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Disruption of the complex interplay between cells and extracellular matrix (ECM),
the scaffold that provides support, biochemical and biomechanical cues, is
emerging as a key element underlying lung diseases. We readily acknowledge
that the lung is a flexible, relatively soft tissue that is three dimensional (3D) in
structure, hence a need exists to develop in vitromodel systems that reflect these
properties. Lung ECM-derived hydrogels have recently emerged as a model
system that mimics native lung physiology; they contain most of the plethora
of biochemical components in native lung, as well as reflecting the biomechanics
of native tissue. Research investigating the contribution of cell:matrix interactions
to acute and chronic lung diseases has begun adopting these models but has yet
to harness their full potential. This perspective article provides insight about the
latest advances in the development, modification, characterization and utilization
of lung ECM-derived hydrogels. We highlight some opportunities for expanding
research incorporating lung ECM-derived hydrogels and potential improvements
for the current approaches. Expanding the capabilities of investigations using lung
ECM-derived hydrogels is positioned at a cross roads of disciplines, the path to
new and innovative strategies for unravelling disease underlying mechanisms will
benefit greatly from interdisciplinary approaches. While challenges need to be
addressed before the maximum potential can be unlocked, with the rapid pace at
which this field is evolving, we are close to a futurewhere faster, more efficient and
safer drug development targeting the disrupted 3D microenvironment is possible
using lung ECM-derived hydrogels.
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1 Introduction

The human body is a complex, dynamic environment, consisting of many different cell
types that reside in or traverse through defined microenvironments, which is tightly
regulated to maintain a healthy state. When elements within this system become
disrupted, this can lead to the development of disease. In the lung, disruption of the
complex interplay between cells and the extracellular matrix (ECM), the scaffold that

OPEN ACCESS

EDITED BY

Xu Wang,
Shandong University, China

REVIEWED BY

Siva Subramanian,
Yeungnam University, Republic of Korea

*CORRESPONDENCE

Janette K. Burgess,
j.k.burgess@umcg.nl

SPECIALTY SECTION

This article was submitted to
Respiratory Pharmacology,
a section of the journal
Frontiers in Pharmacology

RECEIVED 30 January 2023
ACCEPTED 28 February 2023
PUBLISHED 09 March 2023

CITATION

Nizamoglu M and Burgess JK (2023),
Current possibilities and future
opportunities provided by three-
dimensional lung ECM-
derived hydrogels.
Front. Pharmacol. 14:1154193.
doi: 10.3389/fphar.2023.1154193

COPYRIGHT

©2023 Nizamoglu and Burgess. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Perspective
PUBLISHED 09 March 2023
DOI 10.3389/fphar.2023.1154193

https://www.frontiersin.org/articles/10.3389/fphar.2023.1154193/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1154193/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1154193/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1154193/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2023.1154193&domain=pdf&date_stamp=2023-03-09
mailto:j.k.burgess@umcg.nl
mailto:j.k.burgess@umcg.nl
https://doi.org/10.3389/fphar.2023.1154193
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2023.1154193


provides support and biochemical and biomechanical cues, is
emerging as a key element for deciphering the mechanism
underlying diseases.

Why should we think about 3D in in vitro
model systems?

When we think about the lung in vivo, we readily
acknowledge that it is a flexible, relatively soft tissue that is
three dimensional (3D) in structure. However, in general,
when we work with model systems in vitro, to try to elucidate
processes that underlie homeostasis and disease, we mostly work
with two dimensional (2D) systems. In the lung cells are
surrounded by a specialised ECM, that is appropriate for their
location. Mesenchymal cells are located within a 3D ECM
structure, while epithelial and endothelial cells are usually
attached to a basement membrane on their basal side and their
apical side is subjected to flow of epithelial lining fluid or blood
respectively. The stiffness of the lung tissue, in health is usually
between 1–5 kilo-pascals (kPa), and in fibrotic disease this can
increase up to 100 kPa although the pattern of stiffness can be
very heterogeneous (Booth et al., 2012; de Hilster et al., 2020). 2D
systems are frequently based on a tissue culture plastic or glass
surface, with a stiffness in the gigapascal range, and all cells are
grown with polarity. While a lot has been gained from working in
2D systems there is now an opportunity to move forward with our
models to establish cells in an environment that reflects the
physiological conditions in the lung.

