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Intervertebral discs (IVDs) play a crucial role in maintaining normal vertebral
anatomy as well as mobile function. Intervertebral disc degeneration (IDD) is a
common clinical symptom and is an important cause of low back pain (LBP). IDD is
initially considered to be associated with aging and abnormal mechanical loads.
However, over recent years, researchers have discovered that IDD is caused by a
variety of mechanisms, including persistent inflammation, functional cell loss,
accelerated extracellular matrix decomposition, the imbalance of functional
components, and genetic metabolic disorders. Of these, inflammation is
thought to interact with other mechanisms and is closely associated with the
production of pain. Considering the key role of inflammation in IDD, the
modulation of inflammation provides us with new options for mitigating the
progression of degeneration and may even cause reversal. Many natural
substances possess anti-inflammatory functions. Due to the wide availability of
such substances, it is important that we screen and identify natural agents that are
capable of regulating IVD inflammation. In fact, many studies have demonstrated
the potential clinical application of natural substances for the regulation of
inflammation in IDD; some of these have been proven to have excellent
biosafety. In this review, we summarize the mechanisms and interactions that
are responsible for inflammation in IDD and review the application of natural
products for the modulation of degenerative disc inflammation.
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1 Introduction

Low back pain (LBP) is a common clinical disease that creates a serious burden on a
patient’s life and the social economy. According to previous epidemiological surveys, LBP is
a major cause of global disability (Foster et al., 2018). Approximately 80% of people will
experience LBP during their lifetime. Worryingly, this proportion is likely to increase as the
average life expectancy of the population rises and population aging accelerates (Conway,
2017; Kaye et al., 2022). In the 2016 U.S. Healthcare Spending Survey, low back and neck
pain were responsible for the highest healthcare expenditure among 154 diseases, at
$134.5 billion (Dieleman et al., 2020). Intervertebral disc degeneration (IDD) is one of
the most significant pathogenic factors of LBP, and approximately 40% of LBP cases are
caused by IDD (Peng, 2013). IDD is also the pathological basis of many spinal degenerative
diseases. Severe IDD can lead to herniation and spinal canal stenosis (Kushchayev et al.,
2018; Benzakour et al., 2019). In addition to pain, these diseases may also cause severe
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sensory andmotor dysfunction, further reducing the quality of life of
patients and increasing the economic burden (Quaile, 2019).

At present, the clinical treatment of IDD can be divided into
non-surgical conservative treatment and surgical treatment (Wu
et al., 2020). Conservative treatment is the first choice for most
patients. Conservative treatment can be further divided into
pharmacological and non-pharmacological treatments. The
common medications used for IDD include opioids, anti-
inflammatory drugs, muscle relaxants and anticonvulsant/
antidepressant drugs (Mohd Isa et al., 2022). The main effect of
these drugs is to relieve pain and the further complications caused by
pain. Although the short-term analgesic effect of drugs is clear, long-
term use will undoubtedly increase the risk of drug addiction and
drug abuse and cause damage to the internal organs of patients
(Fishbain et al., 1992). The most common non-pharmacological
treatments include exercise therapy, massage, acupuncture, and
psychological intervention. However, the efficacy of these
treatments lacks robust evidence and well-designed cohort studies
(Rickers et al., 2021). In addition, there is also a lack of valid
comparative studies between different treatment modalities.
Surgery is the last choice for patients with severe symptoms and
those who fail to respond to conservative treatment. Although the
development of new surgical techniques, such as endoscopic
surgery, has greatly reduced surgical damage and accelerated
postoperative recovery, the damage caused to local tissue and
mechanical structures is irreversible, and the corresponding
complications are difficult to avoid by simply improving the
surgical technique involved (Pan et al., 2020). Furthermore, most
existing treatments focus on the relief of existing symptoms, when
degeneration is often difficult to reverse. Therefore, effective
treatments that can intervene in the early stages of degeneration
are urgently needed.

