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Lenvatinib (LVN) has been appoved to treat advanced renal cell carcinoma,
differentiated thyroid carcinoma, hepatocellular carcinoma. Further other
cancer types also have been tried in pre-clinic and clinic without approvation
by FDA. The extensive use of lenvastinib in clinical practice is sufficient to illustrate
its important therapeutic role. Although the drug resistance has not arised largely
in clinical, the studies focusing on the resistance of LVN increasingly. In order to
keep up with the latest progress of resistance caused by LVN, we summerized the
latest studies from identify published reports. In this review, we found the latest
report about resistance caused by lenvatinib, which were contained the hotspot
mechanism such as the epithelial-mesenchymal transition, ferroptosis, RNA
modification and so on. The potential ways to conquer the resistance of LVN
were embraced by nanotechnology, CRISPR technology and traditional combined
strategy. The latest literature review of LVN caused resistance would bring some
ways for further study of LVN. We call for more attention to the pharmacological
parameters of LVN in clinic, which was rarely and would supply key elements for
drug itself in human beings and help to find the resistance target or idea for further
study.
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1 Introduction

Lenvatinib (LVN) is one of the representatively multi-target tyrosine kinase inhibitor.
The target of LVN contains fibroblast growth factor receptors 1-4 (FGFR1-4) (Uehara et al.,
2022), vascular endothelial growth factor receptors 1-3 (VEGFR1-3) (Muraishi et al., 2022),
stem cell factor receptor (c-KIT) (Chen et al., 2022a) and rearranged during transfection
(RET) (Hegde et al., 2020). As an oral tablet or capsule, Food and Drug Administration
(FDA) approved LVN for refractory differentiated thyroid cancer in 2015 (Inc E, 2015; FDA,
2016). In the next year, the indication for advanced renal cell carcinoma (RCC) with
everolimus was approved (Motzer et al., 2015). In 2018, the usage for advanced radioiodine-
refractory differentiated thyroid carcinoma (DTC), which acted as the second-line plan, has
been confirmed by FDA (Wirth et al., 2018). In the same year, LVNwas approved for the first
time as a treatment for hepatocellular carcinoma (HCC). Latestly, in 2021, FDA approved
the combination of LVN plus pembrolizumab for advanced renal cell carcinoma (RCC) and
advanced endometrial carcinoma (EC) as the first-line treatment regimen of adult patients
The timeline of LVN Indication approval was exhibited in the Figure 1. The effective therapy
from LVN gains large attention from clinicians. Herein, the question of LVN resistance has
naturally become a hot topic for scientists to study, no matter in the cancer types of RCC,
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HCC or DTC (Hu et al., 2022a; Persano et al., 2022). At present,
LVN has achieved good efficacy in the targeted therapy of many
cancer types (Su et al., 2022a; Wassermann et al., 2022). However, in
cancer types such as liver cancer, once LVN is resistant to drugs, the
drug effect of second-line therapy is often poor (Jindal et al., 2019).
Therefore, exploring the mechanism of LVN resistance and delaying
the occurrence of drug resistance can effectively prolong the life
cycle of these patients. Herein, in this article, we summerized the
latest resistance mechanisms, meanwhile provided the lastest train
of thought to conquer or decrease the resistance. Further, discussion
from the scope of drug itself, especially in clinical pharmacological
character, to make some effort to enhance the therapeutic outcome
of LVN would bring more benefits.

2 Clinical pharmacological character
of LVN

2.1 Clinical absorption, distribution,
metabolism, execretion of LVN

As shown in Figure 1, LVN is administered by oral route at doses
from 8 to 24 mg per day. The specific dosage was fixed according to
which type of cancer and which stage of cancer (Taylor et al., 2022).
After oral administration, the absorption rate of LVN, could be
reached to 98%–99% with plasma proteins primarily to albumin,
and the binding is concentration independent (Ye et al., 2021). A
high-fat diet slows the absorption of LVN, but has no significant
effect on systemic exposure (Shumaker et al., 2014a).

The maximum concentration of LVN was floated between 1 h
and 4 h (Shumaker et al., 2014a) after absorption orally. The
terminal half-life (t1/2) was about 28 h, which was considered to
be taken as once a day regimen (Dubbelman et al., 2012). The
apparent oral clearance was ranged from 4.2 L/h to 7.1 L/h, with

terminal volume of distribution from 50.5 L to 163.0 L, respectively.
According to a large sample size (n = 779) of LVN clinical study
data, three-compartment model with linear elimination was
reproted (Gupta et al., 2016). The clinical pharmacological
character of LVN was displayed in the Table 1.

LVN is mainly metabolized by cytochrome P450 (CYP) in the
liver. More than 80% was metabolized by CYP3A4 (Gupta et al.,
2016). Meanwhile, as a substrate of both ATP-binding cassettes
(ABC) transporters, P-glycoprotein (P-gp) and breast cancer
resistance protein (BCRP), LVN could be transported by them
(Ozeki et al., 2019). One report concluded that ketoconazole
could increase the maximum plasma concentration of LVN,
while the elimination half-life of LVN was not altered (Shumaker
et al., 2015). As we know, ketoconazole is a inhibitor of P-gp
and BCRP.