The literature builds a strong body of evidence that the
microenvironment in which a cell resides dictates its responses.
From simple single ECM component studies (Hirst et al., 2000;
Freyer et al., 2001; Bonacci et al., 2003; Parameswaran et al., 2004;
Nguyen et al., 2005; Peng et al., 2005; Bonacci et al., 2006; Dekkers
et al., 2007; Reddel et al., 2013; Morris et al., 2014), through to more
complex cell deposited ECM studies (Johnson et al., 2004; Chan
et al., 2006; Harkness et al., 2017), the influence of the ECM
components on lung cell proliferation, migration, factor output
and response to treatment is evident. However, this information
has been collated from cells exposed to ECM components in 2D. It is
recognised that cells in a 3D environment have differential responses
compared to those in 2D (Duval et al., 2017; Jensen and Teng, 2020).
Therefore, developing systems where the influence of the ECM and
the microenvironment in 3D can be explored will represent a next
step forward for understanding disease underlying mechanisms in
the lung.

Hydrogels from synthetic vs. natural
materials

When considering the possibilities for generating 3D
microenvironments in which lung cells can prosper there are
many different options available. Within the tissue engineering
field much work has concentrated on the development of
polymers from which soft or stiff hydrogels can be cast or 3D
printed (Tibbitt and Anseth, 2009; Melchels et al., 2012;
Hospodiuk et al., 2017; Gungor-Ozkerim et al., 2018). These

synthetic polymers [including polyacrylamide (Marinkovic et al.,
2013) and dextran (Matera et al., 2020)] offer many opportunities
for tuning biomechanical and structural properties of the
microenvironment but are generally inhospitable environments
for cells, requiring the addition of cell binding epitopes, such as
RGD motifs, to enable cellular attachment (Lutolf and Hubbell,
2005; Reddy et al., 2021; Caracena et al., 2022). Alternatively,
natural ECM components have also been used to generate single
component hydrogels that readily support cell attachment, but
are more limited in the possibilities for tuning their
biomechanical properties. Examples of such hydrogels include
collagen type I, fibrin, gelatin (methacrylate) and hyaluronan
(Bourke et al., 2011; Tjin et al., 2017; Sun et al., 2020; Martinez-
Garcia et al., 2021b; Hui et al., 2021; Blokland et al., 2022; Loebel
et al., 2022; Martinez-Garcia et al., 2022). Such hydrogels provide
the 3D environment for cells, modelling the dimensionality and
possibly the biomechanical mimicry of the in vivo situation, but
they are not reflective of the complexity of the ECM components
within the tissue microenvironment. Hydrogels developed from
the solubilized basement membrane matrix secreted by
Engelbreth-Holm-Swarm (EHS) mouse sarcoma cells
(marketed as Matrigel or Geltrex) have been used for more
than 35 years to support cell growth for specific assays,
particularly focussing on stem cell expansion assays (Kleinman
et al., 1982; Kleinman and Martin, 2005; Benton et al., 2009;
Hughes et al., 2010). However, not all cells thrive in such an
environment and there are limited possibilities to manipulate the
composition and biomechanical environment herein.

A recent advance for the lung field has been the development of
hydrogels generated from ECM derived from decellularized lungs.
Porcine lung ECM-derived hydrogels were initially reported
(Pouliot et al., 2016), while human lung ECM-derived hydrogels
have recently been established (de Hilster et al., 2020). This
perspective article presents the latest advances in lung ECM-
derived hydrogels with respect to their development,
modification, characterization and utilization. Moreover, it
explores opportunities and challenges for the field, highlighting
where future research should focus to improve the comparability
of data generated with different measurement systems using lung
ECM-derived hydrogels. Finally, we discuss the multi-disciplinary
nature of the research required to move these model systems
forward.

2 The possibilities with lung ECM-
derived hydrogels

2.1 Lung ECM-derived hydrogels for
mimicking in vivo ECM biochemical
composition

The ECM, including in the lung, is a complex structure of
proteins, glycoproteins, matricellular proteins and many other
regulatory proteins and enzymes that keep this dynamic structure
in balance during tissue homeostasis (Hynes and Naba, 2012).
Mimicking such a complex structure when generating an in vitro
3D environment in which to culture cells to study cell:matrix
interactions is impossible when starting with individual
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components. Sourcing the ECM from decellularized lungs has
provided an opportunity to develop hydrogels that reflect a
major proportion of the elements within this complex mixture.
The process of decellularization requires treating the tissue with a
range of detergents and/or salt solutions (Booth et al., 2012; Wagner
et al., 2014; Dabaghi et al., 2021) that do remove some of the
elements that are part of the matrisome, particularly growth factors
bound to the ECM and some glycoproteins, but the major structural
fibres are retained during this process.

