, and improve myocardial remodeling and cardiac function,
indicating that inhibiting β-catenin may be a strategy to improve

myocardial fibrosis and cardiac dysfunction after infarction (Qian
et al., 2018; Cui et al., 2021; Eid et al., 2021). In addition to theWnt1/
β-catenin pathway, Wnt2 and Wnt4 are involved in myocardial
fibrosis. Cardiac Wnt2 and Wnt4 levels were significantly increased
on the third day after MI in rats and were consistent with the time of
the increase in Col1, Col3 and TGF-β1. The increase in Wnt2 and
Wnt4 promoted fibrosis by activating the β-catenin/NF-kB/
p65 pathway in a manner dependent on the cooperation of Fzd4/
2 and LRP6, while ICG-001 (a β-catenin inhibitor) inhibited this
pathway and weakened the fibrosis effect (Yin et al., 2021).

Cardiomyocyte proliferation in the injured myocardium is an
important biological process in myocardial repair. Cardiomyocytes
are considered terminally differentiated cells with limited
regenerative capacity. However, recent studies have demonstrated
that nuclear β-catenin has the potential to promote the proliferation
of adult cardiomyocytes in a specific time window after MI (Fan
et al., 2018; Hauck et al., 2021). An increase in the nuclear import of
β-catenin enhanced the proliferation transcriptional activation of
related target genes (Axin2, Ccnd1, Myc and Sox2) and induced
cardiomyocyte cytokinesis in the infarct and border zones during
the 3–10 days after MI, resulting in reduced infarct size and
improved cardiac function (Hauck et al., 2021). Furthermore, β-
catenin was involved in the differentiation and regeneration of
cardiac cells and stem cells. A study showed that the decrease in
structural remodeling in β-catenin-knockout mice was the result of
enhanced differentiation of resident cardiac progenitor cells, which
means that β-catenin downregulation contributes to endogenous
cardiac regeneration (Zelarayán et al., 2008). β-catenin inhibition
enhances the differentiation of resident c-Kit (+) cells into
cardiomyocytes in vivo (Hodgkinson et al., 2018). It appears that
the effect of β-catenin on the differentiation of cardiac progenitors
depends on cell type.

Additionally, angiogenesis in the injured myocardium may be
an important biological process in myocardial repair. The newly
formed vessels in the infarction area contribute to the transport of
oxygen and metabolic substances in new tissues and promote tissue
healing. The time of the appearance of β-catenin in the cytoplasm of
neovascular endothelial cells within 1 week after infarction was
consistent with the formation time of new blood vessels around the
infarcted area, indicating that it was involved in the formation of
new blood vessels (Blankesteijn et al., 2000). The overexpression of
β-catenin enhanced the expression of VEGF and significantly
increased the capillary density post MI, which then promoted
angiogenesis and tissue healing (Baruah et al., 2017).

4.2 β-catenin and arrhythmia

The pathophysiological basis of arrhythmia involves structural
or electrical abnormalities and is mainly caused by acquired factors,
such as various cardiovascular diseases such as MI and heart failure
(Thomas et al., 2019). Changes in cardiac gap junctions (GJs) after
MI are an important factor affecting electrical coupling disorders
and conduction abnormalities. Connexin43 (Cx43, gene GJA1) is a
major gap junction protein in cardiomyocytes. Changes in the
quantity and distribution of Cx43 lead to electrical coupling
barriers and conduction anomalies (Hou et al., 2022). A decrease
in the expression of Cx43 is closely related to arrhythmia. The Wnt/
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β-catenin pathway was confirmed to regulate the expression of Cx43
(López et al., 2019). Activation of the Wnt/β-catenin/TCF pathway
in neonatal rat cardiomyocytes was confirmed to increase the
expression of Cx43 and promote the colocalization of Cx43 and
β-catenin in the cell membrane, enhancing intercellular coupling,
which in turn negatively regulated the transcriptional activity of β-
catenin (Ai et al., 2000; Nakashima et al., 2014). Decreased
Cx43 expression, Cx43-containing gap junction remodeling, and
conduction abnormalities were observed in mouse cardiac tissue
after β-catenin knockout (Swope et al., 2012). These data suggested
that β-catenin modulated arrhythmia by interacting with Cx43
(Figure 2). Additionally, the β-catenin/cadherin complex can
strengthen the connections between cells. Disruption of the β-
catenin/cadherin complex leading to gap instability is one of the
causes of arrhythmias (Li et al., 2005).