Normal anatomical structure is the basis for maintaining the
physiological function of the intervertebral disc (IVD). IVDs are
fibrocartilage structures located between adjacent vertebral bodies,
and are composed of the nucleus pulposus (NP), annulus fibrosus
(AF) and cartilage endplate (CEP) (Mohd Isa et al., 2022). The NP is
located at the core of the IVD and is highly hydrated. An abundance
of proteoglycans helps to maintain the water content of the IVD
which provides sufficient hydrostatic pressure to resist mechanical
load (Guerrero et al., 2021). In addition, the NP is also rich in type II
collagen; a reduction in type II collagen, along with an increase in
type I collagen, is considered to be one of the hallmark changes of
disc degeneration (Wu et al., 2016). The AF is mainly composed of
multilayer collagen fibers arranged in a regular manner, with a
gradual reduction in the content of type I collagen and a gradual
increase in the content of type II collagen from the outer layer to the
inner layer (Eyre and Muir, 1976; Sloan et al., 2018). The main
function of the fibrous ring is to resist local mechanical forces to
limit the protrusion of the NP. Degenerative AF mainly manifests as
increased small fissures; the accumulation of fissures will eventually
lead to the formation of hernias and cause local mechanical load
disorder (Torre et al., 2019). The CEP is a layer of hyaline cartilage
that separates the bony vertebral body from the IVD and is
responsible for distributing pressure (Moon et al., 2013). In
addition, due to the avascular structure of the IVD, the CEP is
also responsible for providing oxygen and nutrients to the IVD
(Urban et al., 2004). CEP degeneration is characterized by

calcification, thinning and uneven thickness, thus resulting in an
uneven load distribution and limitations in nutrient and oxygen
transport (Ashinsky et al., 2020). Due to the fragile nutrient supply
and low cell density, the self-repair ability of IVD is extremely
limited (Gantenbein et al., 2020).

Existing literature suggests that the pathological process of IDD
involves multiple mechanisms (Vergroesen et al., 2015; Mohd Isa
et al., 2022). While many mechanisms are being investigated,
inflammation has received extensive attention. As a widespread
defense mechanism, the inflammatory response caused by different
pathological processes has certain commonalities, thus creating
more entry points for researchers (Risbud and Shapiro, 2014;
Wang et al., 2022c; Li F et al., 2022). Inflammation is
intrinsically closely related to many other mechanisms that are
known to be associated with IDD, such as cell loss, the reduction
of extracellular matrix (ECM), and the dysregulation of functional
components (Risbud and Shapiro, 2014; Khan et al., 2017). In
addition, inflammation is also closely associated with the
production of pain (Lyu et al., 2021). The abundance of natural
anti-inflammatory substances provides ample options to modulate
inflammation in IDD. Here, we summarize the critical role of
inflammation in IDD and their relationships with other
mechanisms. Subsequently, we review the application of natural
products in the control of inflammation in IDD.

2 Relationships between inflammation
and IDD

2.1 Inflammatory factors and related
pathways in IDD

An abundance of previous studies has reported the presence of
elevated inflammatory factors in IDD patients, such as interleukins
(IL)-1, −6, −8, −12, −17, tumor necrosis factor (TNF)-α, nitric oxide
(NO), interferon (IFN)-γ, and prostaglandin E2 (PGE2) (Lyu et al.,
2021). Although the detailed inflammatory mechanisms and
signaling pathways are still not fully understood, IL-1β and TNF-
α may be the upstream factors that drive the inflammatory cascade
(Johnson et al., 2015). (Maitre et al., 2005) reported that IL-1β levels
increase with the severity of degeneration. In their subsequent study,
these authors reported higher levels of IL-1β secretion compared to
TNF-α in IDD patients (Le Maitre et al., 2007a). The activation of
IL-1β precursor proIL-1β requires inflammasomes and caspase-1;
furthermore, the activation of Nod-like receptor protein (NLRP)-
3 in inflammasomes has received significant attention. Chen et al.
(Chen et al., 2015) further reported that NLRP-3, caspase-1, and IL-
1β were positively correlated with IVD tissue degeneration scores.
Bioactive TNF-α can be divided into transmembrance TNF-α
(mTNF-α) and secreted TNF-α (sTNF-α) (Jang et al., 2021). The
mTNF-α is cleaved by TNF-α-converting enzyme to form sTNF-α.
Similarly, TNF-α receptors can be divided into tumor necrosis factor
receptor (TNFR) 1 and TNFR2. Both of these receptors can bind to
mTNF-α, whereas sTNF-α can only bind to TNFR 1 (Pobezinskaya
and Liu, 2012; Kalliolias and Ivashkiv, 2016).