Early proteomic studies (Booth et al., 2012; Uhl et al., 2018)
illustrated the retention of many components of the lung
matrisome in decellularised scaffolds from control and
diseased lung samples. A recent study from the team in the
Weiss lab (Hoffman et al., 2023), has elegantly shown that the
components of the ECM are specific for different compartments
within the lung (airways, alveolus, blood vessels), and that these
change during chronic lung disease. These decellularized
scaffolds from lung tissues have now been used as a source of
ECM for the generation of hydrogels. The processing of the
scaffolds to generate the solution that will gel when brought to
physiological conditions is not thought to lead to further loss of
ECM components, making this an ideal method for developing a
3D in vitro model system in which cells can be cultured in the
presence of this complex mixture of the lung ECM
microenvironment.

It remains to be seen if the absence of the elements of the
matrisome that are lost during the decellularisation process impose a
limitation in the interpretation of data generated when cells are
seeded in such hydrogels (Figure 1). The absence of growth factors
anchored in the ECM scaffolds, and therefore the ECM-derived
hydrogels, after the decellularization process may be considered a
limitation, although it is evident that the growth factor retentive
properties of the ECM are retained as growth factors supplied in
growth media or as part of the secretome from other cells are rapidly
absorbed and then subsequently released from the ECM hydrogels

(van Dongen et al., 2019). In addition, ECM-derived hydrogels are a
source of extracellular vesicles (Ulldemolins et al., 2022), adding
another aspect to the regulatory processes induced by these cell
support structures.

2.2 Lung ECM-derived hydrogels for
mimicking tissue biomechanical
environments

The structural environment provided for cells by lung ECM-
derived hydrogels is another advantage when aiming to develop in
vivo mimicking model systems. Although the adoption of the
method for generating lung ECM-derived hydrogels was only
recently reported (Pouliot et al., 2016; de Hilster et al., 2020), the
field is advancing rapidly with innovative approaches exploring how
different properties can be measured and modified. Among these
properties, mechanical properties and topography are two
important characteristics of the hydrogels.

When considering mechanical properties of the hydrogels
stiffness, Young’s modulus, viscosity or viscoelastic stress
relaxation are the usual parameters measured (Vedadghavami
et al., 2017). To date, a number of different strategies for
measuring mechanical properties of lung ECM-derived
hydrogels have been described, although it is important to
highlight the challenge when it comes to comparing different
studies performed using different measurement approaches for
the mechanical properties (Polio et al., 2018). Rheometry is one
of the most commonly applied methods for measuring
mechanical properties of hydrogels (Stojkov et al., 2021). So
far, characterization using rheometry has been applied to
measure storage (G’) and loss (G”) moduli of porcine (Pouliot
et al., 2016) and human lung ECM-derived hydrogels (Dabaghi
et al., 2021). In addition, viscosity and Young’s modulus of
porcine-sourced lung hydrogels were reported using parallel

FIGURE 1
Summary of current possibilities and future opportunities with three-dimensional lung ECM-derived hydrogels.
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plate rheometry (Falcones et al., 2021). Other studies have
utilized this method on alginate-porcine ECM (De Santis
et al., 2021), poly(ethylene glycol) (PEG)-murine ECM (Saleh
et al., 2022), and PEG-porcine ECM (Petrou et al., 2020) hybrid
hydrogels. Low-Load compression testing (LLCT) is another
compression-based method (Sharma et al., 2011) that has been
used with lung ECM-derived hydrogels. Stiffness and viscoelastic
stress relaxation capacity of human non-disease control, chronic
obstructive pulmonary disease (COPD) and idiopathic
pulmonary fibrosis (IPF) lung ECM-derived hydrogels have
been reported; moreover, the mechanical properties of the
hydrogels derived from these diseased lungs resembled such
properties of the native tissues from which the ECMs were
sourced (de Hilster et al., 2020). Similarly, LLCT-measured
stiffness and stress relaxation parameters of both native and
chemically crosslinked porcine lung ECM-derived hydrogels
were also reported (Martinez-Garcia et al., 2021a; Nizamoglu
et al., 2022a). Lastly, atomic force microscopy (AFM), which is
a more micro-level mechanical measurement based on
indentation, was recently used to characterize Young’s
modulus values of porcine lung ECM hydrogels (Falcones
et al., 2021).