The main metabolites of LVN contains decyclopropylation,
demethylation, N-oxidation, and O-dearylation with the help of
MS assay (De Mattia et al., 2019). The excretion route of LVN is via
the biliary route. There was no accumulation even after multiple
daily doses (Boss et al., 2012). What’s more, PK parameters, such as
apparent clearance, distribution volumn (Zhang et al., 2022a) of
LVN was unaffected by pH-elevating agents (including proton
pump inhibitors, antacids, H2 blockers), age (from 18 to 89),
race (including while, black, asian, japanese, hispanic and other),
and renal function (creatinine clearance) (Gupta et al., 2016) and
so on.

2.2 Clinical plasma concentration of LVN

The reports about clinical plasma concentration of LVN were
insufficient. The report concerned with clinical plasma data also
with parameter of PK/PDwas supplied by IkedaM et al. (Ikeda et al.,
2016). In this study, 20 patients were enrolled. The Css of LVN was
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ranged from 346 to 349 ng/ml of the multiple dose (12 mg daily).
Another differentiated cancer of the thyroid SELECT study (n =
260) found that the mean dose-normalized AUC was 3710 ng*h/ml
(Gupta et al., 2016). Thirty-two healthy Chinese volunteers were
enrolled with 8 mg dosage of LVN per day. The maximum
concentration of LVN in the group of CYP3A4*1G/*1G allele
carrier subjects was 73.4 ng/ml, which was higher than the group
of *1 carrier (53.5 ng/ml). However, the steady state concentration
data were not included in this study (Li et al., 2020). Similarly,
40 Japanese patients with thyroid cancer study supplied that
pharmacokinetic parameters of LVN were signifcantly infuenced
by the carrier of 20230G>A on CYP3A4 (Ozeki et al., 2019). The
dose-adjusted C0 (ng/mL/mg) was used to denote the concentration
of LVN. The specific concentration of LVN was still missing.

The obstacle for LVN clinical monitoring might be related with
these reasons. 1) For clinical patients, compliance is very poor. As we

known, the time points of PK experiments were very intensive. As
claimed by Ikeda M et al. (Ikeda et al., 2016), blood samples were
obtained for PK analysis on day 1 (predose and 0.5, 1, 2, 4, 6, 8, and
24 h postdose), day 8 (predose), day 15 (predose and 0.5, 1, 2, 4, 6, 8,
and 24 h postdose), and day 22 (predose) of cycle. These type of
blood collection for patients must be a great challenge. Herein, the
study about the PK parameters of LVNwould be usually in the phase
I study rather than in normal clinical study. 2) There are no reliable
and sufficient research to refer, especially on the relationship
between specific concentration of LVN and advers reaction.
Hence, the attention about the concentration of LVN was few. If
the multi-ethnic and multi-central study focusing on the
concentration of LVN could be done, the precision therapy of
LVN would be giving huge step forward. Hence, we suggest that
more attention on the concentration of LVN in human beings. The
real concentration of LVN is the most intuitive indicator of a drug’s
effect in the body, which other indirect indicators can not be
replaced. The concentration study should be explored first and be
considered as a basis for other research.

3 Resistance mechanism

The drug resistance is normal dillema among nearly all
therapeutic drugs. As the time of therapy prolonging, the
cancerous cells could adapt the blocking pathway. Then the drug
resistance appeares. The drug resistance mechanisms of LVN
included blockage the target of VEGFR, FGFR, PDGFR, KIT and
RET, which has been specifically depicted in previous reviews (Al-
Salama et al., 2019; Zhao et al., 2020; Mo et al., 2021; Wirth et al.,
2022). Because LVN acts on these above-mentioned multiple

FIGURE 1
Overview of LVN pharmacodynamics and pharmacokinetics in vivo and the time line of Indication approval.

TABLE 1 Clinical pharmacological character of LVN.

Clinical pharmacological character of LVN

Parameters Data Refs

Maximum concentration 1–4 h Shumaker et al. (2014a)

t1/2 28 h Dubbelman et al. (2012)

Apparent oral clearance rate 4.2 L/h to 7.1L/h Gupta et al. (2016)

Terminal volume of distribution 50.5 L–163.0 L Gupta et al. (2016)

Dose-normalized AUC 3710 ng*h/ml Gupta et al. (2016)
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molecular targets, these types of resistance mechanism are among
the first to be studied. Additionally, the cell apoptosis, cell
ferroptosis, checkpoint regulation, cytokine overproduction, N6-
threonylcarbamoyladenosine modification and so on, emerged
latestly. Herein, we summerized the latest resistance studies and
cleared up them from primary or acquired resistance about LVN
aiming to provides a potential classification and treatment strategy
for LVN.

3.1 EMT-related resistance

The epithelial-mesenchymal transition (EMT) in cancer cells
not only results in metastasis, but also contributes to drug
resistance in recent years (Liu et al., 2021; Pan et al., 2021;
Kichi et al., 2022). The brief process of EMT could be drew as
epithelial cells displaying collapse of cell-cell junctions, then
temporaryly transiting to cells with ability of migration
(Hardy et al., 2010; Erin et al., 2020). The expression of
fibroblast growth factor receptor 1 (FGFR1) has been playing
critical role in EMT, which could promote the occurrence of EMT
(McNiel and Tsichlis, 2017; Roy Burman et al., 2021).