The Wnt/β-catenin pathway may also affect arrhythmia
susceptibility by altering the activity of Na+ channels. Voltage-
gated cardiac Na+ channel activity is associated with cardiac
excitation and rapid conduction of action potentials (Turan et al.,
2020). Na+ channel activity is mainly determined by the
Nav1.5 protein (SCN5A-encode), the α subunit of the myocardial
voltage-gated sodium channel. Rong Huo et al. (Huo et al., 2019)
found that enhancing the Wnt/β-catenin/TCF4 pathway could
inhibit Nav1.5 protein expression in mice, resulting in increased
arrhythmia susceptibility. The possible mechanisms are as follows:
1) After Wnt/β-catenin pathway activation, β-catenin/TCF4 binds
to the Tbx3 (a suppressor of Scn5a expression) promoter at -871 bp,
directly activates Tbx3 transcription, and directly inhibits
Nav1.5 expression (Gillers et al., 2015; Lu et al., 2020). 2) β-
catenin/TCF4 directly binds to the Scn5a promoter to inhibit the
expression of Nav1.5 (Lu et al., 2020). The inhibition of Nav1.5 by
Wnt/β-catenin is responsible for arrhythmia in the acute phase after

MI, while the mechanism of arrhythmia in the chronic phase after
MI is more likely to involve myocardial remodeling rather than
changes in ion channels. Jerry Wang et al. (Wang J. et al., 2021)
observed a reduction in the occurrence of arrhythmias in β-catenin-
knockout (KO) mice at 8 weeks after MI, which was consistent with
reduced scar size and ventricular dilation, and Na+/K+ channel genes
were not different between WT (wild type) and KO mice (Wang
J. et al., 2021).

4.3 β-catenin and arrhythmogenic
cardiomyopathy

Arrhythmic cardiomyopathy (ACM) is an inherited
disease characterized by fibrofatty replacement of the
ventricular myocardium. Although the incidence is low (from
1/2000 to 1/5000 people worldwide), it can lead to life-
threatening arrhythmias and sudden death, especially in
young people and athletes, and there is currently no effective
treatment for ACM (Stevens et al., 2020). Approximately 85%–

90% of ACM-related variants are desmosomal genes, which
primarily include plakophilin-2 (PKP2), desmoplakin (DSP),
desmoglein-2 (DSG2), democollin-2 (DSC2) and plakoglobin
(JUP) (Gao et al., 2020). Desmosomes are a kind of
connection structure between cells. In myocardial tissue,
desmosomes, adhesive connections and gap connections
constitute intercalated discs (IDs). Many researchers have
found that an abnormal Wnt/β-catenin pathway caused by
ACM causal mutations is an important mechanism of
fibrofatty infiltration.

Mutations in desmosomal genes (such as DSP) can cause
telomere damage, leading to plakoglobin (PG) dissociation and

FIGURE 2
Current knowledge on the regulatory mechanism of Wnt/β-catenin pathway in arrhythmia and ACM. Wnt/β-catenin pathway affects the arrhythmia
through regulating the expression of Cx43, E-cadherin and Nav1.5. Mutations in the desmosomal gene can lead to PG free, which inhibits the canonical
Wnt/β-catenin pathway and causes AMC phenotype. AnkB inhibits AMC phenotype by co-localizing with β-catenin on the on the membrane.
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nuclear localization. PG and β-catenin have a high degree of
sequence identity and homology, and they are usually
antagonistic on multiple levels (Yin et al., 2022). As a β-
catenin competitor, PG could inhibit the typical Wnt/β-
catenin-TCF/LEF pathway, increasing the expression of
peroxisome proliferation-activated receptor γ (PPARγ),
lipogenic transcription factor CCAAT/enhancer binding
protein α (C/EBP-α) and its target genes adiponectin and
lipoprotein lipase and increasing the levels of procollagen
genes Col1a2, Col1a1 and Col3a1, ultimately leading to the
human AMC phenotype (Ross et al., 2000; Garcia-Gras et al.,
2006; Kim et al., 2013; Cason et al., 2021). In addition, perturbed
molecular changes in ID proteins could lead to the inactivation of
a component of the IDs: protein kinase C-α (PKC-α). Inactive
PKC-α then phosphorylates neurofibromin 2 (NF2) and Yes-
associated protein (YAP). The association between p-YAP and
p-β-catenin might decrease Wnt/β-catenin signaling pathway
activity and enhance adipogenesis (Chen et al., 2014).
Furthermore, it was reported that ACM caused by non-
telomere protein genes such as ANK2 (encoding Ankyrin-B,
AnkB) was associated with the Wnt/β-catenin signaling
pathway. β-catenin and AnkB are molecular chaperones, and
AnkB is required for the normal localization of β-catenin
(Roberts et al., 2019). The ACM phenotype caused by
myocardial-specific knockout of AnkB in mice might be the
result of disruption of the auxiliary role of AnkB for the
correct localization of β-catenin, which decreased the
expression of β-catenin at the IDs. By inhibiting the activity of
GSK-3β, the localization of β-catenin in the IDs was partially
restored, and the ACM phenotype was improved (Roberts et al.,
2019). In addition, SB216763, a typical Wnt signaling activator,
could rescue the disease phenotype and restore sodium influx
into myocytes in zebrafish ACM models (Asimaki et al., 2014).
However, the ACM phenotype following knockout of the
murine cardiac JUP gene was thought to be associated with an
increase in β-catenin/TCF transcriptional activity (Li et al.,
2011). In conclusion, dysregulation of the Wnt/β-catenin
signaling pathway is a common underlying mechanism of
ACM caused by multiple genetic variants, and the regulation
of this pathway is a promising therapeutic strategy for ACM
(Figure 2).

