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Tricyclic antidepressant is an old and well-established therapeutic agent with a
good safety profile, making them an excellent candidate for repurposing. In light of
the growing understanding of the importance of nerves in the development and
progression of cancer, attention is now being turned to using nerve-targeting
drugs for the treatment of cancer, particularly TCAs. However, the specific
mechanism by which antidepressants affect the tumor microenvironment of
glioblastoma (GBM) is still unclear. Here, we combined bulk RNA sequencing,
network pharmacology, single-cell sequencing, molecular docking andmolecular
dynamics simulation to explore the potential molecular mechanism of imipramine
in the treatment of GBM. We first revealed that the imipramine treatment is
presumed to target EGFRvIII and neuronal-derived EGFR, which may play a
pivotal role in treating GBM by reducing the GABAergic synapse and vesicle-
mediated release and other processes thereby modulating immune function. The
novel pharmacological mechanisms might provide further research directions.
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Introduction

Glioblastoma (GBM) is known as the most aggressive type of intracranial tumor. High
morbidity and recurrence rates represent poor prognosis in GBM patients. Treatments
involving monotherapy are often not effective enough to suppress GBM tumor cells. First-
line treatment of GBM patients is usually a combination therapy, including maximal safe
surgical resection, postoperative radiotherapy, and chemotherapy with temozolomide.
Although advances have been made in the field of surgery, radiotherapy, and
chemotherapy, the median survival time (15–16 months) for GBM patients remains
below expectations (Ostrom et al., 2018). Thus, novel therapeutic approaches for
improving the survival of GBM patients are urgently needed.

Tricyclic antidepressants (TCAs) were originally developed and marketed for the treatment
of depression, but have been used to treat a wide range of conditions, most commonly off-label.
Long-term use of TCAs is associated with a lower incidence of gliomas (Walker et al., 2011). A
previous study found that imipramine, a TCA, increased autophagy and resulted in therapeutic
benefits in animals bearing GBM tumors (Shchors et al., 2015). Bielecka-Wajdman et al. reported
that several antidepressants, including imipramine and amitriptyline, promoted the conversion of
glioma stem cells to non-glioma stem cells, thereby reversing themalignant phenotype (Bielecka-
Wajdman et al., 2017). Recently, Chryplewicz et al. describe imipramine increases autophagic flux
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within cancer cells, thereby recruiting T cells, as well as reprogramming
macrophages as pro-inflammatory cells by inhibiting the histamine
receptor on the membrane (Chryplewicz et al., 2022). Considering the
psychological pressure of GBM patients, as well as the resulting anxiety
and depression, using imipramine to treat GBM patients can kill two
birds with one stone. Since depression is a frequent occurrence in GBM
patients as well as there are overlaps between molecular and cellular
mechanisms involved in both diseases’ pathogenesis, antidepressants
that act as antitumor agents are an attractive treatment option for GBM
patients (Abadi et al., 2022). However, how imipramine regulates
crosstalk between various cells in the GBM microenvironment
deserves further exploration.

As a strategy, network pharmacology is a powerful tool for
examining the complex mechanisms that cause disease and the
effects of drugs. Molecular Docking is the process of predicting the
structure of molecules using computer modeling. This method is
widely used to discover newmedicines andmechanisms of action for
pharmaceuticals (Pinzi and Rastelli, 2019). In this study, we aim to
use bulk RNA sequencing, network pharmacology, single-cell RNA-
seq analysis, molecular docking and molecular dynamics simulation
to explore the mechanism of imipramine in treating GBM. We
uncovered the crucial role of imipramine in GABA (Gamma-
aminobutyric acid) and immune function regulation in GBM
patients. We hypothesize that imipramine may target neuronal
cell-derived EGFR, thereby modulating the immune
microenvironment. We also found that imipramine has a strong
binding ability to EGFRvIII, which may provide a new potential
drug for clinical treatment.

Methods

Dataset collection and preprocessing

RNA-seq data from GSE4290 was downloaded from Gene
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/gds)
database. The screening criteria were as follows: First, the dataset
including GBM samples and non-tumor samples. Second, both non-
tumor samples and GBM samples should be greater than 20 to
ensure the quality of WGCNA. The GSE4290 dataset includes
81 samples from patients with GBM as well as 23 normal
samples from healthy individuals (Sun et al., 2006). After
preprocessing, we finally obtained 77 GBM samples and
23 normal samples with clinical data.