LVN acted as FGFR inhibitor, while sorafenib played role as
tyrosine kinase inhibitors. The inhition of FGFR might be potential
to decrease EMT. Herein, Lee YS et al. (Lee et al., 2018). included 3 cell
models, which included patient-derived PTC cells, patient-derived ATC
cells and resistance to sorafenib ATC cells. In this study, sorafenib was
acted as a positive control. The treatment regimen was designed as
group one for LVN alone, group two for sorafenib alone, group three for
LVN with HNHA (histone deacetylase) and group four for sorafenib
with HNHA. HNHA is quitely required in TGFβ1 induced EMT. The
experimental data exhibited that group three was more effective than
other three groups. These findings have implications for ATC treatment
by preventing drug resistance in cancer stem cells and further this type
of drug resistance belonging to the acquired drug resistance. The
potential EMT-related mechansim of LVN was depicted in the
Figure 2A.

3.2 DNA damage response (DDR) involved
resistance

Genomic instability is a key symbol of tumor occurrence,
development, metastasis, drug resistance that arises owing to

FIGURE 2
The resistance mechanism focuing on EMT, DNA damage, ferroptosis and autophagy of LVN. (A) EMT-mediated drug resistance via the FGFR
onanaplastic thyroid cancer cells. (B) The combination of DNA damage response regulator with the inhibitor of CDC7 could bring out better therapuetic
outcome of LVN in HCC via inhibiting DDRmediated drug resistance. (C) LVN involved in inhibition of ferroptosis participating process through blockage
of the cystine import activity of GPX4. (D) Blocking intrinsic autophagic flux by knockout LAPTM5 or adding autophagy inhibtor, HCQ, could be
overcome resistance caused by LVN.
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defects in the DNA damage response (DDR) (Pilié et al., 2019;
Reisländer et al., 2020). As more and more DDR signaling pathways
are discovered, the resistance therapy of DDR supplies an attractive
way (Chao et al., 2022). The cell cycle checkpoint kinases
CHK1(checkpoint kinase 1) and CHK2 (checkpoint kinase 2) act
together on DDR pathways and are immediate targets of ATR
(taxia-telangiectasia and Rad3 related) and ATM (ataxia-
telangiectasia mutated), respectively (Serra et al., 2022).

Guo Y et al. (Guo et al., 2021a) concluded that ATR-CHK1
signaling would be a therapeutic target for liver cancer. As reported,
the role of ATR-CHK1 has been considered as a necessary regulator
of the DDR, which especially involved in sensing DNA replication
stress (Smith et al., 2020; Khazaaleh et al., 2021; Vazhappilly et al.,
2021). Further, this signal could activate oncogene and regulate
G1 checkpoint (Khazaaleh et al., 2021). Until now, the inhibitor of
ATR and CHK1 exhibited good therapeutic effect on tumor in
labortary, while the strategy on clinic still recommended the
combination therapy of them.

The cell division cycle 7 (CDC7) protein conferred in S-phase
checkpoint and M-phase completion during DNA replication
initiation (Montagnoli et al., 2010). The significant different
expression of CDC7 in HCC tumor tissues comparision with
non-tumor tissues pointed out a beautiful window for HCC
treatment (Rojas-Prats et al., 2021). Rojas-Prats E et al. (Rojas-
Prats et al., 2021) chose eight human HCC cell lines, which
containing Hep3B, SNU398, SNU449, SNU182, Huh7, Huh6,
PLC/PRF/5 and HepG2 to verify. In this study, the inhibitor of
CDC7 increased DNA replication stress and then sensitized tumor
cells to ATR or CHK1 inhibitors, respectively. As a result, the
comnbination of ATR and CDC7 inhibitors would be
recommened. The DDR involved resistance mechansim of LVN
was depicted in the Figure 2B according to the corresponding
reports (Guo et al., 2021a), and further this type of drug
resistance belonging to the primary drug resistance.

3.3 Ferroptosis participated resistance

In the past decade, ferroptosis has been found confering more
and more types of tumours (Chen et al., 2021; Lei et al., 2022).
Ferroptosis is different from other types of cell death, which
containing cell apoptosis, necrosis, and autophagy (Hassannia
et al., 2019; Zhang et al., 2022b). The characteristic of ferroptosis
is that it’s highly accompanied by the iron-dependent accumulation
of lethal lipid reactive oxygen species (ROS) (Huang et al., 2023).
The promotion of ferroptosis could significantly improve the killing
ability of cancerous cells.

Iseda N et al. (Iseda et al., 2022) found out that LVN could
suppress the expression of glutathione peroxidase 4 (GPX4) via
decreasing the cystine import activity of GPX4 and eventually
leading to the accumulation of lipid ROS. Silencing-FGFR4
suppressed GPX4 expression and increased lipid ROS levels.
Further the activation of Nrf2 suppressed ferroptosis similarly by
lipid ROS accumulation. Herein, Nrf2 inhibitors could be efficiently
with LVN in the near future. The ferroptosis participated resistance
mechansim of LVN was depicted in the Figure 2C according to the
abovementioned reports (Iseda et al., 2022). Because of ferroptosis

was caused by LVN, the resistance would grouped to acquired drug
resistance.

