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Epidemiological studies have revealed sex differences in the incidence and
morbidity of respiratory virus infection in the human population, and often
these observations are correlated with sex differences in the quality or
magnitude of the immune response. Sex differences in immunity and morbidity
also are observed in animal models of respiratory virus infection, suggesting
differential dominance of specific immune mechanisms. Emerging research
shows intrinsic sex differences in immune cell transcriptomes, epigenomes,
and proteomes that may regulate human immunity when challenged by viral
infection. Here, we highlight recent research into the role(s) of sex steroids and X
chromosome complement in immune cells and describe how these findings
provide insight into immunity during respiratory virus infection. We focus on
the regulation of innate and adaptive immune cells by receptors for androgen and
estrogens, as well as genes with a propensity to escape X chromosome
inactivation. A deeper mechanistic knowledge of these pathways will help us
to understand the often significant sex differences in immunity to endemic or
pandemic respiratory pathogens such as influenza viruses, respiratory syncytial
viruses and pathogenic coronaviruses.
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Introduction

Respiratory virus infections present a global health burden. During the
2019–2020 influenza season, nearly 35 million cases and over 20,000 deaths occurred in
the United States alone, with approximately $11.2 billion spent on healthcare (CDC, 2021).
The COVID-19 pandemic continues to increase the numbers of respiratory infection cases.
Epidemiological studies have shown human sex differences in infectious disease incidence,
immune response quality, and treatment response, and in immunity upon vaccination
against pathogens [reviewed in (Ursin and Klein, 2021; Wilkinson et al., 2022)]. While
differential outcomes in respiratory immunity may be explained by cultural factors such as
gender disparate workplaces, smoking history, or social habits, sex differences in immunity
and morbidity also are observed in animal models of respiratory infection [reviewed in
(Klein et al., 2012; Kadel and Kovats, 2018)]. These findings with rodent models suggest that
many sex differences arise through biological mechanisms influenced by sex chromosome
complement and/or sex steroid levels. Gender and sex differences in morbidity and/or
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immunity often present after the onset of sexual maturity, suggesting a
role for higher levels of estrogens or androgens (Jacobsen and Klein,
2021). Investigation of pathways through which divergent sex steroid
levels or sex steroid receptor activity influence overall morbidity and
the immune cell-specific response to infectious disease has led to
important new insights as detailed below. In addition, emerging
research has shown that immunity is regulated by sex
chromosome complement and the gene dosage effect resulting
from escape of specific genes from X chromosome inactivation
(Jiwrajka and Anguera, 2022). Mechanistically, the pathways
downstream of sex steroid receptor activity may work in tandem
with sex chromosome complement to influence the immune response
to respiratory pathogens. Investigation of these pathways will increase
our understanding of infectious disease pathogenesis and inform
better treatment options based on biological sex and gender Box 1.

BOX 1 Sex and gender.

Sex and gender are distinct terms. While sex has historically been
considered a strict binary variable, new information reveals that
manifestation of biological sex is influenced by chromosomal
complement, genetics, including alleles leading to disorders of sex
development (DSDs), sex steroid concentrations and external/internal
anatomy [discussed in (Ainsworth, 2015; Jacobsen and Klein, 2021)].
Gender is a social construct that does not exist in a binary, and its
external manifestation may include manipulation of sex hormone
levels, particularly by transgender and gender non-conforming
individuals. In humans, sex steroid levels may vary greatly with
health status, age (including milestones such as puberty,
pregnancy, or menopause and andropause), and/or direct
manipulation of levels through contraceptives, hormone
replacement therapy, and/or gender affirming hormone treatments.
Failure to measure and report these sex steroid levels in studies of
humans inhibits our understanding of the mechanistic basis of
observed sex differences in immune cell numbers or activation
pathways. Thus, studies of human immunity will benefit from
ascertainment of the gender identity, assigned sex at birth, sex
chromosome complement, and sex steroid level of individuals, and
integration of these variables into analyses of immune parameters and
disease outcomes. Encouragingly, an increasing number of human
studies do report gender and/or sex as a non-binary variable or
include measurements of circulating sex steroid levels; for example
(Furman et al., 2014; Ter Horst et al., 2016;Webb et al., 2018; Robinson
et al., 2022). Here, unless otherwise noted, we refer to sex differences
when discussing human population studies, as most studies report
participants as male or female using definitions set by the study
authors.

From the clinic: Epidemiological evidence
for gender differences in the incidence and
pathogenesis of respiratory infection

The incidence, morbidity and immune response to acute
respiratory virus infection vary with sex and age. For example,
sex differences in influenza incidence and severity depend on the age
group, with increased morbidity and mortality associated with
young (0–20 years) and elderly (>69 years) males, yet associated
with females during reproductive age (20–49 years) (Kumar et al.,
2009; WHO, 2010; Eshima et al., 2011; Hoffmann et al., 2015;
Giurgea et al., 2022). Consistent with this, another study showed that
the frequency of early life hospitalization for severe lower respiratory
tract infection or bronchiolitis was elevated in male compared to

female children (Regis et al., 2021). Infant and older adult males
show increased incidence and/or severity of respiratory syncytial
virus infection of the lower respiratory tract (De Jacobis et al., 2020;
Orimadegun et al., 2020; Branche et al., 2022; Vila et al., 2022).

Epidemiological data show that males 45–79 years of age
suffered greater morbidity and mortality when infected with
pathogenic coronaviruses, such as SARS-CoV-1, MERS, and
SARS-CoV-2 (Karlberg et al., 2004; Alghamdi et al., 2014;
Gebhard et al., 2020; Alwani et al., 2021; Gomez et al., 2021;
Scully et al., 2021). During the COVID-19 pandemic, reports of
increased morbidity and mortality in elderly males have fueled new
research in sex differences in immunity to infectious pathogens.
Recent reports detail sex differences in immune system cells and
related proteins in COVID-19 patients, and in some cases, these
immune differences have been linked to sex-specific outcomes in
morbidity or mortality (Takahashi et al., 2020; Hou et al., 2021; Ren
et al., 2021; Butler-Laporte et al., 2022).

