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Background: A critical step in tuberculosis (TB) drug development is the Phase 2a
early bactericidal activity (EBA) study which informs if a new drug or treatment has
short-term activity in humans. The aim of this work was to present a standardized
pharmacometric model-based early bactericidal activity analysis workflow and
determine sample sizes needed to detect early bactericidal activity or a difference
between treatment arms.

Methods: Seven different steps were identified and developed for a standardized
pharmacometric model-based early bactericidal activity analysis approach. Non-
linear mixed effects modeling was applied and different scenarios were explored
for the sample size calculations. The sample sizes needed to detect early
bactericidal activity given different TTP slopes and associated variability was
assessed. In addition, the sample sizes needed to detect effect differences
between two treatments given the impact of different TTP slopes, variability in
TTP slope and effect differences were evaluated.

Results: The presented early bactericidal activity analysis approach incorporates
estimate of early bactericidal activity with uncertainty through the model-based
estimate of TTP slope, variability in TTP slope, impact of covariates and
pharmacokinetics on drug efficacy. Further it allows for treatment comparison
or dose optimization in Phase 2a. To detect early bactericidal activity with 80%
power and at a 5% significance level, 13 and 8 participants/arm were required for a
treatment with a TTP-EBA0-14 as low as 11 h when accounting for variability in
pharmacokinetics and when variability in TTP slope was 104% [coefficient of
variation (CV)] and 22%, respectively. Higher sample sizes are required for smaller
early bactericidal activity and when pharmacokinetics is not accounted for. Based
on sample size determinations to detect a difference between two groups, TTP
slope, variability in TTP slope and effect difference between two treatment arms
needs to be considered.

Conclusion: In conclusion, a robust standardized pharmacometric model-based
EBA analysis approach was established in close collaboration between
microbiologists, clinicians and pharmacometricians. The work illustrates the
importance of accounting for covariates and drug exposure in EBA analysis in
order to increase the power of detecting early bactericidal activity for a single
treatment arm as well as differences in EBA between treatments arms in Phase 2a
trials of TB drug development.
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1 Introduction

Mycobacterium tuberculosis (Mtb) is the pathogenic bacteria
that causes tuberculosis (TB), one of the leading causes of death from
an infectious disease (World Health Organization, 2021). While
progress in TB treatment shortening has accelerated in recent years,
with the success of the Nix-TB trial showing that 6-month treatment
is possible for drug-resistant TB (Conradie et al., 2020) and drug-
susceptible TB treatment can be shortened to 4-month with
rifapentine-moxifloxacin regimen (Dorman et al., 2021), TB
remains a global problem. Many novel drugs are in the TB drug
development pipeline, promising a potential trove of new
medications in the future (Working Group on New TB Drugs,
2022).

One of the critical steps in TB drug development is a Phase 2a
early bactericidal activity (EBA) study. An EBA study is an
established method to provide clinical proof of concept for
antimicrobial drugs under investigation (Jindani et al., 1980;
Donald and Diacon, 2008; Food and Drug Administration, 2013;
European Medicines Agency, 2017). EBA studies investigate if a
drug is active in patients and represents a major milestone that
unlocks further investment for clinical development. Most of the
drugs active against Mtb show activity in EBA trials with very few
exceptions, e.g., clofazimine which has shown no EBA in vitro, in
vivo and patients but is believed to have an activity against persisting
bacteria (Ammerman et al., 2017; Faraj et al., 2020). In addition to
proof of concept, the EBA trials provide the opportunity to study
safety, tolerability and pharmacokinetics (PK) in patients.
Depending on the EBA trial design, the relationship between
activity and dose can be studied as well as the activity of
different treatments can be compared which can guide further
clinical development. Usually, EBA studies are conducted in a
carefully controlled setting with a small number of patients per
group (12–15 participants) for up to 14 days, and include sputum
sample collection, PK sampling, and intensive safety assessments.

EBA is quantified by measurement of the viable mycobacterial
load in overnight-collected sputum samples over time using colony
forming units (CFU) of Mtb (measured in log10 CFU/mL sputum)
and/or time-to-positivity (TTP) in liquid culture (measured in
hours). The correlation between changes in TTP and CFU varies
over time, which is due to that they likely reflect slightly different
processes (Diacon et al., 2012; Bowness et al., 2015; Ayoun Alsoud
et al., 2022). CFU measures the quantity of viable mycobacteria
regardless of the speed of growth, while TTP measures the
consumption of critical ingredients in a closed liquid culture
system, which is influenced by both the quantity and metabolic
activity of the growing mycobacteria (Alffenaar et al., 2022). These
assays are inherently variable and should be performed with at least
two replicates, where overnight-collected sputum samples from each
day are subsequently divided to multiple replicates. In addition to
established culture-based biomarkers like CFU and TTP, new
biomarkers are currently being developed, which could
complement or replace existing ones in the future. With all of

the promising progress in the TB drug pipeline, it is critical to have a
robust and standardized approach to analyzing EBA trial data.