Obtaining targets for imipramine

The detailed information of imipramine was obtained from
PubChem (https://pubchem.ncbi.nlm.nih.gov/). The
SwissTargetPrediction database (http://www.swisstargetprediction.
ch/) (Daina et al., 2019) and the TargetNet database (http://
targetnet.scbdd.com/home/index/) (Yao et al., 2016) as well as
CTD (https://ctdbase.org/) (Davis et al., 2023), and BindingDB
(https://bindingdb.org/bind) (Chen et al., 2002) were utilized for
identifying potential target genes. A further search was conducted to
access target proteins names using the UniProt database (https://
www.uniprot.org/uploadlists/).

Gene Ontology and pathway analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis was performed by
clusterProfiler R package with a threshold of adjusted
p-value <0.05 (Wu et al., 2021).

Identification of DEGs

The R package “limma” was used to identify the differentially
expressed genes (DEGs) between the GBM samples and healthy
controls (Ritchie et al., 2015). |log2 (foldchange)| > 2 and the
adjusted p-value <0.05 were used as screening criteria.

Gene set enrichment analysis

GSEA is used to determine whether a defined set of genes shows
a statistically significant difference in two different traits. Pathways
that may play a role in the pathogenesis of GBMwere explored using
GSEA. The R package clusterProfiler was used for GSEA analysis.
The following settings were used for the analysis: false discovery rate
(FDR) < 0.25, adjusted p-value <0.05, |normalized enrichment score
(NES)| > 1, which to be considered significant.

WGCNA analysis of GEO

All genes were selected to construct the weighted gene co-
expression network. First, a hierarchical clustering analysis was
conducted to exclude the outlier samples. The Pearson
correlation value was computed for each pair of genes. Then, an
adjacency matrix was conducted. The WGCNA package’s
“pickSoftThreshold” function was utilized to select the optimal β
that satisfies the scale-free distribution (Langfelder and Horvath,
2008). The adjacency matrix was converted into two matrices: the
topological overlap matrix (TOM) and 1-TOM. The TOM reflects
the similarity between genes, while 1-TOM reflects the dissimilarity
among them. Last, hierarchical clustering was used to classify genes
into distinct modules. The module eigengene (ME) was computed to
reflecting the gene expression profiles for each module. The settings
of parameters were as follows. The soft threshold β = 6,
minModuleSize = 50, mergeCutHeight = 0.25.

Generation of protein-protein interaction
(PPI) networks

Screened genes were analyzed in STRING (version 11.5, https://
string-db.org/) to investigate protein-protein interactions (PPI)
(Szklarczyk et al., 2019). PPI was constructed and visualized
using Cytoscape software (version 3.9.1) (Shannon et al., 2003).
A Molecular Complex Detection algorithm (MCODE) was used to
detect dense regions of tightly bound proteins or PPI. The MCODE
algorithm is used to identify critical sub-networks that contribute to
the development of GBM and to identify critical subpopulation
genes. The parameters of MCODE were all set using default settings.
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Single-cell RNA sequencing data analysis

TISCH2 is a database that utilizes single-cell RNA sequencing
(scRNA-seq) technology to concentrate on the tumor
microenvironment (TME) and its immune response against tumors
(Han et al., 2023).

For a single gene, TISCH2 supports exploring its expression level
across different single-cell datasets or cancer types. We explored the
expression level of EGFR gene in different single-cell datasets with
TISCH2.

The scTIME Portal is a database and a portal for single cell
transcriptomes of tumor immune microenvironment (Hong
et al., 2021). We employed it to obtain the expression of
pathway genes in all cell types in GSE84465. We also used
scTIME Portal to perform the cell-to-cell communication
analysis in GSE84465.

Analysis related to wild-type EGFR and
mutant EGFR

CAMOIP is a tool for analyzing the expression data andmutation data
from the TCGA.All analyzes related towild-type EGFR andmutant EGFR
were performed on CAMOIP (http://www.camoip.net/) (Lin et al., 2022).