An open question is the extent to which biological sex (with
inherent sex steroid levels and chromosome complement) shapes an
individual’s intrinsic capacity for immune responses, and several
recent studies provide evidence for this idea. Identification of innate
immune endotypes predicting antibody responses through a pan-
vaccine analysis revealed that biological sex and age explained small
fractions of the variance in transcriptomic data collected (Fourati
et al., 2022), suggesting that stratification of these types of data by
biological sex may elucidate sex-divergent pathways in the human
population. A study of transcriptional, epigenetic, and cellular
changes in the human immune system revealed a sexual
dimorphism in the profile of aging in peripheral blood
mononuclear cells (PBMCs) (Marquez et al., 2020). The data,
obtained using RNA-seq, ATAC-seq, and flow cytometry
analyses of healthy adult men and women aged 22–93, showed
an epigenomic signature of aging characterized by declining naïve
T-cell functions and increased monocyte and cytotoxic lymphocyte
functions. Genomic differences between sexes increased after age 65,
with men showing acceleration of the aging signature, including
higher innate and pro-inflammatory activity and reduced adaptive
activity. These findings have implications for the quality of antiviral
responses and may help to explain the increased morbidity often
observed in elderly men. Another study showed that healthy
younger (< age 50) males and elderly (> age 60) individuals of
both sexes showed differences in immune cell proportions in blood
and levels of circulating mediators that tend to correlate with the
profile observed in severe COVID-19, suggesting both sex and age
dependent immune variables that increase susceptibility to severe
infectious disease (Kilic et al., 2021). Characterization of whole-
genome autosomal DNA methylation in men and women aged
32–81 showed substantial differences that correlated with
differential gene expression, thus defining sex-specific DNA
methylation patterns that likely mechanistically underpin sex
differences in immunity (Singmann et al., 2015). These findings
are consistent with sex differences in inflammation and trained
immunity upon BCG vaccination (Koeken et al., 2020).

Going forward, clinical data disaggregated by gender, sex, and
age will inform our understanding of how biological sex and gender
influence the incidence and pathogenesis of infectious disease. A
barrier to studying human responses to infectious agents is the
frequent absence of early ascertainment and sampling. For more
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common outbreaks, such as seasonal influenza, individuals often do
not seek treatment for mild disease, which skews the sex outcome
data towards more severe cases and hospitalizations. In the COVID-
19 pandemic, early detection and reporting of SARS-CoV-2
infections has increased our understanding of the course of the
disease, as well as how sex and gender may influence antiviral
immunity and pathogenesis.

Sex steroid hormones and their receptors

Endogenous estrogens include estrone (E1), 17-β-estradiol
(E2), and estriol (E3), with E2 predominant in adult females and
males, albeit at distinct levels, and E3 elevated in pregnancy.
Testosterone is synthesized in males and females and converted
by 5α-reductase to the physiologically active dihydrotestosterone
or by aromatase to E2 (Sathish et al., 2015). Sex steroids are
synthesized in the gonads and adrenal cortex as well as peripheral
tissues such as fat or liver (Labrie et al., 2005; Sathish et al., 2015;
Huang et al., 2021). Activated lung macrophages expressing
aromatase may regulate local E2 levels, but more information
is needed about how this is impacted by respiratory infection
(Sathish et al., 2015). In humans, levels of sex steroids vary with
age (puberty, menopause, andropause) and/or due to external
manipulation such as by contraceptives and/or other exogenous
hormone therapy. While the major sex steroid surge is at
puberty, neonatal males are exposed to high levels of
testosterone in a minipuberty stage (Quigley, 2002; Renault
et al., 2020). Furthermore, infection or inflammation can
temporarily alter levels of androgens and estrogens (Robinson
et al., 2011b; Vom Steeg et al., 2019; Tuku et al., 2020). Endocrine
disrupting chemicals (EDCs), including phenols, parabens, and
phthalates, also have been reported to modulate innate and
adaptive immune function, although precise effects are
difficult to ascertain since EDCs bioaccumulate over time
(Popescu et al., 2021). EDCs are often partial estrogen
receptor (ER) agonists that may modulate ER-mediated
transcriptional or rapid signaling pathways. Thus, EDCs may
have greater effects in females due to their to competition with
endogenous estrogens for ER binding.

The sex steroid receptors for estrogens (ERα encoded by Esr1
and ERβ encoded by Esr2) and androgen (AR encoded by Ar) act
as ligand-dependent transcription factors. Upon binding ligand
in the cytoplasm, the receptor/ligand complex translocates to the
nucleus, and, guided by the presence of pioneer factors such as
FOXA1, binds to specific androgen or estrogen response
elements (ARE or ERE, respectively) located at target genes.
Once bound, recruitment of co-activators and/or repressors
allows for modulation of gene transcription through
epigenetic changes, such as modification of histone
methylation or acetylation, leading to chromatin remodeling
(Mann et al., 2011; Pihlajamaa et al., 2015; Liu et al., 2017). The
expression of androgen or estrogen receptor RNA or protein on
various immune cell types is summarized in (Kadel and Kovats,
2018) and is available in the Immunological Genome Project
[Immgen.org] (Heng et al., 2008). For example, macrophages
generally express Esr1 and Ar, while type 2 innate lymphocytes
primarily express Ar. Levels of AR or ER expression may

increase or decrease with cellular activation, as shown for AR
in T cells (Guan et al., 2022). Therefore, the magnitude and/or
complement of ER/AR expression on resident or infiltrating
immune cells in the lung is likely to regulate their patterns of
gene expression and influence functional responses.
Furthermore, ER or AR signaling in hematopoietic
progenitors may set up epigenetic patterns that are preserved
in descendent immune cells (Igarashi et al., 2001; Carreras et al.,
2008). Murine models to study mechanisms underlying sex
differences are described in Box 2.