The nuclear factor kappa-B (NF-κB) and mitogen-activated
protein kinase (MAPK) signaling pathway play essential roles in
IDD inflammation (Zhang et al., 2021a). The NF-κB signaling
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pathway is widely present in animals and is an important
mechanism by which cells respond to external stimuli (Capece
et al., 2022). A number of inflammatory factors, such as IL-
1β, −6, −8, −12, and TNF-α, can activate this pathway
(DiDonato et al., 2012; Hoesel and Schmid, 2013). Normally,
NF-κB is bound to the inhibitor of kappa B (IκB). When
stimulated, IκB kinase is activated, IκB is degraded, and the
expression of target genes is regulated by the nuclear entry of
NF-κB. At the same time, free NF-κB stimulates the secretion of
new IκB and re-inhibits the activity of NF-κB (Williams and
Gilmore, 2020). The MAPK signaling pathway is another
pathway that plays a major role in the response of eukaryotic
cells to external stimuli (Atay and Skotheim, 2017). The MAPK
signaling pathway is highly conserved and has been demonstrated in
four different subfamilies in mammals, including extracellular
signal-regulated kinases (ERKs), ERK5, c-Jun NH2-terminal
kinases (JNKs), and p38 isoforms (p38s) (Cargnello and Roux,
2011). The MAPK signaling pathway follows a pattern of tertiary
kinases, including MAPK kinase kinase, MAPK kinase, and MAPK,
which are activated in sequence (Burotto et al., 2014). The toll-like
receptor (TLR) signaling pathway is an important pathway involved
in immune regulation, and has been recently found to play a role in
IDD inflammation (Klawitter et al., 2014). TLR2 and TLR4 have
received the most extensive study in IDD, and their activation can
upregulate the expression of a variety of inflammatory factors
(Bisson et al., 2021). Quero et al. (Quero et al., 2013) reported
the activation of TLR2 by a hyaluronic acid fragment produced in
IDD. In another study, Rajan et al. (Rajan et al., 2013) successfully
induced an inflammatory response that eventually led to IDD by
activating TLR4. In recent years, infection with Propionibacterium
acnes has been identified as one of the factors contributing to IDD
and may be associated with more pronounced LBP symptoms. Jiao
et al. (Jiao et al., 2019) reported that Propionibacterium acnes
upregulated IL-8 secretion in NP cells by stimulating the TLR-2/
NF-κB p56 pathway. In their subsequent study, these authors
revealed the association of TLR2 and NF-κB p65/JNK pathways
with nerve growth factor (NGF), a key pro-algesic factor (Jiao et al.,
2022).

Gaining a deeper understanding of inflammatory mechanisms
will yield a large number of potential targets for controlling
inflammation in IDD, but screening for the most effective and
safe targets still requires extensive follow-up experiments. In
addition, although the technology to produce animal models of
IDD is well established, the inherent differences between animals
and humans still need to be considered (Lyu et al., 2021; Zhu et al.,
2022).

2.2 Synergistic effects of inflammation and
other mechanisms

IDD involves multiple mechanisms that interact to form a vicious
cycle; inflammation plays a role in many of these mechanisms.
Modulating inflammation in IDD is expected to regulate other
mechanisms, thus slowing or even reversing degeneration.

A sufficient number of functional cells is essential to maintain
the normal function and metabolism of IVDs. Higher rates of cell
senescence, apoptosis and pyroptosis have been reported in IDD,

thus leading to a reduction in the quantity of functional cells in IVD
(Zhang et al., 2020; Zhang et al., 2021b; Luo et al., 2022). In addition,
lower cell density leads to a greater sensitivity to cell depletion.
Inflammation plays a crucial role in promoting cell senescence,
apoptosis and pyroptosis. Li et al. (Li et al., 2019) cultured NP cells in
a medium containing IL-1β and TNF-α; the inflammation group
showed higher expression levels of cell senescence markers (β-
galactosidase, p16 and p53) and reduced the activity of
telomerase compared with a control group without inflammatory
factors. Reactive oxygen species (ROS), another important product
of inflammation, is also thought to be closely related to accelerated
cell senescence (Kim et al., 2009). In addition, ROS are also involved
in the activation of the NF-κB and MAPK signaling pathways which
can lead to pro-inflammatory effects (Cao et al., 2022). Apoptosis
and pyroptosis are different forms of programmed cell death. Jiang
et al. (Jiang et al., 2019) reported an increase in apoptosis rate,
caspase-3 activity, and the mRNA expression of apoptosis-related
molecules, such as caspase-3 and cleaved caspase-3, in NP cells in
response to IL-1β stimulation. IL-1β stimulation can also cause
mitochondrial oxidative damage and activate NLRP-3, eventually
leading to pyroptosis (Ma et al., 2022). Interestingly, Tang et al.
(Tang et al., 2021) reported that infection with Propionibacterium
acnes similarly resulted in the overexpression of ROS and NLRP3,
thus resulting in a high rate of pyroptosis in NP cells. Similarly,
several previous studies have demonstrated the pro-active effects of
TNF-α on apoptosis and pyroptosis (Yu et al., 2018; Qiu et al., 2019;
Zhai et al., 2022).