Approaches present for EBA analysis can be categorized into i)
traditional non-model-based EBA analysis, ii) traditional model-
based EBA analysis, and iii) pharmacometric model-based EBA
analysis. The first paper presenting an EBA trial and analysis was a
traditional non-model-based analysis presenting the results of a
14-day duration trial (Jindani et al., 1980). The differences in CFU,
expressed as log10 CFU between day 0 and day 2, day 2 and day 14,
as well as day 0 and day 14, were derived on the individual level. To
compare different treatments, the mean fall in CFU was calculated
using ANOVA. Since then, the traditional non-model-based EBA
analysis approach was extended to analyze both CFU and TTP
biomarkers (Eq. 1), where EBA (EBAt1−t2) is expressed as a
difference between the biomarker observations taken at the
second time point (Obst2) and the observation taken at first
time point t1 (Obst1) divided by the time interval (t2 minus t1)
(Jindani et al., 1980). This approach provides a model-free estimate
of EBA, which can later be used for the comparison of different
treatments.

EBAt1−t2 �
Obst2 − Obst1

t2 − t1
(1)

Non-model-based EBA approach is frequently substituted by
the traditional model-based EBA approach. Here, EBA is estimated
using a function, i.e., linear, bi-linear, etc. (Eq. 2), as shown in the
paper by Jindani et al. (Jindani et al., 2003):

EBAt1−t2 �
f t2( ) − f t1( )

t2 − t1
(2)

f(t) represents a fitted regression function to the biomarker
data, and f(tn) represents a biomarker value for day n derived using
a fitted function.

In the traditional model-based EBA analysis approach, data
from all timepoints is used to describe the change in biomarker
(CFU and/or TTP) over time using linear, bi-linear or multiple
linear regression models. In the case of a linear model, the biomarker
gradually changes over time with a constant slope value. In the case
of bi-linear regression, two distinct phases of change in load are
observable (Diacon et al., 2013).

An extension to the traditional model-based EBA analysis is
pharmacometric model-based analysis. A pharmacometric
approach is built on non-linear mixed-effects modeling.
Usually, these models are composed of structural, stochastic,
and covariate sub-models. The structural sub-model defines the
underlying change in the biomarker over time and consists of
parameters called fixed effects which represent the change in
biomarker over time in a “typical patient”. The stochastic sub-
model includes random effect parameters which describe inter-
individual variability (IIV) and residual unexplained variability
(RUV). IIV is related to between patient variability, and RUV is
due to variation in each observation from the model prediction
due to unexplained factors such as imprecision in the biomarker
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assay, sample collection and handling, and model
misspecification. The addition of a covariate sub-model
containing information about influential factors on variability
in data can reduce unexplained variability in the model and can
also lead to treatment optimization in sub-populations and
improved EBA characterization. In a pharmacometric model-
based analysis, drug exposure as a covariate is often considered
in the model to explain variability in response, which enables
clinical trial simulations using dosing regimens not used in the
trial. The pharmacometric model-based approach has been
applied to multiple Phase 2a trials in TB, including
rifampicin (Svensson and Simonsson, 2016), clofazimine
(Faraj et al., 2020) and meropenem-containing treatments
(De Jager et al., 2022). In addition, model-based
pharmacokinetic-pharmacodynamic (PK-PD) approaches have
shown to have higher statistical power compared to other
analysis approaches (Svensson et al., 2017).

The aim of this work was to present a standardized
pharmacometric model-based EBA analysis approach. In
addition, the aim was to perform sample size determinations for
detecting EBA or a difference between treatment groups by
employing a pharmacometric model-based EBA analysis approach.

2 Materials and methods

2.1 Standardized pharmacometric model-
based early bactericidal activity analysis
approach

In order to characterize a standardized pharmacometric model-
based EBA analysis approach, seven critical steps were identified;
exploratory data analysis, base model development, covariate
analysis, EBA detection, PK-PD modeling, treatment comparison