3.4 Autophagy related resistance

Autophagy is regarded as an adaption way for tumor cells to
survival along with long time evolution. Herein, it has been certified
to play a double-edged sword in drug resistance (Smith and
Macleod, 2019; Yao et al., 2022). On one hand, autophagy
participates in the development of drug resistance and protects
cancer cells from chemotherapeutics (Gao et al., 2022). On another
hand, it kills resistance cancer cells via promoting cell autophagy (Jin
et al., 2022). Pan J et al. (Pan et al., 2022) integrated unbiased whole-
genome CRISPR-Cas9 screen with database analysis indicated
LAPTM5 (lysosomal protein transmembrane 5) as the critical
contributor to LVN resistance in HCC. LAPTM5 was located on
the membrane of lysosome (Zouali, 2014). LAPTM5 could
drastically promote autophagic flux by facilitating
autophagososme-lysosome fusion to reduce HCC sensitivity to
LVN. Blocking intrinsic autophagic flux by knockout
LAPTM5 or adding autophagy inhibtor, HCQ, could be
overcome resistance caused by LVN. This finding supplied a
potential combination strategy for LVN therapy in clinic.The
autophagy participated resistance mechansim of LVN was
supplied in the Figure 2D according to the abovementioned
reports (Pan et al., 2022). Similarly, autophagy was induced by
LVN. This type of resistance could be acted as the acquired drug
resistance.

3.5 RNA involved in regulating resistance

Long non-coding RNAs (lncRNAs) plays an important role in
drug resistance (Wang et al., 2019). Numerous studies supplied that
lncRNAs involved in drug resistance through coordinating with
microRNAs (miRNAs) and protein-coding mRNAs via influencing
transcription, post-transcription and translation (Jiang et al., 2020;
Li et al., 2021a). Recently, lncRNAs function has been recommened
as competitive endogenous RNAs (ceRNAs), which integrated with
miRNAs and adjusting the expression of their downstream target
genes (Xuan et al., 2019).

Yu T et al. (Yu et al., 2021) found lnc-RNA MT1JP was
upregulated in LVN resistant HCC (LR-HCC) cells, when
compared with none resistance HCC cells. The anti-apoptotic
protein, namely Bcl-2 like 2 (BCL2L2), could sponge of
microRNA-24-3p by MT1JP releasing. The BCL2L2, microRNA-
24-3p and MT1JP formed a positive-feedback loop to promote the
drug resistance. Wang Y et al. (Wang et al., 2022a) reported a novel
lncRNA, AC026401.3, which promoted sorafenib and LVN
resistance in HCC cell lines. AC026401.3 interacted with
OCT1 and promoted the recruitment of OCT1 to the promoter
region of E2F2. Consequently, it upregulated the expression of the
transcription factor E2F2. Lastly, LVN resistance in HCC was
appeared. The MT1JP was screened from LR-HCC cells. The
mechanism of lnc-RNA MT1JP was derivated from acquired
drug resistance.
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Xu X et al. (Xu et al., 2022) reported that the overexpression and
activation of c-Met participating in LVN resistance human HCC cell
line, Huh7 and SMMC-7721 cell line. The upstream mechanisms
was found related with miRNA-128-3p. The miR-128-3p regulated
the expression of c-Met negatively and it was lower expression in
LVN resistance cell line rather than in none resistance cell line. The
miR-128-3p/c-Met axis was found out that it adjusted proliferation
and apoptosis-related signaling pathways in LVN resistance cell line
to realize and promote resistance. RNA involved in regulating
resistance in HCC was supplied in the Figure 3A according to
the report of Yu T et al. (Yu et al., 2021). The function of miRNA-
128-3p would also be regarded as acquired drug resistance.

3.6 RNA modification jointed resistance

RNAmodification incorporated with severing and base modification
was remained as potential targets of cancer accurate therapy (Barbieri and
Kouzarides, 2020; Liu et al., 2023). N6-threonylcarbamoyladenosine (t6A)
and its derivatives are universally conserved modified nucleosides and
belongs to the most common modification of tRNAmodification (Wang
et al., 2022b). This type of modification has multiple roles of tRNAs in
decoding and protein synthesis (Matuszewski et al., 2017).

YRDC is highly conserved and derived from E. coli to Homo
sapiens (Jia et al., 2002). YRDC/Sua5 family confers in the t6A
biosynthesis of tRNA. This family has been proved promotion the
resistance to EGFR-TKI pathway (Shi et al., 2022). The t6A
modification mainly decoding ANN codons is one of the
15 universally conserved modification (Cantara et al., 2011). The
t6A modification could reinforce the codon-anticodon interaction
and improve translational fidelity by the ribosomes (Su et al., 2022b).
YRDC/Sua5 could influence the protein translation at the level of
codon recognition (Yarian et al., 2000). Further, YRDC promoted
the proliferation of HCC cells via activating the RAS/RAF/MEK/
ERK signal pathway. And this signal axi was the primary pathway of
LVN in the treatment of HCC (Shi et al., 2022). Herein, team of Guo
J et al. (Guo et al., 2021b) made brave speculation about the role of
YRDC. Guo J et al. (Guo et al., 2021b) demonstrated that YRDC
knockdown’s Huh7 cells exhibted less sensiticity to LVN
comparision with parental cells. Furthermore, the expression of
YRDC was decreased in a time dependent manner by LVN. This
phenonmen could explain the occurence of LVN resistance in clinic
with the prolong therapeutic time. Consequently, the effect of tRNA
with low t6A modification levels could dramatically reduce the
translation of the KRAS in vitro translation system and mediate
resistance of LVN. The YRDC was verified from cells without LVN

FIGURE 3
The resistance mechanism focuing on RNA, RNA modification, cytokine and post-translational modification of LVN. (A)Sponging of microRNA-24-
3p by MT1JP released BCL2L2, thereby forming a positive-feedback loop to realize LVN resistance. (B)YRDC knockdown showed decreased sensiticity to
LVN via t6A modification. (C) Angiogenic cytokine overproduction confered in LVN-resistance in HCC and thereby contribute to tumor angiogenesis to
increase the occurence of resistance. (D) Up-regulated ITGB8 in LVN resistance HCC cells leading to AKT’s ubiquitination to achieve resistance.
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longterm induced. Herein, it might be probably suggested to
regarded as the primary drug resistance. The potential
mechansim was exhibited in Figure 3B.