Sex steroids influence the course of disease through modulation
of the overall inflammatory environment and through direct
regulation of immune cells. Androgens are largely considered
anti-inflammatory (Gilliver, 2010; Cutolo and Straub, 2020),
while estrogens, such as E2, elicit both pro- and anti-
inflammatory effects, depending on levels of sex steroids in vivo
or in cultured cell experiments (Kovats, 2015; Cutolo and Straub,
2020). For example, murine gonadectomy with or without hormone
replacement prior to influenza A virus (IAV) infection has shown
that testosterone is protective in sublethal infections (Vermillion
et al., 2018b; Vom Steeg et al., 2020). High levels of E2 in female mice
were protective against lethal infection, which was associated with
reduced levels of pro-inflammatory cytokines (Robinson et al.,
2011b). Estrus-diestrus levels of E2 promote inflammatory DC
differentiation by upregulating IRF4 in myeloid progenitors
(Carreras et al., 2010). However, despite these advances in our
understanding, differing levels of sex steroids in the human
population have not been conclusively linked with infection
outcome in the COVID-19 pandemic [reviewed in (Lott et al.,
2022)].

Biological sex also may regulate other variables influencing
pulmonary immunity. Sex differences in lung architecture
secondary to sex steroid levels may contribute to differential
immunity to respiratory virus infection (Carey et al., 2007). Sex-
specific expression levels of viral entry receptors, such as ACE2 or
TMPRSS2 for SARS-CoV-2, may impact the initiation or magnitude
of infection (Lott et al., 2022).

Incomplete and variable X chromosome
inactivation (XCI)

X chromosome inactivation (XCI) occurs early in embryonic
development to compensate for the gene dosage imbalance resulting
from the additional X chromosome(s) in females (Souyris et al.,
2019; Jiwrajka and Anguera, 2022). Once XCI is initiated,
X-inactivation specific transcript (XIST/Xist), a long non-coding
RNA, is upregulated on the randomly chosen, future inactive X
chromosome (Xi). The transcribed XIST/Xist RNA accumulates and
condenses on the X chromosome, recruiting other complexes to
epigenetically silence the chromosome. XCI is not permanent, and
XIST must be continuously transcribed to maintain the inactivated
state. However, not all genes on the Xi are silenced, as an estimated
15%–20% of genes on the X chromosome escape inactivation, with
an additional 10%–12% displaying variable escape between
individuals (Wang et al., 2016; Syrett and Anguera, 2019).

The X chromosome has the highest density of immune
response genes, and many are known to escape XCI in humans
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or mice, such as TLR7, CXCR3, CD40LG, BTK, IRAK1, NEMO and
CXORF21 (Wang et al., 2016; Souyris et al., 2018; Harris et al.,
2019; Odhams et al., 2019). Although escape from XCI leads to
biallelic expression of these genes, thus altering the gene-dose
effect, it is not the only factor that contributes to altered expression
of X-linked immune genes. Maintenance of the XIST RNA is
variable during activation of lymphocyte populations (Wang et al.,
2016). In naïve lymphocytes, the Xi is partially reactivated via
decreased maintenance of the XIST RNA, and this phenotype
changes to full inactivation upon lymphocyte interaction with
antigen and subsequent functional activation. This transition
from partial reactivation to fully inactive contributes to the
differences in biallelic gene expression observed in naïve versus
activated lymphocytes. While the contributions of X chromosome
complement (including aneuploidy), XCI, and escape from XCI
have been primarily studied in the context of autoimmunity, these
findings have implications for antiviral immunity (Abramowitz
et al., 2014).

BOX 2 Murine models to study mechanisms underlying
sex differences.

Murine models to study the influence of sex steroids range from
simple physiological manipulations to global or conditional disruption
of Esr or Ar genes. Gonadectomy with or without hormone
replacement is often used to study the role of sex steroids in
infectious disease outcome and immune responses [for example
(Laffont et al., 2014; Vom Steeg et al., 2016; Laffont et al., 2017;
Vermillion et al., 2018a)]. Mice with global Esr1 deficiency have
been used to investigate the role of ERα activity; however, these
data are often confounded by the abnormally high levels of
testosterone in both female and male Esr1−/− mice, as well as high
levels of estradiol in female mice (Sims et al., 2002). ARTfm (testicular
feminization) mice, with a spontaneous mutation in the Ar gene that
leads to androgen insensitivity, have been used to understand how a
global absence of AR activity modulates immune responses (He et al.,
1991); yet a potential caveat to such studies is that Tfmmice have low
levels of serum testosterone (Jones et al., 2003), which may lead to
changes in estradiol levels. While these approaches increase
understanding of the systemic impact of sex steroids, they do not
identify cell intrinsic effects of ER or AR activity. Models that delete sex
steroid receptor genes in specific immune cell types have elucidated
ER or AR mediated cell intrinsic mechanisms without disruption of
systemic hormone levels or synthesis pathways (Griesbeck et al., 2015;
Casali et al., 2020; Ejima et al., 2022). A unique mouse model that
enables assessment of the roles of sex chromosomes and sex steroids
separately is the four core genotypes (FCG) model. In FCG mice, the
testis-determining Sry gene is located on an autosome, so that XX and
XY mice can either be gonadally male (express SRY) or female (do not
express SRY). With the four genotypes available (XXF, XYF, XXM, XYM),
comparison of these mice determines if sex differences are a result of
gonads/sex steroids, sex chromosomes, or a combination of both
(Arnold and Chen, 2009; Robinson et al., 2011a).