FIGURE 1
Standardized pharmacometric model-based early bactericidal activity (EBA) analysis approach was established in close collaboration between
pharmacometricians, clinicians, microbiologists and data managers. In the pharmacometric model-based EBA analysis approach, the first step is to
perform data exploratory analysis to familiarize with the data and identify observations that could affect the analysis. In the next step, modeling is started
with a base model development, and this model is used in the covariate model building to identify statistically significant parameter-covariate
relationships. Afterwards, EBA detection is performed to identify treatments showing EBA. In the next step, if drug exposure information is available,
pharmacokinetic-pharmacodynamic (PK-PD) modeling should be performed. This is followed by treatment comparison if multiple treatments are
present in the study. In the last step, EBA reporting is done using an automated and reproducible approach to ensure consistency, and the predictions of
EBA on typical and individual levels are presented.
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and reporting (Figure 1). These steps are in line with the guidelines
from the United States Food and Drug Administration (FDA) and
the European Medicine Agency (EMA) for conducting and
reporting pharmacometric analysis (European Medicines Agency,
2008; Food and Drug Administration, 2022). Close collaboration is
required to facilitate an EBA analysis that supports decision making
in the clinical development of new TB drugs. This requires efficient,
smooth and optimal collaboration between the pharmacometricians
performing data analysis and modeling, clinicians responsible for
the clinical trial and patients, microbiologists analyzing the samples
and quantifying the bacterial burden, and data managers responsible
for data handling.

Below, each step of the standardized pharmacometric model-
based EBA approach is presented for the analysis of the biomarker
TTP. This approach is easily extendable to other EBA biomarkers
such as CFU but also to future biomarkers with longitudinal decline
or increase over time.

2.1.1 Simulated early bactericidal activity data
In order to visualize every step of the pharmacometric model-

based EBA modeling workflow, a 14-day EBA trial was simulated
using a simulation model composed of the final parameter
estimates from two previous TTP-EBA models based on two
meropenem-containing treatments (Supplementary Table S1)
from De Jager et al. (De Jager et al., 2022) and unpublished
data (ClinicalTrials.gov Identifier: NCT04629378). In total,
longitudinal TTP data in 30 participants, divided into two
different treatment arms (Arm A and B), were simulated. Four
different covariates were simulated; age, sex, cavity extent at
baseline and meropenem area under the concentration versus
time curve from time zero to infinity (AUC0-inf). Cavity extent at
baseline had three categories; no cavities, cavities <4 cm, and
cavities ≥4 cm. Five participants per each cavity category per
treatment were simulated. Meropenem AUC0-inf at day 14 were
sampled from a normal distribution with a mean of 640 h mg/L
and a standard deviation of 86 h mg/L (unpublished data,
ClinicalTrials.gov Identifier: NCT04629378). No difference in
AUC0-inf between the two treatment groups was assumed. Equal
distribution of sex was simulated in the trial (15 males,
15 females). Age distribution was simulated from a normal
truncated distribution with a mean of 33 years, a lower
boundary of 18 years, an upper boundary of 60 years and a
standard deviation of 13 years. The covariate relationships
included in the simulations were cavity on TTP baseline and
AUC0-inf on TTP slope (Supplementary Table S1). One of the
arms (Arm A) were simulated to receive a meropenem containing
regimen consisting of 2 g meropenem, 500 mg amoxicillin and
125 mg clavulanate thrice daily on days 1–14 (De Jager et al.,
2022). The second arm (Arm B) was simulated to receive a
treatment of 6 g meropenem, 2000 mg amoxicillin, 62.5 mg
clavulanate and 400 mg bedaquiline once daily on days 1–14
(unpublished data, ClinicalTrials.gov Identifier: NCT04629378).
To resemble a realistic EBA study, a proportion of the simulated
observations were randomly assigned to the following status;
negative at day 42 (2%), missing (2%), contaminated (2%) and
not done (2%).

The simulation model consisted of a mono-exponential model
with the following structure:

TTP � eAmono · eαmono ·time (3)
where A is the intercept (TTP baseline), and α is the slope of the TTP
decline over time. A proportional error model was used with both
common and replicate-specific error terms for each replicate
(Supplementary Table S1).

2.1.2 Data exploratory analysis
Exploratory analysis of clinical trial data is the first step in model

development and it should be performed both graphically and
numerically (European Medicines Agency, 2008; Food and Drug
Administration, 2022). It should be performed before model
development commences and be reviewed by clinicians and
microbiologists responsible for the trial conduct and data
generated. Discussion around the outcomes of the graphical and
numerical exploratory analysis should lead to consensus on
exclusion of outlying observations or participants.

Collaborative expertise is vital for a good understanding of the
data as well as for adequate quality of the analysis. At this stage,
pharmacometricians together with clinicians identify observations
in the graphical and numerical analysis, which should be further
investigated and potentially excluded from further analysis.
Microbiologists investigate observations in question and provide
any additional information on the experiments, if available, which
could strengthen the grounds for data exclusion.