3.7 Cytokine overexpression related
resistance

Cytokine plays “telephone” roles in cell to cell, or organelle to
cell. The cytokine-mediated signaling networks, which is relevant to
tumor progression, metastasis and resistance, and supply new
window into the mechanistic details for novel therapeutics for
cancer (Bhat et al., 2022; Gandhi et al., 2022). In terms of
cytokines, Ao J et al. (Ao et al., 2021) isolated supernatant
derived from LVN-resistant Huh7 cells to comparing with none-
resistance cell. Totally, 105 different antibodies were identified via a
cytokine array. Among them, 16 cytokines were overproduced. Only
three angiogenic cytokines: VEGF, platelet-derived growth factor-
AA (PDGF-AA), and angiogenin, were dramatically different
compared with the control. Of importance, the supernatant of
cell culture from LVN-resistant Huh7 cells exhibited the ability
of acceleration tube formation by HUVECs. These findings
indicated that angiogenic cytokine overproduction confered in
LVN-resistance in HCC and thereby contribute to tumor
angiogenesis to increase the occurence of acquired drug
resistance. The potential mechansim was exhibited in Figure 3C.

3.8 Post-translational modifications
attended in resistance

Post-translational modifications, which included phosphorylation
(Melo-Braga et al., 2021), acetylation (Narita et al., 2019), methylation
(Kalinina and Novichkova, 2021), S-nitrosylation (Paakinaho et al.,
2021), SUMOylation (Zittlau et al., 2022) and ubiquitylation (Chen
et al., 2020), are critical for protein function and interaction with RNA,
DNA or other key signal molecules. Post-translational modification will
be resulted in conformational in protein structure, biological function of
proteins, and signature of metabolic transformations changes
(Tikhonov et al., 2021).

Hou W et al. (Hou et al., 2022) chose two LVN resistant HCC
cell lines and consequently screened integrin subunit beta 8 (ITGB8)
as a critical contributor to LVN acquired drug resistance in HCC cell
lines. In this study, ITGB8 was related with phosphorylation of
HSP90. The phosphorylation of HSP90 could lead to the
ubiquitination of AKT and then degrade of AKT. The potential
mechansim was depicted in Figure 3D.

4 Potential ways to conquer LVN’s
resistance

4.1 Active target therapy to enhance the
efficacy and prolong the time to onset of
resistance

The emergency of nanotechnology, which is based on passive or
active targeting drug delivery systems, is as the most promising

strategy for cancer therapy owing to the size and surface properties
of nanomedicines could contribute to the improvement of
pharmacokinetic and pharmacodynamic for intracellular delivery
of anti-cancer drugs (Azizi et al., 2022; Hao et al., 2022; Magne et al.,
2022). Intrahepatic cholangiocarcinoma (ICC) is a primary
hepatocellular carcinoma that originates from the region of the
intrahepatic bileduct epithelium to the heringian duct epithelium.
Zhouyu Ning et al. (Ning et al., 2022) successfully constructed
H-MnO2-FA nanoparticles, which aimed target ICC and
delivered LVN actively. This nano drug delivery system
demonstrated effectively inhibition rate of cell proliferation and
cell apoptosis rate in 9810 cells. Furthermore, the inner mechansim
of resistance conferred in the activation of Raf1-MEK1/2- ERK1/
2 signaling pathway.

Xu Q et al. (Xu et al., 2021) constructed LVN with copper sulfide
nanocrystals (Cu2-xS NCs) via the carrier of poly (D,L-lactide-co-
glycolide) (PLGA) to implementation the outstanding photothermal
properties in the near-infrared-II (NIR-II) zone to treat HCC. This
nanocrystal system exhibited excellent antitumor effect even without
recurrence and suppressed the expression of P-glycoprotein (P-gp)
protein and MDR relevant protein no matter in MHCC97H cell
model but also in MHCC97H derived subcutaneous tumor mice
model. The average masses of tumors of negative control (0.85 g)
was nearly 42.5 fold compared with group of LVN-loaded
nanoparticle with NIR laser (0.02 g). This chemo-photothermal
with nano-technology supplied a new view to conquer LVN
resistance from the scope of dramatically enhancing the effect
of LVN.

Giammona, G. et al. (Giammona et al., 2022) designed NIR-
responsive hybrid nanocomposites. This nanocomposites was
consisting of an amphiphilic polyhydroxyaspartamide-based graft
copolymer (PHEA-g-BIB-pButMA-g-PEG-GAL), which embedd
hydrophobic gold nanorods simultaneously. This hybrid
nanocomposite aimed at a galactose-mediated smart composite
nanosystem to achieve an efficient loading of sorafenib and LVN
onto asialoglycoprotein receptor overexpressing hepatic cells via
NIR-light stimulation. This innovative approach has the advantage
to be smart candidates for selective dual-mode therapy and
nanotherapy of hepatocarcinoma.

4.2 Combined therapy to promote
sensitization of LVN

A rational design of combined therapy could dramatically
decrease the resistance, no matter in clinic or in experiment (Dai
et al., 2022; Liu et al., 2022; Malik et al., 2022; Wu et al., 2022).