The ECM represents the external environment that is responsible
for the survival of IVD cells, and plays a key role in the exchange of
cellular information. Indeed, the dysregulation of ECM anabolism and
catabolism, and the absence of crucial components, such as
proteoglycans and type II collagen, are typical pathological changes
in IDD. Matrix metalloproteinases (MMPs), and a disintegrin and
metalloproteinase with thrombospondin motifs (ADAMTSs), are two
families of enzymes that regulate the ECM (Kibble et al., 2022).
Inflammatory factors not only accelerate the catabolism of key
substances, but also downregulate their source synthesis and
expression. Several previous studies have demonstrated that IL-1β
reduces the expression of type II collagen and proteoglycan and
elevates the expression of MMP-1, -3, -9, -10, −13, ADAMTS-4, and
-5 (Le Maitre et al., 2007b; Kim et al., 2013a; Fang et al., 2018). The
expression of these enzymes accelerates ECMbreakdown. In addition to
IL-1β, Séguin et al. (Séguin et al., 2005) also reported that TNF-α
increased the expression levels of MMP-1, -3, -13, ADAMTS-4, and -5,
and reduced the expression of type II collagen and proteoglycan genes
in NP cells. The development of proteomics and transcriptomics is
expected to revealmore detailed changes in the expression and synthesis
of substances at the spatiotemporal level (Eckersley et al., 2021; Kibble
et al., 2022). Overall, the close relationship between inflammation and
other mechanisms further indicates that controlling inflammation has
great potential for the treatment of IDD.

3 The application of natural products to
control inflammation

Seeking suitable anti-inflammatory substances is an important
step in controlling inflammation in IDD. Natural products (animals,
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plants and microorganisms) are significant sources of anti-
inflammatory agents and provide ample options for the selection
of anti-inflammatory substances. Many natural anti-inflammatory
substances have achieved promising results from in vitro or vivo
experiments with good levels of safety. At present, the anti-
inflammatory substances used in IDD are mainly derived from
animals and plants. Jenab et al. (2020) provide a detailed review
of the anti-inflammatory substances produced by microorganisms,
although these agents have yet to be applied for the treatment
of IDD.

3.1 Natural anti-inflammatory products
derived from animals

Previous research has shown that a negative feedback
mechanism is involved in the process of inflammation in a
range of animals (Yoshimura et al., 2003; Afonina et al., 2017).

Extracting anti-inflammatory substances secreted by animals is an
important method used to acquire anti-inflammatory substances.
Platelet-rich plasma (PRP) is a type of autologous blood extract
that has been used extensively in clinical practice because of its
good tissue repair ability and very low immunogenicity (Chang
et al., 2020). In recent years, the anti-inflammatory effects of PRP
have gradually received attention. There are key differences in the
equipment used, and the processes used to prepare PRP;
furthermore, the presence of a large number of leukocytes in
PRP may further aggravate the degree of inflammation. Wang
et al. (2018b) reported the differential therapeutic effects caused by
NP stem cells with leukocyte-platelet-rich PRP (L-PRP) and pure
PRP (P-PRP) without leukocytes. These results indicated that the
expression levels of inflammatory factors and genes promoting
ECM catabolism were upregulated in the L-PRP group, while the
expression levels of genes related to ECM anabolism and type II
collagen were upregulated in the P-PRP group. Jia et al. (Jia et al.,
2018) further found that L-PRP enhanced the activation of NF-κB

FIGURE 1
A comparison of the gene expression of inflammatory factors between groups with different leukocyte levels (A). A comparison of gene expression
of MMPs between groups with different leukocyte levels (B). A comparison of the concentrations of inflammatory factors between groups with different
leukocyte levels (C). A comparison of the concentrations of MMPs between groups with different leukocyte levels (D). West-blot comparison of the
production of NF-κB/p65 between groups with different leukocyte levels (E). “*” p < 0.05 compared to P-PRP or L-PRP with controls, “#” p <
0.05 compared to L-PRP with P-PRP. Reproduced with permission from a previous publication (Jia et al., 2018).
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pathway and upregulated the expression of TNF-α and IL-1 β
(Figure 1). More recently, Qian et al. (2022) demonstrated that
exosomes derived from PRP could regulate inflammation in IDD
by regulating ubiquitination and the autophagic degradation of
NLRP-3.