Graphically, it is important to identify extreme values that could
potentially interfere with the analysis, and help familiarize with the
data to facilitate model development. Replicate-versus-replicate
figures, displaying one replicate on the x-axis and the other
replicate on the y-axis, are expected to show a scatter around the
line of identity. Clear outlying datapoints should be reviewed
carefully. Biomarker-versus-biomarker plot (showing one
biomarker plotted versus another biomarker) can be created if
multiple biomarkers were used to evaluate the bacterial burden
over time, and datapoints outside of the scatter should be reviewed
carefully. Biomarker-over-time curves for the population, either as
scatter plots or based on summary statistics, will inform on the shape
of the bacterial burden over time, and which model functions to
evaluate. Individual bacterial burden over time, preferably with
adjacent panels for different biomarkers of comparison, can
support a review of the outlying datapoints from the replicate-
versus-replicate and/or biomarker-versus-biomarker figures. To
minimize bias, masking the group allocation and randomization
of individuals in graphs should be considered. In addition, baseline
bacterial burden can be shown stratified over covariates (boxplots
for categorical covariates, scatter plot for continuous covariates), as
well as a biomarker-over-time stratified over covariates
(categorization of continuous covariates), and this can inform on
the covariate relationships to test.

Numerically, the exploratory analysis should help with
familiarization with data and numeric comparison between
treatment groups. Summary statistics (median, interquartile
range, mean, standard deviation) of the bacterial burden will
provide initial estimates for baseline population parameters as
well as inter-individual and residual variance parameters.
Summary statistics on demographics and additional disease
biomarkers (e.g., imaging-based markers such as cavity extent)
can be used to check randomization processes as these variables
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should be similarly distributed across the study arms. These may
also suggest covariate relationships to include in the model
development strategy. Measures of exposure should also be
numerically explored overall and per arm through summary
statistics on secondary PK parameters such as area under the
curve (AUC), maximum concentration (Cmax), and minimum
concentration (Cmin). The proportion of missing data, either
because of the contaminated sample, no result from the assay,
sample not taken/performed, or other reasons, should be assessed
for unequal distribution across arms as this otherwise may bias
analysis outcomes. The number of censored observations, either
0 log10 CFU/mL sputum for CFU or the negative liquid culture at
day 42 for TTP are in general indicative of the presence of EBA and
favorable outcome.

2.1.3 Base model development
For the structural model, both mono- and bi-exponential

models should be evaluated for each biomarker; TTP (Eqs. 4, 5
and CFU Eqs. 6, 7).

TTPpred � eAmono · eαmono ·time (4)
TTPpred � eAbi · eαbi ·time + eBbi · eβbi ·time (5)

Log10CFUpred � log10 eAmono · e−αmono ·time( ) (6)
Log10CFUpred � log10 eAbi · e−αbi ·time + eBbi · e−βbi ·time( ) (7)

where Amono and Abi are the baseline for mono- and bi-exponential
models respectively, Bbi is the intercept for the second slope in a bi-
exponential model, αmono, αbi and βbi are the slopes of the curve.
Log10 is the logarithm with base 10, e is the exponential function.
CFUpred is the predicted CFU (expressed as log10 CFU/mL
sputum), TTPpred is the predicted TTP (expressed as hours).
The magnitude of the CFU observations requires the data to be
modelled on the log scale where the range of TTP is smaller and
therefore indicates that the TTP data can be modelled on the
natural logarithm scale.

Generally, these models are sufficient to describe the data, but
more advanced non-linear models such as those including time-
dependent functions could be considered if model diagnostics for
the mono- and bi-exponential models show insufficient model
performance (De Jager et al., 2022). For CFU modeling, negative
slope(s) should be evaluated, while for TTP modeling positive
slope(s) are appropriate.

The stochastic model captures IIV and RUV IIV terms can be
evaluated on the population parameters (e.g., intercept, slope) as in
Eq. 8, resulting in a lognormal distribution with a lower bound of
zero.

Parameterindividual � TVparameter · eη (8)
where TV is the typical value and η is drawn from a normal
distribution with a mean of zero and standard deviation ω. Other
distributions via transformations can be considered if the
diagnostics of the η distribution indicate it.

The RUV model should capture the residuals in a
homoscedastic manner across time and predictions. For log-
transformed data such as CFU, an additive residual error model
on the log-transformed scale is appropriate as it approximates a
proportional error model on the untransformed scale. For
untransformed data, an additive (Eq. 9), proportional (Eq. 10),

or combination of additive and proportional error (Eq. 11) model
should be evaluated. In the case of multiple replicate
measurements from the same sample, a RUV model with
combined and separate error terms can be utilized to quantify
both the shared part of the residual noise from the single sample as
well as the separate part of the residual noise from the assay
replicate (Eq. 12), or by quantifying the correlation of the level 2
(L2) random effect in non-linear mixed effects modeling
algorithms (Karlsson et al., 1995).

Y � IPRED + εa (9)
Y � IPRED · 1 + εp( ) (10)

Y � IPRED · 1 + εp( ) + εa (11)
Y � IPRED + ε1 + ε2

IF REP.EQ.2( )Y � IPRED + ε1 + ε3
(12)

in which Y is the observation, IPRED is the individual prediction,
REP is the replicate (here numbered either 1 or 2), εa is the additive
error term, εp is the proportional error term, ε1 is the shared error
term, and ε2 and ε3 are the replicate-specific error terms, all of which
are randomly drawn from a normal distribution with mean 0 and
standard deviation σ.