Che jui Yang et al. (Yang et al., 2022) reported amentoflavone
sensitizing the therapuetic of LVN on HCC. Amentoflavone was a
flavonoid isolated from many natural plants (Ullah et al., 2020).
Their results indicated that the combination of amentoflavone and
LVN further down-regulated c-FLIP, MCL-1, XIAP, and cyclin
D1 expression compared to treatment with amentoflavone or
LVN alone. Myeloid cell leukemia-1 (Sulkshane and Teni, 2022),
XIAP (Hanifeh and Ataei, 2022)and c-FLIP (Ivanisenko et al., 2020)
are antiapoptotic proteins that mediate the resistance of tumor cells
to anticancer agents through the prevention of apoptosis. Increased
levels of antiapoptotic proteins were also shown to be associated
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with poor therapeutic outcomes in patients with HCC. The
mechanim of amentoflavone combined with LVN was to reduct
of AKT and ERK phosphorylation to increase the cell apoptosis.

Xi Su et al. (Su et al., 2020) performed a combination mode
between LVN and doxorubicin in treating anaplastic thyroid cancer
cell lines and xenograft model to verify the capacity of delivering
them simultaneously. The combination therapy of LVN and
doxorubicin exhibited dramatically inhibition effect on tumor
growth, and induction cell apoptosis and cell cycle arrest as
compared to lenvatinib or doxorubicin alone on ATC. As the
study deeply, LVN could enhance the energy deficiency in
mitosis. Doxorubicin could damage DNA (Shetake et al., 2022).
Herein, the combined group demonstrated the higher capacity of
DNA damage via mitogen-activated protein kinase (MAPK)
pathway. The MAPK pathway has been reading of involving in
DNA repair especially in response to DNA damage (Maresca et al.,
2022). However, further investigations into the detailed molecular
mechanisms are still needed.

Sun D et al. (Sun et al., 2022) made a novel model for LVN
resistance HCC. They co-administration of elacridar with LVN or
gefitinib. The elacridar is a dual multidrug resistance protein 1
(MDR1) and breast cancer resistance protein (BCRP) inhibitor, and
widely used in cancer resistance research (Omori et al., 2022).
Elacridar (Goutal et al., 2018), a third-generation
MDR1 inhibitor, which could enhance therapeutic efficacy in
multiple diseases by blocking drug efflux, such as Alzheimer’s
disease (Abdallah et al., 2021), chronic Myeloid Leukemia (Alves
et al., 2022), and so on. LVN is a substrate of MDR1. The inhibitor of
MDR1, such as rifampicin or ketoconazole, could dramatically
increase plasma concentration of LVN in healthy adults
(Shumaker et al., 2014b; Shumaker et al., 2015). The combination
of LVN with elacridar would inhibit LVN efflux by decreasing
MDR1 and BCRP efflux pumps. As a result, the scientists
verified these theoretical combined mode via activating EGFR,
MEK/ERK, and PI3K/AKT pathways. The MDR1 and BCRP
transporters were markedly decrease after the combined therapy.

Nakagawa T et al. (Nakagawa et al., 2014) found that
combination of LVN and golvatinib could dramatically decrease
the hepatocyte growth factor (HGF)-induced resistance via
decreasing tumor vessel density in four HCC xenograft models
(Gherardi et al., 2012). HGF is a 90 kDa secretory protein with the
function of activating intracellular signal transduction (Vimalraj,
2022). Met receptor tyrosine kinase is the sole receptor of HGF. The
function of HGF/c-Met signaling pathway included cell
proliferation, migration, metastasis and resistance (Barzaman
et al., 2022). In this study, as neither LVN nor golvatinib
exhibited a direct antiproliferative effect on the HGF-producing
cancerous cell lines (SEKI, IM95m, KP-4, and A2780). Further, they
illustrated that the VEGF and HGF cooperated to promote tumor
angiogenesis, which produced by these types of cancer cells. To sum
up, angiogenesis was relatively easier in resistance to single
treatment with VEGFR inhibitor, but much more rare in
combined treatment with LVN and golvatinib.

He X et al. (He et al., 2022) established LVN-resistant
Hep3B cells by long-term exposure to LVN within 2 months.
They everified that the activities of EGFR and insulin-like growth
factor 1 receptor (IGF1R)/insulin receptor (INSR) were signifcantly
increased in resistance cells, whereas the activities of other phospho-

receptor tyrosine kinases were unchanged. Erlotinib, a EGFR
inhibitor aiming for non-small cell lung cancer, was found to be
participated in the combined therapy with LVN (Zhang et al.,
2022c). Erlotinib downregulated abnormally activated ERK and
restored the sensitivity of LVN in the resistance cell line. LVN
resistance was along with aberrant cholesterol metabolism and
activation of lipid raft. Similarly, Hu B et al. (Hu et al., 2022b)
verified that ABCB1 could be activated by EGFR in a lipid raft-
dependent manner, which significantly improved the exocytosis of
LVN to induce resistance. Similarly, clinical samples of HCC
displayed a positive correlation between the activation of the
EGFR-STAT3-ABCB1 axi and LVN response. Hu B et al. (Hu
et al., 2022b) chose Erlotinib, which was demonstrated inhibition
on ABCB1, to suppress LVN exocytosis. This synergistic treatment
between LVN and erlotinib illustrated a significant antitumor effect
on HCC both in vitro and in vivo.