Sex differences in innate antiviral
immunity

Upon infection with a single-stranded RNA (ssRNA) virus, such
as respiratory syncytial virus (RSV), influenza A or B virus (IAV,
IBV), or SARS-CoV-2, cells within the respiratory tract initiate the
immune response by producing antiviral molecules and
proinflammatory cytokines (Mettelman et al., 2022). Type I
interferons (IFN-I) are produced after ssRNA recognition and

signaling via endosomal TLR7 and other cytosolic nucleic acid
sensors, such as MDA5 (Diebold et al., 2004; Okude et al., 2020).
IFN-I stimulates the transcription of numerous genes involved in
both viral clearance and enhancement of the innate immune
response (Schoggins and Rice, 2011). IFN-I is initially produced
by pulmonary epithelial cells as well as lung resident macrophages
and conventional dendritic cells (cDCs), which also secrete
chemotactic molecules to quickly recruit other innate immune
cells from blood, such as neutrophils, monocytes, natural killer
(NK) cells, and plasmacytoid dendritic cells (pDCs) (Figure 1,
Table 1) (Mettelman et al., 2022).

Recent clinical studies show that females have an increased
propensity to generate robust antiviral responses involving IFN-I.
Stimulation of PBMCs from male and female teenagers with live
virus, or TLR7 or TLR9 stimuli, showed that females produced
higher levels of IFN-I, IFNγ and IFN-induced chemokines
compared to males (Regis et al., 2021). A recent report on sex
differences in SARS-CoV-2 infection in young military recruits
followed longitudinally showed that females had higher pre- and
post-infection expression of antiviral interferon-stimulated genes
(ISGs) (Sauerwald et al., 2022), which correlated with increased
illness symptoms, yet reduced viral load. A heightened state of
antiviral innate immunity prior to infection in females is consistent
with our understanding of sex-specific mechanisms regulating IFN-I
pathways, as outlined below.

A body of evidence shows that estradiol acting via ERα promotes
the production of IFN-I, often by regulation of genes in innate
sensing pathways such as TLR8, Unc93b1, Aim2, Trim21 or Irf5,
whose activity leads to the induction of the Ifna or Ifnb genes
[reviewed in (Kovats, 2015)]. X linked genes, such as TLR7, that
escape dosage compensation also contribute to increased IFN-I
production in female cells. These mechanisms lead to sex
differences in production of IFN-I or IFN-responsive pathways
(Figure 2), which has important implications for antiviral
responses, as recently reviewed (Pujantell and Altfeld, 2022).

Human and murine pDCs express high levels of both ESR1
and ESR2 (Phiel et al., 2005; Laffont et al., 2014). pDCs rapidly
produce significant amounts of IFN-I in response to ssRNA
viruses. Mouse models show that estrogens enhance the
responsiveness of pDCs to TLR7 and TLR9 signaling, and
treatment of postmenopausal women with estradiol restored
cytokine production specifically in pDCs, indicating a cell-
specific mechanism (Seillet et al., 2012). A later study using
mice reconstituted with human CD34+ cells from cord blood
showed this enhancement of TLR7-induced IFN-I production to
be dependent on estrogen in the host, regardless of the sex of the
donor, although X chromosome dosage independently
contributed to the sex bias (Laffont et al., 2014). Esr1
deficiency restricted to either the hematopoietic compartment
or DCs in mice revealed that the enhanced TLR7 signaling in
female pDCs is likely due to direct regulation of IRF5 expression
by ERα (Griesbeck et al., 2015). Increased basal IRF5 expression
perpetuated by ERα signaling in pDCs, and perhaps other cells,
may contribute to the elevated IRF5-dependent IFN-I
production observed in females compared to males.

The sex differences in pDCs also are influenced by sex
chromosome complement (Souyris et al., 2018). TLR7 is encoded
on the X chromosome and is confirmed to escape XCI in immune
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cells, including monocytes and pDCs, from both female (46, XX)
and Klinefelter syndrome (KS) male (47, XXY) individuals.
Stimulated PBMCs from women and KS men produced similar
amounts of TLR7 mRNA, which was greater than that produced by
PBMCs from (46, XY) men and (45, XO) Turner syndrome (TS)
women (Sarmiento et al., 2019). Furthermore, within PBMCs
treated with a TLR7 agonist, pDCs from (46, XX) women and
(46, XX) transgender men produced more type I IFN and had higher
expression of CD86 (a surface marker of pDC activation) than (46,
XY) men and (46, XY) transgender women, indicating the sex
difference seen was more dependent on sex chromosome
complement than sex steroid concentration (Webb et al., 2018).
A recent study of COVID-19 patients showed that while TLR7 is
expressed similarly in non-ICU patients of both sexes, TLR7
expression in blood cells is significantly downregulated in male
patients admitted to the ICU as compared to female patients
(Gomez-Carballa et al., 2022). Additionally, analysis of DNA
methylation patterns on the TLR7 gene revealed four
differentially methylated positions that were significantly different
between men with severe and mild COVID-19, whereas there were
no significant TLR7 methylation differences between females. The
reduced TLR7 expression in males with severe disease suggests that
these individuals had decreased early antiviral responses.