Molecular docking and molecular dynamics
simulation

Firstly, the protein was optimized before docking using the Protein
Preparation Wizard, and the ligand was prepared with LigPrep tool. We
utilized the OPLS-2005 force field to provide partial atomic charge
attribution, protonation states generation, and energy minimization.
Grid-Based Ligand Docking with Energetics (Glide v11.5,

FIGURE 1
Obtain drug targets and functional analysis. (A) The drug targets were obtained from four databases. (B) KEGG analysis of drug targets. (C) GO
analysis of drug targets.
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Schrödinger) was used to dock all ligands into the catalytic pocket of the
RPT protein in “extra precision mode” without applying any constraints.
Finally, the complex with the lowest score was selected for further study.
The molecular dynamics simulation protocol can be found in previous
article (Wu et al., 2023).

Statistical analysis

R software (version 4.2.0) (http://www.r-project.org) was used
for statistical analysis. Wilcoxon tests were used to analyze subgroup

differences. p < 0.05 was used as the threshold for statistical
significance.

Result

Target genes for imipramine

The SwissTargetPrediction, CTD, BindingDB, and TargetNet
databases were used to identify target genes associated with
imipramine. Finally, 275 target genes associated with

FIGURE 2
Identification of DEGs and GSEA analysis. (A) The volcano plot of DEGs expression. (B) GSEA results of Synaptic Vesicle Cycle pathway. (C) GSEA
results of GABAergic Synapse pathway. (D) GSEA results of Glutamatergic Synapse pathway. (E) GSEA results of cGMP-PKG Signaling Pathway.
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imipramine were identified and retrieved from these databases
(Figure 1A; Supplementary Table S1). KEGG enrichment analysis
shows that drug target genes were mainly enriched in neuroactive

ligand−receptor interaction, serotonergic synapse, and calcium
signaling pathway (Figure 1B). GO enrichment analysis shows
that the enriched pathways were mainly involved in BP: response

FIGURE 3
WGCNA analysis. (A) Raw cluster tree. (B) Sample dendrogram and trait heatmap. (C) The cluster dendrogram of WGCNA. (D) The soft threshold
power and mean connectivity of WGCNA. (E) Correlations between gene modules and GBM status. (F) The correlation between the turquoise module
memberships and the gene significance. (G) The correlation between modules.
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to xenobiotic stimulus, cellular response to catecholamine
stimulus; CC: synaptic membrane, neuronal cell body; MF:
neurotransmitter receptor activity, G protein−coupled amine
receptor activity (Figure 1C). In total, the enrichment results
showed that imipramine might be affecting neurotransmitter
signaling circuits.

Identification of DEGs between GBM and
control

In GSE4290 datasets, first, we removed the batch effect
between the samples (Supplementary Figure S1). According to
the filtering criteria (|log2 (foldchange)| > 2 and the adjusted

FIGURE 4
Identification of intersect genes and functional analysis. (A) The intersection of DEGs andWGCNA turquoisemodule genes were namedGBMgenes.
(B) The intersection of GBM genes and drug targets genes were named intersect genes. (C) KEGG analysis of intersect genes.
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p-value <0.05), a total of 777 DEGs were screened, of which
207 DEGs were upregulated and 570 DEGs were downregulated
(Supplementary Table S2). The result of the differential analysis
was visualized in Figure 2A. Some genes participated in the
pathways including Gabaergic Synapse, Synaptic Vesicle Cycle
were significantly downregulated in GBM samples (Figures
2A–C). This phenomenon is consistent with previous reports
(Jung et al., 2019).

GSEA analysis

GSEA analysis was performed to investigate the differences in
pathway landscapes between GBM and normal samples. We noticed
that Synaptic Vesicle Cycle, GABAergic synapse, Glutamatergic
Synapse and cGMP−PKG Signaling Pathway were significantly
downregulated in GBM group (Figures 2B–E). These results
indicate synthesis and vesicle-mediated release of the
neurotransmitter GABA as well as signal transduction activities
may be closely related to the pathogenesis of GBM.