Measuring the mechanical properties is not only useful for
diseased environment characterization, but also for verification of
the success of methodologies designed to alter such properties.
While it is clear that the use of different concentrations of the
starting ECM material (powder) (Pouliot et al., 2016) and
adjusting the pepsin digestion duration (the essential step in
generation of a pre-gel ECM-derived substrate) (Pouliot et al.,
2020) influences the mechanical properties, one of the initial
attempts to specifically modulate the mechanical properties of
lung ECM-derived hydrogels was treating the porcine lung ECM
with genipin to increase the stiffness (Link et al., 2017). This
approach has been extended with thiol-functionalization (Petrou
et al., 2020; Saleh et al., 2022), alginate-reinforcing (De Santis
et al., 2021) or fibre crosslinking (Nizamoglu et al., 2022a) to

allow greater control over mechanical parameters in the lung
ECM-derived hydrogels.

The concepts of altering the mechanical properties,
measuring and reporting these changes triggered in the lung
ECM-derived hydrogels have been evolving as more novel tools
are developed (Figure 1). However, mechanical characterization
of lung ECM-derived hydrogels is far from completed. As of
today, tensile testing or fatigue testing on such hydrogels have yet
to be performed, although using polyacrylamide-ECM hybrid
hydrogels these properties were characterized in an early study
(Sava et al., 2017). A thorough mechanical and cross-platform
characterization of lung ECM-derived hydrogels has not been
reported yet. Providing (the comparison of) such
characterizations would help the field regarding the
interpretation and comparison of different studies using
different methods to measure similar parameters. As the field
is new, establishing different methods and discussing their
advantages and limitations will be important for being able to
understand the emerging knowledge about ECM mechanical
properties and the functional impacts of these
microenvironment parameters.

Another important property which goes hand-in-hand with
mechanics is topography, reflecting the fibrous landscape within
the ECM-derived hydrogels. In chronic lung diseases like COPD
or lung fibrosis, the ECM topography is altered next to the
mechanical properties of ECM (Abraham and Hogg, 2010;
Tjin et al., 2014; Tjin et al., 2017; Burgess and Harmsen, 2022;
Nizamoglu and Burgess, 2022). Using lung ECM sourced from
diseased human lungs, for the generation of the hydrogels, would
inherently convey (most of) the biochemical composition and
resemble the mechanical properties; however, the native
architecture of the lung ECM assembly is lost during the
process of preparing ECM-derived hydrogels. Recently,
preparing porcine lung ECM hydrogels with micropatterned
surfaces was described as a method to prepare arrays for drug
screening (Zhu et al., 2022). This study demonstrates the

FIGURE 2
Interdisciplinary advances to progress towards a better preclinical model using hydrogels.
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preparation of spherical patterns on the hydrogel surface with
different diameters, although the aspects of altering the hydrogel
surface to guide cell fate, behaviour or differentiation remain
unexplored. Alternatively, electrospinning could provide another
opportunity to alter the structural organization of the fibres
(Hasirci and Hasirci, 2018). While electrospun poly(L-lactic
acid) (PLLA)/porcine lung ECM hybrid scaffolds have been
previously established (Young et al., 2017), there is no report
of electrospinning of pure decellularized lung ECM. Developing
novel tools to modify the topography of the ECM fibres within the
hydrogels and the regulation of the structural arrangements
within these hydrogels requires more attention. Surface
modifications on non-ECM-derived hydrogels is not a novel
concept (Richbourg et al., 2019; Cai et al., 2020), yet little is
known about applying such modifications to the locations within
the hydrogels in different planes in order to mimic the
architecture of the native lung tissue.

The details of measuring, reporting and altering the properties
of lung ECM-derived hydrogels gain more importance as the field
progresses. Unfortunately to date, attempts at modifying
properties of lung ECM-derived hydrogels remain rather
limited. While the latest studies have focused on altering
mechanical properties at a global level, new and innovative
methodologies that will allow us to initiate more targeted
modifications in such properties are required. Especially
considering the heterogeneity of lung tissue and its architecture,
having more control over spatial distribution of alterations in
mechanical properties would enhance the in vivo mimicking
capacity of our models.