4.3 Blockage the resistance targets

Taken into account of the reports about the LVN resistance,
strategies on blockage or knockout, knochdwon the targets supplied
the simplest way to conquer resistance. In HCC, CSCs plays the role
not only initiating tumor development, inducing tumor progression
but also modulating chemotherapy resistance (Fang et al., 2022;
Mayani et al., 2022; Liao et al., 2023). Herein, the aim of targeting
therapy to eradicate CSCs displays the potential to hinder HCC
progression. CD73 is a famous surface marker for recognition
mesenchymal stem cells (Bao and Xie, 2022). Ma XL et al. (Ma
et al., 2020) concluded that CD73 should be a critical regulator
contributing to resistance of LVN. Targeting and purging of CD73+

cells is a hopeful strategy for overcoming LVN resistance. AKT
participant signaling is a major process for maintaining CSC traits
according to accumulating evidence, especially in HCC (Ji and
Wang, 2012). SOX9 is a crucial transcription factor for adjusting
high mobility group box DNA binding and domains in
transactivation (Suryo Rahmanto et al., 2016). Meanwhile,
SOX9 has been verified to own stemness characteristics in HCC.
Herein, in the study reported from Ma XL et al. (Ma et al., 2020),
CD73 switched to control the ubiquitination of SOX9 and the
SOX9 was degradated by proteasome via inhibiting GSK3β by
activating AKT signaling. Khan HY et al. (Khan et al., 2019)
examined LVN resistance anaplastic thyroid cancer cells, namely
8505C cells. With the occurence of resistance, nuclear exporter
protein exportin 1 (XPO1) and Rho GTPase effector
p21 activated kinases (PAK) was activated along with the change
toward mesenchymal morphology. No matter XPO1 or
PAK4 inhibitors, when combined with LVN, demonstrated
superior anti-tumor activity in 8505C cells inoculated sub-
cutaneous xenograft. Further, blockage the XPO1 and
PAK4 could increase the sensitivity of the 8505C cells to LVN.
Tan Boon Toh et al. (Toh et al., 2020) found that activated
Stat3 played an important role in regulating the self-renewing.
The side population (SP) (Nayak et al., 2022) and CD44
(Primeaux et al., 2022) were the surface markers from cancerous
cells alonging with stemness properties, which could be sorted by
flow cytometry. Using ruxolitinib, a Jak/Stat inhibitor, could
dramatically decrease p-Stat3 and the number of HCC stem cells.
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Blockage Jak/Stat axi might be another way to overcome LVN
resistance.

The elevation levels of ROS could be as a huge risk factor for the
development of PTC in patients with Hashimoto thyroiditis (di Masi
et al., 2022; Yi et al., 2015). What’s more, with the increasing aerobic
glycolysis, the prognosis of follicular thyroid cancer portends an
unfavorable result (Liu et al., 2019). Herein, the glycolytic activity
both of ROS level would be proposed as a factor that cannot be
ignored for the development of PTC (Sahoo et al., 2016). The
prodcing of ROS from different cells was highly related with
enzymatic systems, which included NADPH oxidases (NOXs),
mitochondrial electron transport chain and so on (Weyemi et al.,
2010; Ameziane-El-Hassani et al., 2016). Among the NOXs,
NOX4 was the most important one and has been demonstrated
to higher expression in PTC (Tang et al., 2018). Tang P et al. (Tang
et al., 2022) verified that NOX4 could be used as a glycolytic
regulator via ROS among the condition of hypoxia. After the
serum-starved conditions via ROS, LVN could be induced
glycolysis. With the help of an inhibitor NOX4 (Jiang et al.,
2022),GLX351322, LVN’s resistance has been decreased via
NOX4 or NOX4-derived ROS. Further, the tumor
microenvironments of PTC cells was correspondingly changed.
These findings highlight NOX4 and NOX4-derived ROS as a
potential therapeutic target in resistance to PTC.

Interferon regulatory factors (IRFs) are belonged to vital nuclear
transcription factors, which are consisted of nine members (IRF1-9)
in mammals (Li et al., 2021b). The function of IRF proteins
sometimes accompanied by tumorous cell proliferation,
tumorigenesis, lymphocyte differentiation, regulating immune
response, and the develpment of hematopoietic stem cells.
Yarong Guo et al. (Guo et al., 2021c) illustrated that IRF2 could
promote proliferation, inhibite apoptosis, and increase LVN
resistance of HCC cells. Knockout IRF2 could decrease the
expression of beta-catenin, while overexpressing IRF2 could
increase the expression of beta-catenin. Inhibiting beta-catenin
could reverse LVN resistance and targeting IRF2 could improve
the therapeutic effect of LVN on HCC.

4.4 Basing on new technologies to discover
new resistance conferred target

The CRISPR/Cas system is one of the most powerful tools for
gene editing most recently (Chen et al., 2022b). Shanzhou Huang
et al. (Huang et al., 2022a) verified six genes that were associated
with LVN resistance in HCC, which containing DHDH, DUSP4,
CCBL1, CNTN2, NOS3 and TNF. After qPCR and western blot
verification, the dual specificity phosphatase 4 (DUSP4) coming to
light no matter in mRNA level or in protein levels was significantly
decreased in LVN resistant HCC cells. The knockout of
DUSP4 could improve the survival rate, cell proliferation and
migration rate of HCC cells. What’s more, the resistance induced
by LVN could be blockage by MEK inhibitor, selumetinib, in the
DUSP4 deficiency cell line. The phosphorylation of MEK and
activation of ERK caused by DUSP4 deficiency were the integral
element for LVN resistance. From the scope of clinical tumor tissues,
DUSP4 deficiency was also highly correlated with HCC prognosis
and response to LVN. DUSP4 belongs to a member of the dual

specificity protein phosphatase subfamily. This type of family takes
part in the inactivation of MAPK cascade (Chen et al., 2019). Studies
pointed out that higher expression of DUSP4 could be discovered in
more aggressive cancers, meanwhile the lower expression or
knockout of DUSP4 would promote tumor
development and progression in colorectal cancer and
glioblastoma (Xue et al., 2018). Herein, the role of DUSP4 could
be as a tumor suppressor.