Construction of the weighted gene co-
expression network

The GBM samples and healthy control subjects from the
GSE4290 dataset were analyzed utilizing the WGCNA package in R

software. The outlier samples were removed (Figure 3A). The sample
dendrogram and trait heatmap was shown in Figure 3B. The cluster
dendrogramwas shown in Figure 3C. Thematrixwas transformed into an
adjacencymatrix using the soft-thresholding parameter, denoted as β. The
R2 achieved more than 0.85 when β = 6, which became the power of our
adjacency matrix (Figure 3D). After merging modules with
similarity >0.75, nine co-expression modules were identified using the
hierarchical clusteringmethod of which the turquoise module exhibits the
highest correlationwithGBM(R= 0.78, p< 0.001), as shown in Figure 3E.
Meanwhile, the scatter plot of MM relative to GS showed a good
correlation between GS and MM within the turquoise module (R =
0.93, p< 0.001) (Figure 3F). Thus, the turquoisemodule could be a pivotal
module closely associated with GBM. Additionally, the network heatmap
was shown in Figure 3G.

Functional enrichment analysis

The overlap between the DEGs and hub genes in the turquoise
module was shown in Figure 4A, which was named GBM genes
(Supplementary Table S3). The overlap between the GBM genes and
Drug targets was shown in Figure 4B, which was named intersect genes.
Then, we performed KEGG analysis on intersect genes. KEGG
enrichment analysis showed that the enriched pathways were also
mainly involved in Calcium signaling pathway, Gap junction,
Glutamatergic synapse, Neuroactive ligand−receptor interaction,
Serotonergic synapse, Glioma, GABAergic synapse (Figure 4C).

FIGURE 5
Identification of key cluster proteins and functional analysis. (A) The PPI network of key cluster proteins. DeepPink: GBM genes. Blue: drug targets
genes. DeepPink and blue: both GBM gene and drug target.
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Selection of key target genes

It is widely recognized that drugs elicit diverse effects on their target
genes or target proteins. These effects may encompass the inhibition or

upregulation of target gene expression, as well as the enhancement or
suppression of target protein activity. Importantly, the precise
regulatory effect of a drug on its target requires experimental
validation. In this study, we solely analyze and predict the regulatory

FIGURE 6
EGFR distribution landscape. (A) the distribution of EGFR in the different single-cell datasets. (B) the UMAP plot of GSE84465. (C) the distribution of
EGFR in GSE84465.
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impact based on existing literature reports, with the aim of offering
theoretical insights for subsequent researchers.

Traditional network pharmacology articles construct PPI with
the intersect genes of drug targets and disease-related targets.
However, this approach may not be entirely accurate, because
there is a regulatory effect between proteins, and the drug

targeting its own target protein may also affect the activity of
other proteins. So, we do not only focus on the intersect genes
and we selected all drug target genes and GBM genes to perform a
large-scale PPI network and screen the key cluster with most
interactions to explore the regulatory relationship between drug
targets and disease-related targets.

FIGURE 7
The distribution of pathway signatures in GSE84465. (A) GABAergic synapse pathway (B) Glioma pathway (C) Neuroactive ligand-receptor
interaction pathway (D) Synaptic vesicle cycle pathway.
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FIGURE 8
Cell-to-cell communication analysis. (A) The ligands and receptors interaction between neurons and neoplastic. (B) The ligands and receptors
interaction between neurons and cycling-myeloid. (C) The ligands and receptors interaction between neurons and macrophages. (D) The cell-to-cell
communication between all cell types.
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A total of 883 drug target genes and GBM genes were imported
into the STRING online database (version 11.5) to construct the PPI
network. Then, the key cluster proteins were identified by

Cytoscape’s plugin code “MCODE”. The key cluster proteins
with the most interactions were visualized in Figure 5A. It is not
difficult to infer that imipramine affects the progression of GBM by

FIGURE 9
The expression level of the immune-related gene in EGFR wildtype and mutation patients (A,B). * represents a significant difference (p < 0.05), **
represents a significant difference (p < 0.01), *** represents a significant difference (p < 0.001).
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FIGURE 10
Immune landscape in EGFR wildtype and mutation patients. (A) Tumor mutation burden (TMB) status in EGFR wildtype and mutation groups. (B)
Neoantigen status in EGFR wildtype and mutation groups. (C) MANTIS_Score in EGFR wildtype and mutation groups. ns represents no significant
difference. (D–O) GSEA results in TCGA-GBM cohort.