2.3 Lung ECM-derived hydrogels for
mimicking cell:matrix interactions

The in vivo mimicry of the composition and mechanics of the
cellular microenvironment present in the lung ECM-derived
hydrogels creates an ideal setting for culturing cells within a
3D spatial location. As soon as cells are seeded in hydrogels they
begin to remodel their microenvironment (Tjin et al., 2017;
Martinez-Garcia et al., 2021b; Martinez-Garcia et al., 2022).
Early reports of cells in lung ECM-derived hydrogels reflect
findings in single component ECM hydrogels (Tjin et al.,
2017), indicating that cells remodel the ECM in which they
are embedded, and the nature of the ECM that they encounter
directs these remodelling events (Nizamoglu et al., 2022b;
Falcones et al., 2022). This fact makes the use of lung ECM-
derived hydrogels sourced from diseased lungs an ideal model to
understand cellular responses within such a diseased
microenvironment and to provide greater knowledge of the
influence of the microenvironment to treatment effects.

Initial studies using porcine lung ECM-derived hydrogels
reported successful growth of human and rat mesenchymal
stromal (stem) cells (MSCs) in 2016 (Pouliot et al., 2016). Link
et al. (2017) then described successful culture of mouse MSCs,
human alveolar epithelial cells (the cell line A549), human
primary microvascular endothelial cells (HpuVECs), and
human umbilical vein endothelial cells (HUVECs) in
porcine lung ECM-derived hydrogels. The field is now rapidly

expanding with additional cells types including murine
fibroblasts (Petrou et al., 2020), rat lung MSCs (Falcones et al.,
2021) and rat primary alveolar epithelial cells (Marhuenda et al.,
2022b) being grown in porcine lung ECM-derived hydrogels. The
use of human lung ECM-derived hydrogels is now also possible,
with human fibroblasts and airway smooth muscle cells being
grown both within and on top of these hydrogels (De Santis et al.,
2021; Nizamoglu et al., 2022a; Nizamoglu et al., 2022b).

The field is now moving forward with the cellular systems
that are being explored, taking advantage of the values of lung
ECM-derived hydrogels. Multi-cellular culture systems are being
developed to enable cellular cross-talk in a 3D
microenvironment to be examined (Park et al., 2018), and
lung ECM-derived hydrogels are being incorporated into
other experimental systems (for example, lung on chip or
stretching/mechanical force setups) to bring the cell
microenvironment in those systems also (Park et al., 2021;
Marhuenda et al., 2022a). The possibilities for 3D printing
lung ECM-derived hydrogels are also being examined,
suggesting greater scope for spatial arrangement of cells
within their 3D microenvironment will be possible in the
future (De Santis et al., 2021; Falcones et al., 2021).

While the 3Dmodel systems made possible with the use of lung
ECM-derived hydrogels are rapidly advancing, the readouts that
can be used to investigate end points within these systems are
presenting some limitations (Figure 1). Traditional imaging setups
are excellent for capturing images in 2D but moving into the third
dimension proves challenging to visualise. Lung ECM-derived
hydrogels are not translucent, like many of the single ECM or
synthetic hydrogels, and this opacity challenges the optical depth of
field. The autofluorescence of the lung ECM generates a very noisy
image when using many traditional fluorescent reporters. Finally,
tracking cell behaviours over time in 3D is extremely difficult to
automate when the cells continuously move out of the plane of
focus. Advances in imaging and capturing information from cells
when they are interacting within their microenvironment is
urgently needed to facilitate the full capacity of lung ECM-
derived hydrogels.

3 Discussion and future remarks

Studies in lung ECM-derived hydrogels will help to inform us
of the optimal microenvironment for different cell types, as the
cells continuously remodel their environment in, what appears to
be, a programmed response. Whether there is temporal
regulation of the remodelling, in particular in response to
injury, is an outstanding question for the field. How these
processes are altered in chronic lung diseases, and whether the
progression of such processes can be reversed is knowledge that
can be informed through the use of lung ECM-derived hydrogels.
The approaches described above, including modulating
mechanical properties of ECM-derived hydrogels without
changing the ECM composition and the application of
mechanical forces to cells within a 3D microenvironment, are
attractive as they will facilitate research enabling the field to begin
separating influences of the mechanical changes from those of the
biochemical changes in the ECM in lung diseases. Such
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elucidation may open the door for development of
mechanosensitive therapeutic targets for lung diseases.

To fully leverage the advantages offered by lung ECM-derived
hydrogels multi-disciplinary teams who bring together expertise
from the diverse fields needed to advance such systems will be
necessary (Figure 2). Innovative researchers from pulmonology,
cell and molecular biology, polymer chemistry, biomedical
engineering, imaging and physics backgrounds are all needed
to maximise opportunities and ensure the current challenges
quickly become advantages for this exciting, emerging area of
lung disease research.
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