2.1.4 Covariate model development
An important step in the model-building process is to

identify significant parameter-covariate relationships. The
overall goal with covariates is to describe and explain
observed between patient variability, which in turn will
support predicting EBA for relevant subpopulations but most
importantly, by explaining between patient variability, the power
to detect EBA or differentiate EBA between drugs or treatments,
will increase.

In the Phase 2a trial setting, a set of different covariates is
collected. A selected list of covariates should be identified based on
correlations plots of covariates and individual TTP slope in addition
to experience based on historical EBA trials. It is important to pay
attention to shrinkage when evaluating plots based on Bayes
estimates (Savic and Karlsson, 2009). Covariates which should be
evaluated on biomarker baseline (and additional intercepts) are; sex,
body mass index (BMI), HIV status, ethnicity and age. Covariates to
be evaluated on change in bacterial load over time (TTP and/or CFU
slope) are; sex, presence of cavity, grade of cavitation and initial
bacterial load. Additional covariates, like drug susceptibility,
presence of concomitant diseases/medications and others can be
evaluated, if data is available and there are grounds for the covariate
to be evaluated. For simplicity in this work, we only illustrate
graphical analysis and covariate analysis with sex, age and cavity
extent.

Covariate analysis can be performed using different methods.
One of the most common methods is stepwise covariate modeling
(SCM) (Lindbom et al., 2005). An inclusion criterion for covariates
of p ≤ 0.05 followed by a backwards deletion criteria of p ≤ 0.01 are
suggested to be used. Power functions of relationships between
model parameter and covariates are evaluated. Other
parametrizations of covariate relationships may be considered if
indicated by the data. Categorical covariate-parameter relationships
are implemented as a fractional difference to the most common
category.
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2.1.5 Early bactericidal activity detection
After the covariate model has been established, a formal

statistical testing of EBA can be done for each of the different
arms in the EBA trial, one by one. An exception could be for
control arms which usually have lower sample size than the
experimental arms. Typical parameters (excluding baseline
bacterial load) will be fixed to 0 and compared to a model
estimating the respective parameters, for each treatment one
by one in order to confirm EBA. Statistical significance, often
at a 5% significance level considering the degrees of freedom, is
tested using the likelihood ratio test between the models.
Treatment arms for which the TTP (or CFU) slope(s) are
statistically significant are considered to have confirmed EBA
at the sample size in the trial. Similar, treatment arms for which
the TTP (or CFU) slope(s) are statistically not significant are
considered to have no EBA at the sample size in the trial. For
treatment arms with no identified EBA, the TTP or CFU slope(s)
are fixed to zero in the further model development.

2.1.6 Pharmacokinetic-pharmacodynamic
modeling

PK-PD modeling allows for accounting for between patient
variability in drug exposure which may be a reason for difference
in EBA between patients. PK-PD modeling can be done by
connecting a population PK model to the EBA model and where
predicted concentration over time drives the PK-PD relationship
(Zhang et al., 2003). An alternative is to use predicted drug exposure
indices (AUC and/or Cmax) as a covariate on the slope(s) in the EBA
model. AUC and Cmax can be predicted from population PK model
or obtained from non-compartmental analysis (NCA) which can be
obtained if the PK sampling is rich and well designed. Different PK-
PD relationships on the different EBA slope(s) are evaluated such as
linear and non-linear relationships. If between-subject variability in
EBA slope(s) can be described by PK, this reduce the unexplained
between patient variability in EBA which thereby increases the
power to detect EBA.

After the PK-PD relationship was established, it can be
visualized by performing simulations using the final model,
i.e., by using sampling importance resampling (SIR) to derive the
uncertainty around the parameters, followed by using the output
from SIR in stochastic simulations and estimations to derive the
relationship on the typical individual level. In this case, only the
typical values are unfixed, and remaining parameters, like IIV and
RUV are fixed to zero.

2.1.7 Early bactericidal activity comparison
If multiple treatment arms are included in the EBA trial

design, arms that have shown statistically significant EBA, will
be taken forward to EBA comparison evaluation to support the
comparison of treatment arms. The final covariate EBA model is
used to evaluate differences in regimen efficacy. During the
evaluation of treatment efficacy, included IIVs, except IIV on
baseline bacterial load, will initially be fixed to zero. For
treatment arms with no EBA, the TTP slope will be zero.
Treatment arms that have shown EBA in the earlier step, are
initially defined as having the same TTP (and/or CFU) slope(s).
Firstly, univariate analysis is conducted where the slope of each
treatment arm is evaluated as different from the common slope

of the other EBA confirmed arms. Thereafter, the treatment with
the highest significant difference in TTP slope compared to the
other arms in the univariate step, will be kept in the model. The
second highest statistically significant treatment arm TTP slope
will be added thereafter and statistically evaluated at a
significance level of 5%. This will be continued for all arms.
Arms where no difference in TTP slope can be shown will be
grouped together to the same slope and the final model will
predict the same EBA for these regimens. In the last step, IIV in
the different TTP (and/or CFU) slopes are re-evaluated. It is
important to note that EBA trials often are powered to only
detected EBA and not to identify differences between arms.
There might therefore not be sufficient power to detected
small differences between treatments given the commonly
used sample size for EBA trials.