Some cytokines can also be used to regulate inflammation in
IDD. For example, Li et al. (2014) treated degenerated NP cells
with IL-10 and transforming growth factor (TGF)-β and
observed a significant downregulation of IL-1β and TNF-α
expression. In another study, Zhang et al. (2017) found that
TGF-β1 alleviated inflammation and pain in a rat model of IDD
by downregulating the expression of chemokine CCL3/4 via the
ERK signaling pathway. Growth differentiation factors (GDF)
belong to the TGF superfamily. The treatment of rabbit NPs with
GDF-6 significantly reduced the secretion of IL-6 and TNF-α
and alleviated pain symptoms (Miyazaki et al., 2018). Similarly,
Shen et al. (Shen et al., 2018) reported that GDF-5 reduced the
expression levels of multiple inflammatory factors and
prevented activation of the NF-κB signaling pathway. IL-4 is
considered as a cytokine that can exert anti-inflammatory
functions. Hou et al. (Kedong et al., 2020) demonstrated that
IL-4 reduced the gene expression levels of IL-6, -8, -12, and IFN-
β, and ultimately reduced the release of IL-6 and IL-8 proteins.
An imbalance between IL-1 and the IL-1 receptor antagonist (IL-
1ra) is considered to be one of the factors that promotes
inflammation. The sustained release of IL-1ra hydrogel
microspheres has been reported to reduce the mRNA levels of
IL-1β, IL-6, inducible nitric oxide synthase (iNOS) and other
inflammatory mediators (Gorth et al., 2012). Coenzyme Q10
(Co-Q10) is an important substance involved in the electron
transport chain and is now available as a common dietary
supplement (Arenas-Jal et al., 2020). Wang et al. (2018c)
described the inhibitory effects of Co-Q10 on IL-1β-induced
multiple downstream inflammatory factors such as IL-6, TNF-α
and iNOS. LIM mineralization protein (LMP)-1 is an
intracellular protein that regulates bone and cartilage
production. Liu et al. (2010) reported that LMP-1 inhibited
the NF-κB pathway and significantly downregulated NO
production and iNOS expression. In a subsequent study,
LMP-1 was further found to reduce apoptosis in IDD by
inhibiting the NF-κB pathway (Liu et al., 2020). A previous
study showed that the removal of the pineal gland from chickens
exacerbated the progression of IDD (Turgut et al., 2006). Qiu
et al. (2022) reported that melatonin secreted from the pineal
gland could inhibit activation of the TNF-α-induced NF-κB
pathway and thus alleviate the progression of degeneration.
In addition, these authors also observed the reduced
expression of melatonin membrane receptors in degenerative
NP tissues. In a previous study, (Li et al., 2018) reported the
negative feedback regulation of Wnt5 on TNF-α-induced
inflammation. Similarly, lactoferrin has been shown to
possess anti-inflammatory, antibacterial, and antitumor
properties. Kim et al. (2013b) reported the inhibitory effect of
bovine lactoferrin on IL-6, TLR-2, -4, and iNOS. As a cyclic
peptide, corticosteroid plays an integral role in many
physiological and pathological processes. Zhao et al. (2020)
found that the NP cells of IDD patients exhibited reduced
levels of corticostatin expression, and that corticostatin-

knockout mice showed faster disc degeneration and greater
apoptosis. Exogenous corticostatin has been shown to
effectively inhibit initiation of the NLRP3 and NF-κB
pathway to resist degeneration (Figure 2).

Over recent years, there has been significant interest in
exosomes as a means of intercellular information
transmission; data indicates that exosomes might be able to
regulate inflammation. In a previous study, Chen et al. (Xia
et al., 2019) reported that mesenchymal stem cell (MSC)-
derived exosomes regulated inflammation in degenerative NP
cells via their inhibitory effect on NLRP3. Zhu et al. (2020)
further demonstrated that MSC-derived exosomes reduced the
IL-1β-induced secretion of multiple inflammatory factors as
well as achieving the targeted inhibition of the MAPK signaling
pathway by packaging mircoRNA-142-3P. Bone-MSC-derived
exosomes were also reported to inhibit the expression of IL-1β
and TNF-α and promote autophagy (Xiao et al., 2022). Luo et al.
(2021) compared the effects of exosomes derived from normal
and degenerative CEP stem cells on IDD and found that
exosomes derived from normal CEP stem cells had a better
effect in terms of promoting autophagy (Figure 3).

Although many natural anti-inflammatory products are
produced by animals; most of these have very low levels of
immunogenicity. However, considering their animal source, these
natural anti-inflammatory products are subject to ethical issues;
furthermore, the lack of stable donor sources that can maintain an
industrial production scale represents a major obstacle to their
clinical application.