4.4 β-catenin and diabetic cardiomyopathies

Diabetic cardiomyopathy (DCM) is a major cardiovascular
complication associated with diabetes that is independent of
hypertension, atherosclerosis and other cardiac diseases. DCM
is characterized by hypertrophy and myocardial dilatation, as
well as abnormal cardiac structure and function, and eventually
develops into heart failure. The pathogenesis of DCM remains
incompletely understood. It is believed to be related to oxidative
stress, inflammation, myocardial apoptosis, autophagy and
mitochondrial damage (Avagimyan et al., 2022). Many
researchers have confirmed that β-catenin is involved in the
development of DCM (Xi et al., 2015; Liu et al., 2020; Chen
et al., 2022). In the DCMmodel induced by streptozotocin (STZ),
the protein and mRNA expression levels of Wnt2, β-catenin, and

c-Myc were increased in a time-dependent manner, as well as the
expression of p-GSK3β (Xi et al., 2015). Similarly, overexpression
of Wnt3 and β-catenin was observed in cardiac fibroblasts under
high glucose conditions (Hu et al., 2020). Hyperglycemia can
cause the overproduction of ROS by the mitochondrial electron-
transport chain, which is a common element in DCM-induced
injury. Increased oxidative stress products and activation of the
Wnt/β-catenin signaling pathway were observed in an STZ-
induced DCM mouse model (Liu et al., 2017). Oxidative
stress can activate the Wnt/β-catenin pathway, activate the
nuclear β-catenin/c-Myc axis and aggravate oxidative stress
injury, as we described in Section 4.1.1. After knocking out
myocardial β-catenin in the STZ-induced DCM model,
diabetic heart dysfunction was improved by inhibiting c-Myc
(Liu et al., 2017). Additionally, autophagy is important for
maintaining normal cardiac function. STZ-induced activation
of the Wnt/β-catenin pathway, increased p-GSK-3β and
impaired autophagy were observed in diabetic rats (Wei et al.,
2017). Autophagy can be inhibited by mTOR through the
phosphorylation of the unc-51-like autophagy activating
kinase 1 (ULK1) complex (Wei et al., 2017). GSK-3β inhibits
mTOR signaling by phosphorylating tuberous sclerosis (TSC2)
(Vigneron et al., 2011). Thus, by inhibiting β-catenin/TCF4/
GSK-3β/mTOR, 1,25-dihydroxyvitamin-D3 enhanced
autophagy and ameliorated DCM (Wei et al., 2017). In
general, β-catenin is related to multiple pathological
mechanisms in DCM and is a potential target for the
treatment of DCM.

4.5 β-catenin and myocardial hypertrophy

Myocardial hypertrophy (MH) is an adaptive change in the
myocardium induced by various external stimuli. The markers of
MH include myocardial cell volume enlargement and the
expression of fetal genes, including atrial natriuretic peptide
(ANP), brain natriuretic peptide (BNP), and β-myosin heavy
chain (αMHC) (Li et al., 2016). Studies have shown that
overexpression of β-catenin can lead to MH (Li et al., 2016;
Lin et al., 2021). Overexpression of β-catenin in cardiac myocytes
could lead to cell volume increases, actin formation, pathological
hypertrophy marker (kinase p38, JNK1/2, ERK1/2, ERK5)
activation, and ANP and BNP increases (Lee et al., 2017).
Knockout or inhibition of myocardial β-catenin reduced MH
(Srivastava et al., 2022). After the slow administration of Ang II
in mice, eight Wnt ligands in the heart were upregulated, and the
Wnt/β-catenin pathway was activated (Zhao et al., 2018). In Ang-
II-induced MH, the expression of β-catenin and c-Myc was
upregulated, and the Wnt/β-catenin pathway was activated
(Yu et al., 2016; Zhang R. et al., 2022). The Ang-II-mediated
hypertrophic response in human ventricular cardiomyocytes
includes an increase in inactivated GSK3β (phosphorylation at
Ser 9), a decrease in p-β-catenin, and an increase in nuclear β-
catenin accumulation (Narasimhan et al., 2019). Moreover, ICG-
001 alleviated Ang II-induced myocardial hypertrophy by
blocking the Wnt/β-catenin pathway (Zhao et al., 2018).
Therefore, the Wnt/β-catenin pathway may play an important
role in MH.
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5 Potential therapeutic inhibitors
against Wnt/β-catenin