2.1.8 Early bactericidal activity reporting
All sections mentioned above should be included in an analysis

report (European Medicines Agency, 2008; Food and Drug
Administration, 2022). RMarkdown is a powerful tool to
reproducibly compile reports on the graphical and numerical
exploratory analysis in pdf or word format that are readily
sharable with collaborators for review (Allaire et al., 2020; van
Wijk et al., 2022). In addition to the sections presented above,
reports should also include final parameter estimates from the
model and typical and individual model-based predictions.
Model-based typical and individual CFU or TTP predictions over
time derived using individual Bayes estimates and converted to
EBA0-2 (expressed as a difference in biomarker value between day
0 and day 2), EBA0-7, and EBA0-14 together with plots of predictions
can be used to compare the activity of the treatments that were
shown to have EBA, irrespective of the function applied to
describe data.

2.2 Sample size to detect early bactericidal
activity

Power is defined as the probability of rejecting the null
hypothesis correctly (Eq. 13):

Power � 1 − β (13)
where β is the probability of type II error (i.e., false negative). In EBA
trials, the null hypothesis is most often defined as that the treatment
or drug has no EBA.

Monte-Carlo Mapped Power (MCMP) method is a model-
based approach to derive power curves for scenarios of interest
(Vong et al., 2012). MCMP method was used in this work to
calculate the power needed to detect EBA given different TTP
slopes and variability in TTP slope. MCMP contains two parts;
simulation and estimation, followed by power mapping (Vong
et al., 2012). In the simulation and estimation step, MCMP
simulates initially a large dataset. In this work,
2000 individuals were simulated with a full TTP-EBA model
including an EBA efficacy for the two treatments as well as an
EBA difference between the two treatments seen as two different
TTP slopes and a difference between the slopes (Supplementary
Table S2). In liquid culture experiments, the maximum

Frontiers in Pharmacology frontiersin.org06

Mockeliunas et al. 10.3389/fphar.2023.1150243

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1150243


incubation period is 42 days, therefore simulated TTP values
greater than 42 days were censored at 42 days (1,008 h). This
large simulated dataset was re-estimated with the full and
reduced models. The reduced model was an TTP-EBA model
with a TTP-slope fixed to zero (i.e., no EBA). Individual objective
function values (iOFVs) from both the full and reduced models
were used to calculate the difference in iOFV for each individual
(ΔiOFV). ΔiOFVs were taken to the power mapping step, where
Monte Carlo sampling was performed, and the sum of ΔiOFVs
was derived multiple times (10,000 times) for each sample size.
Power at each sample size was derived based on the number of
Monte Carlo sampling instances where the sum of ΔiOFV was
greater than the critical χ2 value (for p < 0.05) divided by the total
number of Monte Carlo sampling instances performed. Power
was presented for up to 30 individuals in the trial scenarios. The
goal in every analysis was to reach 80% power at a 5% significance
level.

The sample sizes needed to detect EBA in relation to the
influence of various TTP slopes and IIV in TTP slope (low and
high IIV in TTP slope) was investigated. Explored IIV in TTP
slopes were 22% coefficient of variation (CV) for low IIV in TTP
slope, and 104% CV for high IIV in TTP slope. This was taken
from the earlier quantified IIV in TTP slope from the two trials
with meropenem presented in De Jager et al. (De Jager et al.,
2022) and unpublished data (ClinicalTrials.gov Identifier:
NCT04629378). TTP slope values ranged from 0.0017 h/day
to 0.0628 h/day, corresponding to TTP-EBA0-14 of 3 h and
152 h, respectively. The different explored scenarios of TTP
slope (TTP-EBA0-14) and IIV in TTP slope are presented in
Supplementary Table S3. Visualization of typical profiles and
variability in TTP over time for high (104%) and low (22%) IIV
in TTP slope based on 30 simulated participants are shown in
Figure 2.