The assay for first genome-wide CRISPR/Cas9-based screening
on sorafenib-treated HCC cells was carried out by Zheng A et al.
(Zheng et al., 2019), which aimed of identifing essential genes for
acquired sorafenib resistance in HCC. In this study, LVN was
considered the positive drug model. Among numerous significant
difference genes, KEAP1 was remained as the top candidate one. The
disruption of KEAP1 counteracted of increasing the resistance of
regorafenib (another drug for HCC treatment), and decreasing cell
viability and increasing of ROS by LVN. So KEAP1 could influence
the resistance induced by sorafenib, lenvatinib, and regorafenib,
respectively. Consequently, inner mechanism was found out that
Nrf2 conferred in. Specifically, up-regulation of Nrf2 would increase
ROS levels and counteracted with KEAP1. Nrf2 also belongs to one
of neuclear transfaction fator family (Tsuchida et al., 2017). It was
shown in a follow-up experiment that KEAP1/Nrf2 pathway not
only involved in the initial treatment stages of primary tumors, but
also in later stages of acquired resistance.

Similarly, using CRISPR technolpogy, the HCC driver genes
which joint in TKI, were sifted by Myojin Y et al. (Myojin et al.,
2021). ST6GAL1 was selected and verified in human HCC cell
lines. The ST6GAL1 in serum sample were positively correlated
with expression of tumor FGF19 in surgically-resected HCC
patients.

Circular RNAs (circRNAs) is a research hotspot in recent
years, which displays the function of improve development and
progression of various types of cancers (Dashtaki and Ghasemi,
2022; Cao et al, 2022). The circRNA mediator complex subunit
27 (circMED27; circBase: hsa_circ_0006825), which is derived
from back-splicing of MED27 mRNA, and islocated on
chromosome 9q34.13. Zhang P et al. (Zhang et al., 2021).
Demonstrated that circMED27 was postively correlated with
the bad prognosis of HCC patients and was significantly
overexpression in HCC tissues. More importantly,
circMED27 upregulated ubiquitin-specific peptidase
28 expression to revert LVN’s resistance via sponging miR-
655-3p. Therefore, knockout circMED27 could be a simple way
to derease resistance. The circMED27 itself could be consider as
a molecular biomarker for LVN-sensitivity predication and also
be a meaningful target for HCC patients.

Nowadays, a critical point is the perspective of proteomic
analysis suppling the importantly significant proteins no matter
in cells or in biofluid (Jia et al., 2022; Riccardi et al., 2022; Yuan et al.,
2022). It plays an important role in biomarker discovery, especially
in cancer progression, metastasis, and resistance (Riccardi et al.,
2022). Huang M et al. (Huang et al., 2022b) performed unbiased
proteomic screening of parental and LVN-induced resistant HCC
cells (PLC/PRF/5, Hep3B, and Huh7) and discovered two important
N7-methylguanosine (m7G) tRNA methyltransferase complex
components, which influenced the function related with EGFR
translation. Both of the methyltransferase-like protein-1
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(METTL1) and WD repeat domain four protein (WDR4) were
significantly upregulated in LVN-resistant HCC cells. Depletion of
METTL1 decreased the abundance of tRNA m7G modification and
restored the abilities to resist LVN-induced cell death. Further, in
vivo tumor model, lower expression of METTL1 was correlated with
lower EGFR expression. This result confirmed that METTL1 could
influence the expression level of EGFR. The ways to conquer LVN’s
resistance was exhibited in the Figure 4.

5 Conclusion and remarks

Untill now, the studies focusing on resistance caused by LVN
gains more and more attention, and the resistance targets of LVN
in the treatment of HCC were also comprehensively summerized
by some scientists (Guo et al., 2022). In this manuscript, we
not only

Focused on the resistance mechanism of LVN in the
treatment of HCC, but also in RCC, EC, and DTC. The drug
resistance mechanisms included EMT, DNA damage, ferroptosis,
RNA modification, cytokine overexpression, translational
modification and LVN′ self target signal pathway. Basing on
the reported resistance mechanisms, the strategies focusing on
nanotherapy, combined therapy, blockage new resistance target
and digging out unknown functional target via CRISPR or
proteomic technologies. It is really appreciated that research
on the mechanisms of LVN resistance is so rapid, which will
supply sufficient time for its usage applicated in clinic. However,
we recommend that more attention on the pharmacological
studies about the LVN in human beings, which are rarely in
resistance study. The biofluid of LVN in human beings could
bring much more information about the intermediary
metabolism substance, metabolites, and antimetabolites. When
combined with the LVN’s pharmacological characters of

FIGURE 4
The potential ways to conquer LVN’s resistance containing the nanotechnology, combination therapy, blockage the resistance target and finding
new target.
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circulation in the body, it might provided a “panoramic view” of
LVN resistance.
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