Frontiers in Pharmacology frontiersin.org12

Li et al. 10.3389/fphar.2023.1156492

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1156492


regulating the release and transmission of the neurotransmitter,
such as GABA, thereby affecting MAPK signaling and PI3K-AKT
signaling. In Figure 5A, the size of protein represents the degree of
the protein, we noticed that EGFR is both a drug target and a GBM
gene, while also exhibits a high degree. So, we infer EGFR as a key
target for imipramine, which plays important role in MAPK
signaling, PI3K-AKT signaling, Neuroactive ligand−receptor
interaction, Synaptic Vesicle Cycle and GABAergic synapse.

Single-cell analysis

To explore the distribution of EGFR genes in tumor
microenvironment (TME), online datasets TISCH2 was utilized.
The expression level of EGFR in different cells was shown in
Figure 6A. Interestingly, we noticed that EGFR was expressed on
neurons with a relative high level in GSE84465. In this way, the GBM
single-cell RNA-seq dataset GSE84465 was chosen for further
analysis. The Uniform Manifold Approximation and Projection
(UMAP) plot of GSE84465 was shown in Figure 6B. The

distribution of EGFR in different cell types was shown in
Figure 6C. We can see that EGFR was expressed in neurons and
astrocytes, implicating its potential role in the regulation of
neurotransmitter.

Then, we visualize four pathways involving in neurotransmitter
activity (Figures 7A–D). Genes involving in GABAergic synapsemainly
distributed in fibroblast, neurons, astrocytes, cycling-T, cycling-
Myeloid, macrophage, implicating these genes may play
important role in immune cell fate (Figure 7A). Genes
involving in Glioma pathway were also distributed in neurons,
fibroblast, and macrophage, B-memory, which confirmed the
importance of neurons, stromal cells and immune cell in the
pathogenesis of glioma (Figure 7B). Consistently, the genes
involving in Neuroactive ligand−receptor interaction were also
distributed in astrocytes, neurons, fibroblast, macrophage and
CD8 cells (Figure 7C). Genes involving in Synaptic Vesicle
Cycle mainly distributed in neurons, astrocytes, cycling-T,
cycling-Myeloid, macrophage (Figure 7D). So, the neurons
might play a pivotal role in reshape TME by regulating
crosstalk between tumor cell, immune cell and stromal cell.

FIGURE 11
Molecular docking. (A) Docking EGFR with imipramine (−4.291 kcal/mol). (B) Docking EGFRvIII with imipramine (−5.242 kcal/mol).
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To confirmed our conjecture, cell-to-cell communication analysis
was conducted. The ligand and receptor pair strength was shown in
Figures 8A–C. We noticed that EGFR gene plays important role in the

communication between neurons and neoplastic cells (Figure 8A).
Additionally, neurons and cycling-myeloid, neurons and
macrophage also exhibit communications. Surprisingly, EGFR,

FIGURE 12
(A) Root-mean-square deviation (RMSD) analysis. (B) The solvent-accessible surface areas. (C) Hydrogen bond interaction.

TABLE 1 Analysis of MMPBSA.

Energy EGFR - imipramine EGFRvIII - imipramine

Van der Waals Energy (KJ/mol) −98.372 −134.599

Electrostatic energy (KJ/mol) −29.479 −26.148

Polar solvation energy (KJ/mol) 73.338 99.033

Nonpolar solvation Energy (KJ/mol) −15.879 −17.653

Total Binding Energy (KJ/mol) −70.392 −79.368

TΔS(KJ/mol) 14.510 14.582

Total Binding Free Energy (KJ/mol) −55.882 −64.786
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COPA, GRN, TNFRSF1B were key ligands and receptors participant in
communications between neurons, macrophage and neopaltic cells. So,
we confirmed the key role of EGFR again, whichmay play an important
role in regulating the crosstalk between neurons and TME. The
communications between all cells were shown in Figure 8D.