To date, many researchers have made efforts to develop ideal
Wnt/β-catenin pathway inhibitors for the treatment of certain
diseases. As a result, many potential therapeutic inhibitors have
been developed, including natural and synthetic proteins, antibodies
and small molecule compounds. These inhibitors mainly act by
inhibiting Wnt or β-catenin activity. At present, some inhibitors
have been studied in vivo to treat some cardiac diseases. The effects
of several Wnt/β-catenin pathway inhibitors on cardiac diseases are
shown in Table 2.

6 Conclusion remarks

The Wnt/β-catenin signaling pathway is a complex protein
network that is involved in various physiological and
pathophysiological processes from cardiac development to
cardiac muscle remodeling and myocardial repair. Without
Wnt, β-catenin does not accumulate in the cytoplasm because
there is a destruction complex that typically degrades it.
However, under certain circumstances, the Wnt/β-catenin
pathway is overactivated, which promotes more β-catenin
entry into the nucleus and initiates the expression of
downstream target genes (Colozza and Koo, 2021). Recently,
abnormal activation of the Wnt/β-catenin signaling pathway has
been shown to play an important role in MI, arrhythmias,
infarction, ACM, DCM and MH. For example, activation of
Wnt/β-catenin signaling can promote oxidative loss, increase
the expression of inflammatory factors and delay the repair of
myocardial injury after MI, which would further aggravate
myocardial injury (Vallée and Lecarpentier, 2018; Liu et al.,
2022). These diseases may cause MH and myocardial fibrosis
(MF), which is one of the independent risk factors for heart
failure (Xiang et al., 2017; Uriel et al., 2018). Although theWnt/β-
catenin pathway has paradoxical roles in myocardial repair and

inflammatory responses and even positive roles in arrhythmias
and ACM, it is still a disadvantage in most heart diseases.

Therefore, exploring inhibitors against the Wnt/β-catenin
signaling pathway is considered a novel method for the treatment
of cardiac diseases. The discovered inhibitors act mainly by binding
directly to Wnt, inhibiting Wnt palmitoylation and secretion and
blocking the β-catenin/CBP protein interaction. These inhibitors
have been shown to be effective in treating some cardiac diseases
in vivo.

In summary, this review provides a detailed summary and
analysis of recent studies on the role of β-catenin in cardiac
diseases and some potential inhibitors of Wnt/β-catenin. The
expression of β-catenin may be a useful biomarker for identifying
patients who may best respond to anti-Wnt/β-catenin therapy in
cardiac diseases. Even so, the reason that cardiac diseases affect
activation of the Wnt/β-catenin signaling pathway and the
molecular mechanisms of Wnt/β-catenin involved in cardiac
disease progression need to be further studied. Further study and
investigation of the regulatory mechanism of the Wnt/β-catenin
signaling pathway and the role of inhibitors will provide new ideas
for the early diagnosis and precise treatment of related cardiac
diseases.
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TABLE 2 Several Wnt/β-catenin pathway inhibitors for cardiac diseases.

Inhibitor Inhibition of targets Outcomes Ref

ICG001 Blocking the β-catenin/CBP protein interaction Reducing left ventricular wall myocardial hypertrophy and fibrosis in the rat heart
with transverse aortic constriction

Methatham et al.
(2021)

ICG001 Improving contractile function in chronically infarcted rat myocardium Sasaki et al. (2013)

IGFBP-4 Binding directly to Wnt or its receptor Protecting the ischemic heart in mice Wo et al. (2016)

Cdon Competing with Wnt for binding to LRP Inhibiting cardiac fibrosis and cardiomyopathy Jeong et al. (2017)

Sfrp1 Binding directly to Wnt or its receptor Effectively protecting aged hearts from AMI injury in aged mice Tao et al. (2021)

ARNI Inhibiting β-catenin expression by upregulating
sFRP-1

Improving myocardial fibrosis and preventing myocardial remodeling Liu et al. (2021)

Cardiomogen
1

Inhibiting β-catenin-mediated TCF/LEF-
mediated luciferase activity

Increasing newly formed cardiomyocytes and reducing fibrotic scar tissue Xie et al. (2020)

Wnt-C59 Inhibiting Wnt palmitoylation and secretion Attenuating pressure overload-induced cardiac hypertrophic Zhao et al. (2020)

Naringin Inhibiting β-catenin expression by upregulating
GSK3β

Attenuating the inflammatory response after MI Guo et al. (2022)
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