As IFN-I is critical for the initiation of the antiviral immune
response, sex divergent production kinetics could lead to
differences in disease outcome. Studies using mouse models of

SARS-CoV-1 indicate that a delayed IFN-I response contributes
to immunopathology, as the initial paucity of IFN-I and
increased viral load leads to the recruitment of inflammatory
macrophage-monocytes (IMM) and neutrophils into the lungs of
infected mice (Channappanavar et al., 2016). In both MERS-CoV
and IAV infections, the timing of the IFN-I response is vital to
viral clearance, as early treatment with either rIFNβ or rIFNɑ

provided total protection, while delayed treatment after the peak
of viral replication exacerbated disease (Davidson et al., 2016;
Channappanavar et al., 2019). This scenario also likely occurs
upon SARS-CoV-2 infection in humans (Sette and Crotty, 2021).
In the murine model of sublethal SARS-CoV-1 infection, males
were more likely to show significant morbidity and mortality
compared to females, particularly when older (8–20 months)
(Channappanavar et al., 2017). While viral titers were higher in
males, levels of Ifnb RNA were comparable. However, males
showed increased levels of proinflammatory mediators (CCL2,
CXCL1, IL-6) and lung infiltration of IMMs and neutrophils,
suggesting a more exuberant inflammatory response and perhaps
altered kinetics of IFN-I production or accumulation.
Ovariectomy and the ER antagonist ICI182,780 decreased
survival. These experiments showed that ER signaling protects
the female mice during infection by decreasing IMM recruitment
and viral load. In contrast, orchiectomy, or treatment with the AR
antagonist flutamide did not alter morbidity or mortality in
males.

FIGURE 1
The immune response to ssRNA viral infection is regulated by sex steroid receptors and gene dosage on the X chromosome. Letters indicating each
cell type or pathway are defined in Table 1. Figure created with BioRender.com.
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Sex differences in lymphocyte
mediated immunity

Lymphocyte immunity involves innate lymphocytes producing
cytokines or other cytotoxic mediators (e.g., ILCs, NK or
MAIT cells), or B and T cells implementing antigen-specific
adaptive immunity. After acquiring viral antigens at the site of
viral infection, DCs migrate to the draining lymph nodes where they
present antigen to naïve T cells (Mettelman et al., 2022). Naïve T
cells differentiate into cytotoxic (CD8+) or helper (CD4+) subsets
based on peptide recognition and/or environmental cytokines.
During respiratory viral infections, CD8+ cytotoxic T cells
promote viral clearance through cytokine release (IFNg, TNFα,
IL-2), degranulation, and contact-dependent apoptosis of infected
cells. CD4+ T helper and regulatory cells release cytokines that

recruit innate immune cells, regulate CD8+ T cell activity, suppress
the inflammatory environment, and promote B cell differentiation
and antibody production. As T cell responses are vital to the
immune response, dysregulation in numbers and/or function can
negatively impact disease outcome.

Adaptive T and B cell responses in COVID-19 have been
extensively reviewed elsewhere, for example in (Sette and Crotty,
2021). The majority of studies on T cells in COVID-19 patients did
not report significant sex differences in the extent of T cell activation
or numbers of antigen-specific T cells; however, a few studies
described here did define differences that could be followed
up. Among COVID-19 patients, males harbored a lower CD4+:
CD8+ T cell ratio (Zhao et al., 2021). A decrease in activated T cells
was correlated to increased age and mortality in male, but not
female, patients with severe disease (Takahashi et al., 2020; Zhao

TABLE 1 Pathways shown in Figure 1.

Key Pathway Sex difference or sex steroid regulation or XCI effect

A ssRNA virus damages lung epithelium • Sex differences in expression of viral entry receptors

B Damaged epithelium releases chemokines, alarmins and cytokines to recruit or
activate innate immune cells such as DCs, monocytes, neutrophils and ILCs/NKs

• Sex differences in IL-33 production were reported

• AR promotes development of IL-33 producing stromal cells (in visceral adipose
tissue)

C1 ssRNA activates TLR7-TASL signaling that results in production of IFN-I and
proinflammatory cytokines

• ERα activity promotes pathways involving IRF5 leading to increased IFN-I

• X-linked TLR7 and CXORF21 expression is increased by incomplete XCI in
females

C2 Activated ILC2s produce IL-5 that recruits eosinophils and amphiregulin that
promotes tissue repair

• Females harbor more ILC2s than males

• ILC2 numbers and function are attenuated by AR activity

• Overall amphiregulin levels are increased in males and by AR activity

D Activated cDCs transit to LNs and present Ag to naïve T cells. Inflammatory
monocyte-derived DCs infiltrate lung tissue

• ER activity regulates DC differentiation and function

E1 Activated CD8+ T cells differentiate to cytotoxic effectors or memory cells • AR activity promotes faster contraction of CTL after viral clearance, promoting
faster recovery

• AR activity limits IFNγ production

E2 CD4+ T cells differentiate to Th1 cells that produce IFNγ and promote viral
clearance

• X-linked CXCR3 subject to incomplete XCI leading to biallelic expression in
females

• T cell CXCR3 promotes antiviral activity

• ER activity promotes CD4+ T cells functional responses

• AR activity reduces Th1 differentiation

E3 CD4+ T cells promote B cell activation and Ab production • X-linked CD40LG subject to incomplete XCI leading to biallelic expression in
females

• CD40L enhances T-B interactions and T cell survival

E4 Regulatory T cells attenuate immune responses and promote CD8+ Tmemory cell
differentiation

• ER activity promotes FOXP3 expression and regulatory T cell activity

• AR activity may promote regulatory T cell numbers and amphiregulin
production during the resolution phase

F B cells produce Abs specific for viral proteins • Biallelic TLR7 expression due to incomplete XCI increases quantity and quality
of virus-specific Abs

• ERα activity promotes class switch recombination and somatic hypermutation
via effects on BCR signaling and Aicda expression

• AR activity decreases Ab levels
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et al., 2021). To date T cell epitope mapping studies have not
revealed sex differences in epitope selection (Sette and Crotty, 2021).