3.2 Natural anti-inflammatory products
derived from plants

Compared with animal-based agents, plant-derived anti-
inflammatory substances are easier to obtain and there is a much
wider range of products. Furthermore, a wide variety of natural
substances have been derived from different plants and shown to
have promising application prospects.

Icariin is a type of flavonoid extracted from Epimedium and is
believed to exert significant anti-inflammatory and antioxidant
effects (Wang et al., 2022a; Wang et al., 2022b). Hua et al. (2018)
reported that icariin inhibited activation of the NF-κB and
MAPK pathways induced by IL-1β to suppress inflammation
in degenerative NP. In another study, these authors found that
icariin could effectively resist oxidative stress damage caused by
hydrogen peroxide and maintain mitochondrial homeostasis
(Hua et al., 2020). Shao et al. (2022) further found that icariin
could prevent the degeneration and calcification of CEP by
inhibiting cell apoptosis and ferroptosis. Baicalein, a flavonoid
with an anti-inflammatory effect, is found in abundance in
Scutellaria baicalensis (Tuli et al., 2020). In an in vitro study,
baicalein effectively inhibited the expression of NO, IL-6, TNF-α
and PEG2 in NP cells, but also reversed the overexpression of
MMP-13 and ADAMTS-5 (Jin et al., 2019). Wogonin is another
form of ketone extracted from Scutellaria baicalensis. Fang et al.
(2018) reported the inhibitory effect of wogonin on IL-1β-
induced inflammatory factors and enzymes that promote ECM
degradation; in addition, these authors also observed that
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FIGURE 2
Comparison of human NP cells between groups under transmission electron microscopy (A)MitoTracker staining for mitochondria and phalloidin
for cytoskeleton (B), scale bar = 10 μm. Comparison of JC-1 assay images between different groups (C), scale bar = 20 μm. Quantitative comparison of
red and green fluorescence in JC-1 assays (D). Images of iNOS as determined by DCFDA staining (E), scale bar = 20 μm. Quantitative analysis of iNOS
content (F). Comparison of NLRP3 staining in different groups (G), scale bar = 20 μm. Comparison of the caspase-3, Bax, and Bcl-2 mRNA levels in
different groups (H). Western blot analysis of caspase-3, Bax and Bcl-2 in different groups (I). Images of TUNEL staining in different groups (J), scale bar =
100 μm. Comparison of the results of the number of apoptotic NPs, as measured by flow cytometry (K). “*” p < 0.05, “**” p < 0.01 and “***” p < 0.001. CST
corticostatin. Reproduced with permission from a previous publication (Zhao et al., 2020).
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wogonin upregulated the expression of type II collagen.
Genistein, a flavonoid extracted from soybean, has been
shown to be effective in preventing osteoarthritis and
osteoporosis (Wu and Liu, 2022). In IDD, genistein was
shown to increase the secretion of type II collagen and
aggrecan and reduce the expression of inflammatory factors by
inhibiting the P38 MAPK pathway (Ge et al., 2020) (Figure 4).
Naringin, as a citrus flavonoid, has received significant attention
over recent years due to its immunomodulatory effect in the
treatment of inflammation-related diseases (Zeng et al., 2018). Li
et al. (Li K et al., 2016) reported that naringin inhibited the
expression of TNF-α and MMP-13 and upregulated the
expression of type II collagen and BMP-2 in degenerated
human NP cells. In a subsequent study, these authors further
showed that naringin alleviated TNF-α-induced inflammation
and oxidative stress by enhancing autophagy (Chen et al., 2022).
Quercetin is a natural flavonoid that is widely present in plants.
Several previous studies have reported the application of

quercetin in inflammation-related diseases (Dong et al., 2020;
Yuan et al., 2020). Shao et al. (2021) reported that quercetin could
inhibit initiation of the NF-κB signaling pathway by IL-1β and
reduce the expression of a senescence associated secreted
phenotype. As with quercetin, luteoloside is also a natural
flavonoid that is widely present in plants. Lin et al. (2019)
reported that luteolin inhibited the expression of multiple
inflammatory factors in NP cells, protected IL-1β-induced
ECM degradation, and inhibited apoptosis. In the mouse
model of IDD, luteolin was shown to effectively alleviate the
progression of degeneration. Other flavonoids from plants have
been reported to modulate inflammation in IDD, including
acacetin and apigenin. Wang et al. (2020b) reported the
inhibitory effect of acacetin on inflammatory factors and its
protective effect on the ECM in vitro; in an in vivo study,
acacetin significantly reduced the progression of IDD
(Figure 5). An in vitro study reported that apigenin may
regulate inflammation by inhibiting TNF-α (Ding and Li,