The effects of EGFR and EGFR mutation on
immune function

The status of EGFR plays a dominant role in the therapeutic
effect, which might attribute to the immune function difference.
Here, we explore the landscape of immune genes in TCGA-GBM
cohort (Figures 9A, B). We noticed that CD160, HVCN1, IL13,
IL12A were upregulated in EGFR mutated samples. However,
EGFR status might not affect the aspect of immunogenicity in
GBM (Figures 10A–C). Additionally, the pathways including PD-
L1 expression and PD-1 checkpoint pathway, Neuroactive
ligand−receptor interaction, GABAergic Synapse and Synaptic
vesicle cycle showed no difference between the EGFR-mutated
patients and EGFR-wildtype patients (Figures 10D–G).
Interestingly, we noticed that some immune-related pathways
were downregulated in the EGFR-mutated group, including
Cytokine-cytokine receptor interaction, Intestinal immune
network for IgA production, Viral protein interaction with
cytokine and cytokine receptor, Chemokine signaling pathway,
Phagosome, IL-17 signaling pathway and Toll-like receptor
signaling pathway (Figures 10H–N). So, EGFR-mutated
patients might suffer a worse immune status. In addition to
mutation status, EGFR expression also affects immune
checkpoint-related pathways. The PD-L1 expression and PD-1
checkpoint pathway was upregulated in the patients with high
EGFR expression level (Figure 10O). In conclusion, if imipramine
can target EGFR and EGFR mutants, it may improve the immune
microenvironment of patients.

Molecular docking

The binding ability of the key targets was predicted using
molecular docking technology. According to the general
consensus, binding energies below −4.25 kcal/mol indicate
specific binding between the ligand and the receptor. A binding
energy below −5.0 kcal/mol indicates enhanced binding capability.
Throughmolecular docking, we found that both EGFR (−4.291 kcal/
mol) and EGFRvIII (−5.242 kcal/mol) have an excellent binding
ability to the imipramine (Figures 11A, B).

Root-mean-square deviation (RMSD)
analyses

The root-mean-square deviation (abbreviated as RMSD) is a
measure of the deviation of atomic coordinates relative to a
reference structure, and it is often used to evaluate whether a
simulation system has reached stability. A stable RMSD indicates
that the corresponding atoms have become stable, while a
fluctuating RMSD implies fluctuations. The RMSD value of

EGFR-imipramine is higher than that of EGFRvIII-
imipramine, which indicates that the stability of the EGFRvIII-
imipramine composite system is higher than that of the EGFR-
imipramine composite system (Figure 12A).

The solvent-accessible surface areas

The solvent accessible surface area (SASA) is calculated by
considering the interactions between van der Waals forces and
solvent molecules on the solute surface. The SASA of a protein
decreases as the compactness of the protein increases, so changes in
SASA can be used to predict alterations in protein structure. The
fluctuations in SASA values for EGFR-imipramine are greater than
those for EGFRvIII-imipramine, indicating that the stability of the
EGFRvIII-imipramine composite system is higher than that of the
EGFR-imipramine composite system (Figure 12B).

Hydrogen bond interaction

To investigate the interactions between proteins and ligands, we
first performed a hydrogen bond analysis on the protein-ligand
complexes. We found that the average number of hydrogen bonds
for EGFR-imipramine and EGFRvIII-imipramine were 0.09 and
0.13, respectively. This indicates that the hydrogen bond interaction
strength between EGFRvIII and imipramine is greater than that
between EGFR and imipramine (Figure 12C).

MMPBSA the free energy

To better explain the interaction energy between ligands and
receptors, we used the gmx_mmpbsa script (https://jerkwin.github.
io/gmxtool/) to determine the binding energies of all protein-ligand
complexes during the equilibrium phase. In the application of the
MMPBSAmethod, the total binding energy is decomposed into four
independent parts (electrostatic interactions, van der Waals
interactions, and polar and nonpolar solvation interactions). The
results of the protein-ligand binding energies are shown in Table 1.
In the protein-ligand complex systems, the main interaction
energies are van der Waals and electrostatic energy. The binding
free energies of EGFR and EGFRvIII proteins with imipramine
are −55.882 and −64.786 kJ/mol, respectively, further indicating that
the interaction strength between EGFRvIII and imipramine is
greater than that between EGFR and imipramine.

Conclusion

Many studies have focused on imipramine acting directly on tumor
cells to exert a therapeutic effect. However, the therapeutic mechanism
of imipramine exerted on other cells in the GBM tumor
microenvironment has not been fully elucidated. In this study, two
main hypotheses with clinical significance were established. First, based
on network pharmacology, single-cell sequencing and molecular
docking, we identified neuron-derived EGFR as a possible key target
of imipramine. In this way, imipramine might play a key role in
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regulating crosstalk between neurons, circulating myeloid cells, and
macrophages by target neuron-derived EGFR. Next, since EGFR
mutations play an important role in the treatment and drug
resistance of GBM, we compared the differences in immune-related
genes in wild-type EGFR and mutant EGFR samples to confirm
whether the status of EGFR affects the immune system, thus
supporting the regulation of EGFR on immune cells mentioned
above. We found differences in the expression of immune-related
genes between wild-type EGFR patients and mutant EGFR patients.
GSEA analysis showed that the immune-related pathways were
significantly down-regulated in patients with EGFR mutations, while
the PD1 pathway was significantly up-regulated in patients with high
EGFR expression. Therefore, if imipramine can be used to
simultaneously target EGFR mutants and inhibit the expression level
of EGFR, it will be a promising therapeutic strategy.