Sex differences in the total number and activity of mucosal-
associated invariant T (MAIT) cells also correlate with COVID-19
severity of infection (Yu et al., 2021). MAIT cells respond to viral
infection through the release of IFNγ, TNFα, and the cytotoxic
molecules perforin and granzyme B. Analyses of T cell populations
of COVID-19 patients revealed that female patients had a lower
proportion of MAIT cells in the blood, but higher numbers in the
bronchoalveolar lavage fluid, indicating that MAIT cells may better
extravasate to the pulmonary site of infection in females. MAIT cells
in females showed a more immunologically active transcriptome,
while MAIT cells in males showed an exhausted, pro-apoptotic
phenotype, possibly contributing to the increase in
immunopathology observed in males.

Sex steroids acting via ER or AR elicit both direct and indirect
effects on CD4+ and CD8+ T cell function in diverse models of
infection, autoimmunity and cancer. IAV infection of
gonadectomized males showed that testosterone causes earlier
contraction of IAV-specific IFNg+CD8+ T cells in the lung after
viral clearance, thereby reducing the overall inflammatory
environment and increasing the rate of recovery, although this
has not yet been linked to T cell intrinsic AR expression (Vom
Steeg et al., 2020). Testosterone exposure led to direct binding of AR
to the phosphatase gene Ptpn1, and the resulting increased
transcription of Ptpn1 led to inhibition of IL-12 induced
STAT4 phosphorylation and Th1 differentiation (Kissick et al.,
2014). These studies are consistent with new reports showing
that AR activity limits T cell effector function and promotes

T cell exhaustion in solid tumors. AR bound directly to the Ifng
gene, and blockade of AR activity or deletion of Ar in T cells led to
increased IFNg production by CD8+ T cells (Guan et al., 2022; Kwon
et al., 2022). Thus, AR activity may limit functional responses of
activated antiviral T cells.

In contrast, multiple reports show that ER activity promotes T
cell functional responses. ERα action in T cells induces their
activation and proliferation in an autoimmune colitis model
(Mohammad et al., 2018). Disruption of ERα signaling in a
globally deficient Esr1−/− murine lupus model led to attenuated T
cell activation, loss of spontaneous germinal centers, and loss of anti-
chromatin autoantibodies, suggesting ERα regulates lymphocyte
activation in this model, although a role for elevated testosterone
in the Esr1−/− mice cannot be excluded (Graham et al., 2020).
Healthy PBMCs from women expressed higher levels (compared
to men) of the CD2 gene, and CD2 expression was upregulated by
E2 exposure in vitro (Fernandez Lahore et al., 2021). ER-mediated
regulation of the costimulatory molecule CD2 governed T cell
activation in murine autoimmune models, in which female
specific differences in CD2 expression on CD4+ T cells were
attributed to the action of E2 and the binding of ERα to a
polymorphic estrogen receptor binding site near the Cd2 gene
(Fernandez Lahore et al., 2021). Sex differences in the capacity of
human and murine CD4+ T cells to proliferate and produce IFNγ
upon TCR stimulation was linked to levels of PPARα, which
represses NF-κB and c-JUN important for T cell activation
(Dunn et al., 2007; Zhang et al., 2012). The increased capacity of
female CD4+ T cells to produce IFNγ was associated with lower
levels of PPARα and elevated levels of PPARγ compared to male

FIGURE 2
Interaction between sex steroid receptors and escape from XCI in pDCs. Signaling through ER results in increased pDC responsiveness to
TLR7 signaling and TLR7-mediated IFN-I production. Additionally, ER activity increases transcription of IFNA/B and interferon-responsive genes (ISGs),
both through increased production of IFN-I leading to signaling through the IFNAR, as well as increased expression of IRF5. Escape from XCI by TLR7 and
CXORF21 results in biallelic transcription of the genes. Increased levels of TLR7 and TASL (the protein encoded by CXORF21) also result in increased
transcription of IFNA/B and increased production of IFN-I. Figure created with BioRender.com.
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CD4+ T cells. In males, endogenous androgens increased PPARα
and reduced PPARγ levels in CD4+ T cells, suggesting that sex
differences in CD4+ T cell functional responses are regulated by sex
hormones in vivo.

Biallelic expression of X-linked genes that escape XCI also
impacts T cell function. Cxcr3 is located on the X chromosome,
and during inflammation is upregulated on macrophages, dendritic
cells, and CD8+ and CD4+ T cells, promoting their migration to sites
of infection (Oghumu et al., 2019). The Cxcr3 gene escapes XCI, and
biallelic expression of Cxcr3 enhances the Th1 anti-viral response
and is associated with increased CD69 expression and production of
IFNγ and IL-2 (Wang et al., 2016; Oghumu et al., 2019). CD40LG
(encoding CD40L) expressed by T cells is another X-linked gene
reported to escape XCI (Wang et al., 2016; Sarmiento et al., 2019).
CD40L promotes T cell survival and regulates B cell activation and
differentiation. Stimulated CD3+ T cells from (46, XX) women and
(47, XXY) KS men showed significantly more CD40L protein
density and mRNA as compared to cells from (46, XY) men and
(45, XO) TS women (Sarmiento et al., 2019). Biallelic expression of
CD40L enhances the adaptive immune response, however it has
primarily been studied in the context of autoimmunity (Sarmiento
et al., 2019; Syrett and Anguera, 2019).