2.3 Sample size to detect treatment effect
difference

To identify the sample sizes needed to detect a difference in
EBA between two treatments, the null hypothesis was that there is
no difference in EBA between the two treatments. In this work,
power for different sample sizes were evaluated for scenarios with
different EBA between two treatment groups. In addition, the
influence of different IIV in TTP slope on the power for different
sample sizes were explored. The MCMP approach described
above was used. Effect difference was defined as a percentage
increase in TTP slope between two treatments. Combinations of
different TTP slopes, IIV in TTP slope and difference in TTP
slope (from 25% to 200%) were investigated; TTP slope of
0.0628 h/day (TTP-EBA0-14 of 152 h) with low IIV in TTP
slope; TTP slope of 0.0628 h/day (TTP-EBA0-14 of 152 h) with
high IIV in TTP slope; TTP slope of 0.0174 h/day (TTP-EBA0-14

of 30 h) with low IIV in TTP slope; and TTP slope of 0.0174 h/day
(TTP-EBA0-14 of 30 h) with high IIV in TTP slope. High IIV and
low IIV in TTP slope were defined as 104% and 22%, respectively
based on earlier reported variabilities in De Jager et al. (De Jager
et al., 2022) and unpublished data (ClinicalTrials.gov Identifier:
NCT04629378). Created scenarios are presented in
Supplementary Table S4. Visualization of typical profiles of
TTP over time for different effect differences are presented in
Figure 3.

To characterize the influence of IIV in TTP slope on the power
to detect EBA effect difference, TTP slope of 0.0628 h/day and
0.0174 h/day (TTP-EBA0-14 of 152 h and 30 h) were combined with
different magnitudes of IIV in TTP slope. The same EBA effect
difference of 50% was used in all scenarios and IIV in TTP slope
spanned from high IIV (104%) to low IIV (10%). Explored scenarios
are presented in Supplementary Table S5.

FIGURE 2
Visualization of typical profiles and variability in time-to-positivity (TTP) over time for high [104% coefficient of variation (CV)] and low (22%CV) inter-
individual variability (IIV) in EBA. TTP-EBA0-14 is early bactericidal activity based on the difference in TTP between 0 and 14 days. Black lines represent the
typical individual and shaded areas show the variability in predicted TTP derived from 30 randomly sampled individuals (95% prediction interval). The
median baseline TTP was 1,008 h.
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2.4 Software

Data handling and visualization were performed using R
(v.4.0.3, R Foundation for Statistical Computing, Vienna, Austria)
(R Core Team, 2020) through the RStudio interface (RStudio Team,
2022). Simulations were performed using non-linear mixed-effects
modeling software NONMEM (v.7.5.0, Icon Development
Solutions, Ellicott City, MD, United States) (Beal et al., 1989).
MCMP were performed using PsN (v.5.3.0) (https://
uupharmacometrics.github.io/PsN/).

3 Results

3.1 Standardized pharmacometric model-
based early bactericidal activity analysis
approach

In order to present each step of the standardized
pharmacometric model-based analysis approach for Phase 2a
EBA trials (Figure 1), each step was demonstrated using a
simulated example based on a model resembling meropenem-
containing treatments (Supplementary Table S1). The work is
illustrated for TTP but is applicable to CFU as well.

3.1.1 Exploratory data analysis
Before the modeling was started, data exploration to establish an

analysis dataset from the raw data should be performed. Firstly, data
summary tables were created based on the simulated data. The
simulated number of participants and covariate information per
treatment group and in total are presented in Supplementary Table
S6. Counts of non-positive and censored data at different timepoints
are presented in Supplementary Table S7.

Replicate-versus-replicate of the raw data was plotted and any
clear deviations from the identity line were further investigated

(Figure 4). Additionally, biomarker versus time of TTP was plotted
to facilitate data comparison between the replicates and over time.
An example of an individual plot is shown in Figure 5 (for subject
8 only). Replicates are plotted next to each other to facilitate
comparison, while individual plots for all subjects are available in
Supplementary Figure S1.

All TTP samples with the status of contaminated, not done, or
no result were excluded from the model-based analysis. After
discussing the results with clinicians and microbiologists, only
samples with scientifically plausible TTP values were kept, and
any clear deviations that have potentially arisen due to the
experiment errors, unrecorded contamination, or other reasons
were removed from the analysis. In Figure 5 for example, the
negative sample at time zero is a clear outlier and was removed
from the analysis after consensus was reached with clinical,
microbiology, and analysis teams. All removed and omitted data
points should be summarized in the final report.

After the final analysis dataset was established, additional plots
were created showing the relationship between the baseline
biomarker and covariates, and biomarker over time and
covariates. Supplementary Figure S2 shows the TTP baseline
plots versus covariates present in the simulated dataset; sex, age
and cavity extent. In addition, plots of TTP over time versus cavity
extent, sex, age, PK drug exposure (AUC), and treatment. These
plots should be used to inform the modeling workflow by informing
about the potential function describing the change in the biomarker
over time as well as about potential parameter-covariate
relationships.