FIGURE 3
Analysis of the enrichment of differential proteins in exosomes derived from normal CEP stem cells (N-exons) and exosomes derived from
degenerate CEP stem cells (D-exons) using KEGG (A) Immunofluorescence images of LC3-B and cleaved caspase-3 in NP cells (B) Autophagosomes in
each group were observed by transmission electron microscopy (C)Western blots and quantitative analysis of LC3B/A, Beclin-1, cleaved caspase-3, Bax,
and Bcl-2 in each group. (D) “*” p < 0.05, “**” p < 0.01 and “***” p < 0.001. Reproduced with permission from a previous publication (Luo et al., 2021).
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2020). Xie et al. (2021) performed in vivo experiments and
reported the activation of autophagy by apigenin and the
alleviation of IDD.

In addition to flavonoids, a significant number of natural
anti-inflammatory substances also exist in the form of phenolics.
Epigallocatechin-3-gallate (EGCG) is an active component of tea
polyphenols. In recent years, EGCG has drawn significant
attention due to its anti-inflammatory, anti-oxidation and
anti-cancer effects (Li R et al., 2022; Mokra et al., 2022).
Krupkova et al. (2014) reported that EGCG could reduce the
inflammatory response triggered by IL-1β in vitro and observed a
reduced level of radicular pain in a rat model in vivo. In their
subsequent study, these authors further reported that EGCG
could resist oxidative stress in IDD by maintaining
mitochondrial stability (Krupkova et al., 2016). Tian et al.
(2020) demonstrated that EGCG inhibited cellular
inflammation and apoptosis in human degenerative NP cells
by inhibiting the activation of NLRP3. Resveratrol is a natural

phenolic antitoxin that is widely found in grapes, peanuts, and
other plants (Meng et al., 2021; Ren et al., 2021). Resveratrol has
been widely used in the fields of food processing, healthcare and
medicine. Li et al. (2008) reported that resveratrol could slow
down IDD by inhibiting the downstream signaling factors of IL-
1. Jiang et al. (2019) further reported that resveratrol could
inhibit the apoptosis of NP cells triggered by IL-1β. Similarly,
Wu et al. (2021) reported that resveratrol reduced IL-6
expression and inhibited the phosphorylation of Janus kinase
1 downstream, and signal transducer and activator of
transcription 3. Honokiol is a phenolic substance extracted
from Magnolia. In another study, Wang et al. (2018a)
reported the activation of honokiol by Sirtuin-3, a protein that
maintains mitochondrial stability. Tang et al. (2018) further
demonstrated that honokiol could alleviate inflammation,
oxidative stress and apoptosis in IDD by inhibiting the
TXNIP/NLRP3/caspase-1/IL-1β signaling pathway and the
activation of NF-kB and JNK. Moreover, honokiol was also

FIGURE 4
A comparison of the protein expression of MMP-3, TNF-α, and IL-1β in each group (A) A comparison of the protein expression of NF-κB in each
group (B)Quantitative analysis of the protein levels ofMMP-3 (C), TNF-α (D), IL-1β (E), and NF-κB (F), “*” p <0.05. SB203580, a specific p38MAPK inhibitor.
Reproduced with permission from a previous publication (Ge et al., 2020).
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able to upregulate the expression of type II collagen. Curcumin is
a natural pigment that has been widely used in food processing;
there is strong evidence for the medical value of this product (Zia
et al., 2021). Kang et al. (2019) reported that curcumin activated
autophagy and alleviated the progression of IDD in an in vivo rat
model. Zamboni et al. (2022) further designed an alginate/gelatin
hydrogel coated with curcumin nanoparticles and achieved
significant TNF-α inhibition (Figure 6). Coumarin is also a
spice and has promising medical applications (Al-Warhi et al.,
2020). Su et al. (2019) reported the significant inhibitory effects of

isoazinine, as a coumarin compound, on a variety of
inflammatory factors and MMPs in human degenerative NP
cells. Both sesamin and mangiferin have been extracted from
common food raw materials, and their medicinal value has been
gradually explored. Li et al. (Li N et al., 2016) reported that
sesamin inhibited LPS-induced ECM-catabolic enzymes and
inflammatory factors in a dose-dependent manner in vitro. In
a subsequent vivo study, the injection of sesamin into the
degenerative discs of a rat model achieved a potent protective
effect against IDD (Li and Lv, 2020). As with mangiferin, Yu et al.