During respiratory virus infection, B cell production of antibodies is
an importantmechanism of virus neutralization and clearance (Lam and
Baumgarth, 2019). In addition, generation of memory B cells capable of
producing high affinity antiviral antibodies upon infection or vaccination
limits viral load and pathology upon subsequent infectionwith homo- or
heterosubtypic viruses (Dhakal et al., 2021; Ursin et al., 2022). Sex
differences in antibody production, particularly after vaccination, have
been well studied in small mammal models and humans. Females
produce a larger quantity and repertoire of antibodies specific for
IAV and SARS-CoV-2 proteins (Lorenzo et al., 2011; Fink et al.,
2018; Voigt et al., 2019; Dhakal et al., 2021; Ursin et al., 2022). An
elegant study showed that enhanced seroconversion of HA-inhibiting
antibodies was positively associated with the levels of estradiol in both
adult and agedwomen, and that treatment of gonadectomizedmice with
either estradiol (females) or testosterone (males) led to an increase or
decrease in antibody response, respectively (Potluri et al., 2019). These
data confirm findings from an earlier study that showed levels of
testosterone negatively correlate to antibody responses in males after
vaccination against IAV (Furman et al., 2014). Due to their expression of
both ERɑ and ERβ (Hill et al., 2011), B cells are likely to be directly
regulated by estrogens during viral infection.

Much of our information about mechanisms by which estrogens
and ERα regulate B cells function comes from studies of female sex-
biased autoimmune diseases such as systemic lupus erythematosus,
in which B cells produce high levels of autoantibodies (Dodd and
Menon, 2022). ERα acts to modulate BCR signaling and promote the
loss of B-cell tolerance, specifically in females, in murine lupus
models (Grimaldi et al., 2001; Hill et al., 2011; Graham et al., 2020).
Other work showed that ER activity enhances activated B cell
expression of AID (encoded by Aicda), which is required for
class switch recombination and somatic hypermutation
(Muramatsu et al., 2000; Mai et al., 2010). Aicda expression is
induced by the synergistic binding of HOXC4 and NF-κB to
regulatory elements (Park et al., 2009), and ERɑ promotes this
interaction by binding to the HoxC4 promoter (Mai et al., 2010). In
addition, AID expression can be silenced through multiple

mechanisms including binding of miR-26a to the 3′UTR of the
Aicda mRNA. Using both global (Esr1−/−) or B cell specific Esr1
deficient (Aicda-cre-Esr1−/−) mice, researchers determined that ERɑ
downregulated the expression of miR-26a through both direct and
indirect binding to the genes responsible for miR-26a expression.
The downregulation of miR-26a decreased AID silencing, thereby
increasing somatic hypermutation (Casali et al., 2020). This
mechanism may contribute to the enhanced antibody production
seen in females in infection or vaccination.

B cells also display sex differences based upon their sex
chromosome complement. Maintenance of XIST in naïve T and B
cells is altered until they are activated, allowing for greater biallelic
expression of someX-linked genes (Wang et al., 2016). One such gene is
CXORF21, which encodes for the protein TASL (Heinz et al., 2020).
TASL acts synergistically with TLR7, enhancing the downstream
immune responses of TLR7 signaling and type 1 IFN production
(Harris et al., 2019; Odhams et al., 2019). In B cells, TLR7 signaling
promotes isotype switching, maturation, and antibody production (Jego
et al., 2003). Biallelic expression of TLR7 in B cells is associated with
greater antiviral antibody responses. In mice, vaccination with whole or
subunit inactivated IAV was linked to greater expression of Tlr7 in
females as compared to males, leading to a higher quantity and quality
of IAV-specific antibodies (Fink et al., 2018). Human studies also show
that after vaccination with the trivalent inactivated influenza vaccine,
females of reproductive age generate higher antibody titers than males
(Potluri et al., 2019). Elevated expression of TLR7 is also linked to the
production of autoantibodies in autoimmune diseases, such as systemic
lupus erythematosus (Souyris et al., 2018).

Lessons from regulatory and type
2 immunity

Often studied in the context of type 2 inflammation, such as
asthma or helminth infections, regulatory T cells (Tregs) and innate
type 2 lymphocytes (ILC2s) contribute to viral infections by
promoting resolution and repair. In response to viral insult,
infected epithelial cells release the alarmin IL-33 (Le Goffic et al.,
2011), which in turn activates ILC2s and Tregs [reviewed in (Liew
et al., 2016)]. Activated ILC2s secrete large amounts of IL-5, IL-4,
and IL-13 (Kabata et al., 2018) that activate other immune cells,
whereas Tregs most notably release high amounts of IL-10 that quell
the inflammatory environment (Schmidt et al., 2012). Several
reports in mouse models of asthma have indicated that both cell-
intrinsic and extrinsic signaling through sex steroid receptors may
regulate the function and/or development of both cell types.

ILC2s express high levels of Ar mRNA with little to no
expression of Esr1 or Esr2 (Heng et al., 2008; Laffont et al.,
2017), with the exception of those in the uterus (Bartemes et al.,
2018). Androgens negatively regulate the transition of ILC
precursors in the bone marrow to mature ILC2s in the lungs of
male mice, which correlates to a two-fold increase in total numbers
in the female lung compared to age matched males (Kadel et al.,
2018). This difference in ILC2 numbers is mirrored in the blood of
asthmatic patients (Cephus et al., 2017). Orchiectomy of male mice
abolished the sex differences observed in asthma (Laffont et al.,
2017), and androgen treatment of female mice after ovariectomy
resulted in ILC2 numbers and functional responses typical of intact
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males (Blanquart et al., 2022). While these studies show that
ILC2 development and number are influenced by sex steroids,
mice bearing AR deficiency, specifically in ILC2s, will help
delineate the cell intrinsic mechanisms that drive these phenotypes.