Since EGFRvIII has pivotal clinical guiding significance in the
diagnosis and treatment of GBM, we continued to explore the
binding ability of imipramine and EGFRvIII. We found that the
binding ability of EGFRvIII and imipramine is stronger. Combined
with previous GSEA analysis of mutant EGFR versus wild-type EGFR,
this finding demonstrates that imipramine may target EGFRvIII,
thereby altering its function, which may benefit immune
microenvironment, such as downregulation of PD1 and PDL1. Last,
whether EGFRvIII derived from extrachromosomalDNA can be bound
and blocked by imipramine may be an interesting question (Li et al.,
2022).

Perspective

In recent years, more and more intersections between
neuroscience and glioma biology were revealed. Venkataramani
et al. have demonstrated that some glioma cells are capable of
forming functional synapses with nearby neurons. In addition,
these glioma cells with functional synapses are able to form
electrically active tissues that can signal to other cells as well to
stimulate glioma cells’migration and growth (Venkataramani et al.,
2019). Targeting specific types of postsynaptic signal processing
processes, or synapse formation mechanisms might be a promising
therapeutic approach. Frank et al. found that the invasion of
glioblastoma cells is controlled by a variety of neuronal
mechanisms (Venkataramani et al., 2022). Consistently, Monje
et al. found that the integration of synapses and electrical signals
into neural circuits contributes to the progression of gliomas
(Venkatesh et al., 2019). Innovative therapeutic advancements
will be developed in the convergence between neuroscience and
neuro-oncology.

The role of GABA in immune regulation is emerging. GABA,
which is transformed from intracellular glutamine by glutamic acid
decarboxylases (GAD1/2). GABA transport signaling through two
receptors, GABAAR and GABABR. Elevated levels of GABA in late-
stage human tumors are inversely associated with prognosis, as are
the expressions of GAD1 and GABABR, which are usually co-
expressed in cancer cells, creating an autocrine signaling loop
(Hanahan and Monje, 2023). Previous studies have shown that
GABA-mediated signaling contributes to the maintenance of cancer
cell proliferation and immune evasion. Additionally, GABA
influences tumor-promoting inflammation, affecting the balance

between the two opposing aspects of the immune response to
tumors. When GABA signaling is inhibited, this balance shifts
towards favoring T cell attack on the tumor. Meanwhile,
previous studies uncovered a mechanism for this immune
evasion: GABA/GABABR/β-catenin signaling in cancer cells
suppresses the expression of pro-inflammatory chemokines
CCL4/5 (Huang et al., 2022). Additionally, GABA regulates
pro-inflammatory macrophage responses associated with
metabolic reprogramming and protein succinylation (Fu
et al., 2022). In the future, exploring the role of GABA
signaling in maintaining the balance between tumor-
promoting inflammation and anti-tumor immune responses
will be an intriguing area of study. Moreover, with the
development of technologies such as spatial transcriptomics
and spatial metabolomics, in some specific brain regions, such
as the hippocampus or other regions, neuron-related
transcription and metabolic signals will be more deciphered.

Limitations

The hypothesis proposed in this paper still has limitations,
the following are some aspects that need to be further improved.
First, due to the limitation of current single-cell sequencing
technology, it is difficult to effectively capture a sufficient
number of neurons in GBM tissue samples, which is caused
by the large cell body and axonal structure of neurons. This
poses a barrier to dissecting neuronal-tumor microenvironment
communication at the single-cell level. Second, our study has a
single-cohort bias, and the differences in the GABA pathway
between normal and GBM samples, as well as the differences in
immune function between wild-type EGFR and mutant EGFR,
need to be verified in large-scale external cohorts. Third, further
validation of molecular biology and pharmacology experiments
is needed.
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