FIGURE 5
Images of IVD from rats in each treatment group stained with Safranin O/Fast Green and Alcian Blue in each group (A) A comparison of histological
scores in each group (B), “****” p < 0.0001. Reproduced with permission from a previous publication (Wang et al., 2020b).
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(2021) reported that mangiferin has anti-inflammatory and anti-
oxidative properties and that the maintenance of mitochondrial
stability can influence IDD in vitro; in a subsequent animal
model, the local injection of mangiferin effectively alleviated
the progression of degeneration.

Berberine is an alkaloid derived from Coptidis rhizoma, a
traditional form of Chinese medicine, which has antibacterial and
anti-inflammatory effects (Song et al., 2020). Many studies have
reported that berberine can alleviate cell apoptosis, ECM
degradation, and oxidative stress damage, caused by

FIGURE 6
An evaluation of cytocompatibility of hydrogels containing different concentrations of curcumin by LDH (A) and Alamar blue (B). Optical microscope
images of hydrogel cultured cells containing different concentrations of curcumin at 7 and 14 days (C). The levels of IL-8 (D) and TNF-α (E) produced by
cells when exposed to hydrogels with different concentrations of curcumin. Reproduced with permission from a previous publication (Zamboni et al.,
2022).
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inflammatory factors (Chen et al., 2018; Lu et al., 2019; Huang et al.,
2022). Similarly, Wei et al. (2020) reported that oxymatrine, a
matrine extract, could relieve inflammation in IDD by inhibiting
the TLR4/NF-κB pathway. In another study, these authors reported
the significant inhibition of IL-1β-induced IDD progression by
oxymatrine liposomes in a mouse model (Wang et al., 2020a).
Celastrol and glycyrrhizic acid are terpenoids extracted from
traditional Chinese medicine. Chen et al. (2017) reported the
inhibitory effect of celastrol on a variety of downstream
inflammatory factors induced by IL-1β. Similarly, Liu et al.
(2019) reported that glycyrrhizic acid could attenuate IL-1β-
induced inflammation by inhibiting the high-mobility group box-
1 gene. Fucoidan, a polysaccharide extracted from algae, has also
been shown to inhibit inflammation in IDD (Yu et al., 2022).

Although the anti-inflammatory effects of plants were
recognized long before the rapid development of modern
medicine, the extraction of their active ingredients, and the
exploration of their mechanisms, still require significant
experimentation. In addition, a set of standard and objective
evaluation criteria for the anti-inflammatory effect of IDD is still
required.

4 Conclusion and outlook

IDD is a common degenerative disease that is a major
contributor to LBP and disc herniation. IDD has a negative
impact on a patient’s quality of life and results in significant
social and financial losses. Natural products can be used as lead
structures as well as a starting point when creating manufactured
products to cure disc degeneration. However, natural products
are more complex and variable than artificial products; thus, a
drug development model aiming to identify a single active
ingredient of artefacts may not be suitable for in-depth studies
of natural products (Caesar and Cech, 2019). Even though
natural products are highly promising for the treatment of
IDD, it is still difficult to use these produces clinically. First,
the precise mechanisms underlying the onset and progression of
IDD have yet to be fully elucidated; these mechanisms are
connected, thus creating a vicious cycle. Second, it is
challenging and not yet ideal to recreate the pathogenic
process of human IDD in an in vivo experimental model.
Finally, even though natural products have demonstrated a
remarkable and promising potential for use in the treatment
of IDD, several repeatable trials and exploratory investigations
are required to fully understand their cytotoxicity and
genotoxicity. In addition, because the IDD features three
biological aspects: the AF, NP, and EP; thus, treating IDD

successfully should not be restricted to just one of these
structures.

The following areas should be investigated further: 1) a deeper
investigation of the pathogenic mechanisms underlying the
emergence and progression of IDD is necessary, thus offering a
clearer roadmap for the creation of natural remedies as well as a
theoretical foundation for the replication of IDD in animal models;
2) a thorough understanding of the local metabolic status of NP,
AF, and CEP cells during the use of natural products to treat IDD,
as this may provide therapeutic recommendations for various
stages of the degenerative process; 3) there are still many
therapeutic options that have not been explored, and
researchers need to keep exploring and generating new
treatments for IDD, and 4) it is important that we investigate
more ideal medicine dosages and effective delivery systems and
improve the industrial production of natural products to guarantee
consistency in quality across batches.
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