Tregs were reported to express quite low levels of Ar, Esr1 and
Esr2 RNA (Heng et al., 2008), yet studies show evidence for cell-
intrinsic ER or AR activity in Tregs. AR signaling reduces the
number of pro-inflammatory Tregs in asthmatic male mice by
decreasing their expression of IL-33R and activation by IL-33
(Gandhi et al., 2022). In contrast, physiological and
pharmaceutical levels of E2 increase expansion of natural Tregs
and induce the expression of FOXP3 in CD4+CD25– T cells in an
ERα-dependent manner (Polanczyk et al., 2004; Tai et al., 2008).
E2 acting via ERβ augments Treg expression of FOXP3, CD25 and
GATA3, and E2-exposed Tregs promote resolution of bacterial
pneumonia (Xiong et al., 2021). As reduction of inflammation is
essential for recovery from viral infections, sex steroid regulation of
Treg numbers and function may contribute to the sex differences
observed in immunopathology following viral infection.

Taken together, these data highlight a role for the sex steroid
regulation of Treg and ILC2 numbers and function in the
respiratory tract. Notably, both ILC2s and Tregs produce
high levels of the growth factor amphiregulin (Arpaia et al.,
2015; Kabata et al., 2018), and loss of this function exacerbates
immunopathology and delays tissue repair in murine IAV
infection (Monticelli et al., 2011; Arpaia et al., 2015). IAV
infected males produce higher levels of amphiregulin, which
correlates with improved pulmonary function compared to
females in the recovery phase (Vermillion et al., 2018b).
While treatment of gonadectomized males with testosterone
improved IAV outcomes, direct regulation of amphiregulin by
AR activity in ILC2s or Tregs was not reported. Androgens have
been shown to increase the number of epithelial cells that
release IL-33 in the visceral adipose tissue and increase the
number of immunosuppressive Tregs in males (Vasanthakumar
et al., 2020), consistent with the elevated numbers of stable
Tregs observed in males with asthma (Gandhi et al., 2022). In
contrast, lungs in naïve 8 week old females were shown to
contain higher amounts of IL-33 compared to male lungs (Matha
et al., 2019). These AR-mediated mechanisms may contribute to
the protection observed in males after IAV infection (Vom Steeg
et al., 2019; Vom Steeg et al., 2020). As Tregs are required for the
development of CD8+ memory T cells (de Goer de Herve et al.,
2012), Treg expansion promoted by estradiol may lead to the
enhanced protection against secondary viral infections observed
in females (Ursin and Klein, 2021).

Male sex and AR regulation of type 2 immunity has implications
for viral infection and secondary links to asthma susceptibility that
differs before and after puberty. In a murine model of neonatal RSV
infection, female pups showed better virus control with higher levels
of IFNβ not seen in male pups (Malinczak et al., 2019). This led to
persistent immune cell skewing in male offspring, including elevated
Th2 and Th17 cells, ILC2s, and type 2 cytokines such as IL-33 and
TSLP that correlated with exacerbation of allergic responses,
which are often preferentially observed in young boys.
However, in murine models of asthma after sexual maturity,
AR activity decreases effector Th2 and Th17 cells, which
correlates with epidemiological data showing that asthma

propensity is decreased in males after adolescence. RNA-
sequencing analyses of AR-deficient T cells show an increase
in the production of type 2 cytokines in males with little effect
on females, further highlighting an anti-inflammatory role of
androgens in males (Ejima et al., 2022). Mouse models of house
dust mite-induced asthma show that cell intrinsic AR activity
attenuated IL-17A+ Th17 cells, leading to a decrease in
neutrophil infiltration, while endogenous androgens
indirectly decreased the number of pro-inflammatory IL-13+

Th2 cells by suppressing IL-4 production (Fuseini et al., 2018).
Future research will determine if common pathways are
activated or attenuated by intrinsic AR activity in Th1 cells
prominent in IFN-centered respiratory virus infections and/or
in Th2 and Th17 cells important in asthma and extracellular
bacterial infections.

Conclusion

Sex steroids and X chromosome complement act in tandem
or independently to mediate the sex differences seen in human
disease and animal models (Figure 2). Herein, we have
summarized evidence that sex steroids bound to their
receptors and/or gene dosage on the X chromosome regulate
immune responses in respiratory virus infection in humans and
animal models. We have discussed how our understanding of
immune mechanisms in infection may be informed by studies of
sex differences in inflammatory pathways in autoimmune and
other immune-mediated diseases. Taken together, these data
reinforce the idea that multi-faceted immune responses to
infection may be governed at various points by factors
related to sex differences. For example, AR signaling may
promote resolution of immune responses by attenuating T
cell responses, while ER signaling may promote type I IFN
production by innate cells. Secondly, a sex difference in
response to or outcome of infection may be due to the
presence or absence of sex-specific factors. For example, a
particular pathway outcome in males may be due either to
direct effects of AR signaling or the absence of robust ER
signaling.

Ideally, an increased understanding of sex specific mechanisms
underlying sex differences in pulmonary immunity would lead to
improved treatment and precision medicine options for respiratory
infection (Stachenfeld and Mazure, 2022). In the COVID-19
pandemic, observations of a male bias in mortality led to clinical
trials involving estrogen or selective ERmodulator administration or
androgen blockade. To date, these clinical trials for COVID-19 have
been inconclusive, and the field currently lacks consensus as to
whether disparate sex steroid levels drive susceptibility or infection
outcomes in the human population [reviewed in (Lott et al., 2022)].
Human studies that ascertain hormonal and chromosomal sex will
benefit the field, as valuable data may be lost when sex steroid levels
and sex chromosome complement are not considered and/or
assumed to match overt gender identity. The challenge is to
understand more fully how cell intrinsic sex steroid receptor
expression and X chromosome complement regulate the
epigenome, transcriptome, and proteome in immune cells, either
prior to or during infection. This information will increase our

Frontiers in Pharmacology frontiersin.org09

Miller et al. 10.3389/fphar.2023.1150282

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1150282


understanding of the sex disparate pathways underlying immune
function in antiviral responses.
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