3.1.2 Base model building
After the analysis dataset is established, a base model should be

developed. In this simulation based EBA example, the mono-
exponential function described the data well. IIV was supported
on baseline and TTP slope. The proportional error model was used
with both common and replicate-specific error terms for each

FIGURE 3
Visualization of typical profiles of time-to-positivity (TTP) over time for different effect difference values. Effect difference is expressed as a
percentage increase in the TTP slope compared to the original value (red solid line). TTP values were right censored at 1,008 h (42 days).
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replicate. Goodness-of-fit (GOF) plots evaluating the model fit are
presented in Supplementary Figures S3A-E. Visual predictive check
(VPC) plots stratified per treatment arm are presented in
Supplementary Figure S4, column a. Based on GOFs and VPCs
stratified on treatment, a satisfactory fit was achieved using a mono-
exponential function with IIV on baseline and slope, and the model
was carried forward to the covariate modeling.

3.1.3 Covariate model building
In the next step, covariate model building is performed. Age,

sex, and cavity extent were tested on both the TTP baseline
(intercept) and the TTP slope. Only one covariate was found to
be statistically significant after the forward inclusion and
backwards deletion step in the SCM. Decrease in TTP
baseline values was associated worsening cavity extent states,
and a separate TTP baseline was estimated for each category (p <
0.01). The highest TTP baseline was predicted when no cavities

were present. VPCs stratified on cavity are presented in
Supplementary Figure S5.

3.1.4 Early bactericidal activity detection
After the covariate model is built, EBA detection can be

performed. Here, in this example, both treatment arms A and B
were shown to have EBA at a 5% significance level.

3.1.5 Pharmacokinetic-pharmacodynamic
modeling

All treatment arms that were shown to have EBA, were further
taken to build the PK-PDmodel, where a relationship between AUC
of meropenem and TTP slope was assessed. Linear, hockey-stick,
power and exponential covariate-parameter relationships were
evaluated on natural logarithm scale. Out of all assessed
parameterizations, the hockey-stick function had the biggest
change in objective function value (ΔOFV) (−49.866) but as one

FIGURE 4
Individual time-to-positivity (TTP) replicate 1 versus individual TTP replicate 2. Observations are expected to be as close to the identity line as
possible, and any clear deviations from the identity line should be investigated. Non-positive values are plotted in the figure axes and their symbol
represents the corresponding sample status. For example, if replicate 1 is non-positive, the symbol with the corresponding replicate 2 value is plotted on
the y-axis and vice versa.
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of the parameters had very high uncertainty, a linear
parameterization with second biggest ΔOFV (−45.463) was
selected, which resulted in an exponential relationship on normal
scale. Additionally, after meropenem AUC was incorporated as a
covariate on the TTP slope, IIV in TTP slope decreased from 49.7%
to 20.5%, explaining the PK related variability between subjects.
VPCs stratified on meropenem AUC are presented in
Supplementary Figure S6.

3.1.6 Early bactericidal activity comparison
After PK-PD modeling, a treatment comparison can be

performed. In this work, treatment comparison between
simulated Arm A and Arm B was performed. Treatments were
shown to have statistically significantly different EBAs from each
other at a 5% significance level. Arm B was shown to have
3.7 times higher EBA compared to Arm A in this simulated
example.

FIGURE 5
Individual biomarker over time plot. Both replicates 1 and 2 are plotted which can seem to overlap because of very comparable values. One
participant was selected to visualize the status of each sample. If a replicate value was non-positive, it was plotted in red (missing) or green (negative) on
the graph axes with the shape informing on the reason for its non-positive sample status. These symbols are plotted next to each other to facilitate
interpretation but belong to the same time point. Plots are based on the simulated data to visualize the standardized pharmacometric model-based
EBA analysis approach. Plots of individual biomarker over time for all individuals are available in Supplementary Figure S1.

FIGURE 6
Prediction of individual time-to-positivity (TTP) over time based on Bayes estimates of the final model. Lines represent the predicted median with a
shaded area corresponding to the 95% prediction interval. Arm A resembling meropenem in 2 g meropenem thrice daily with 500 mg amoxicillin and
125 mg clavulanate thrice daily on days 1–14 (De Jager et al., 2022). Arm B resembling meropenem in 6 g meropenem once daily with 2 × 1000 mg
amoxicillin and 62.5 mg clavulanate plus 400 mg bedaquiline once daily on days 1–14 (unpublished data, ClinicalTrials.gov Identifier:
NCT04629378).
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3.1.7 Early bactericidal activity reporting
The final TTP-EBA model described the data well and the final

parameters are shown in Supplementary Table S8. The final TTP-
EBA model consisted of a mono-exponential model with IIV in
baseline (intercept) and TTP slope. Covariate relationships were
cavity extent on TTP baseline and AUC meropenem on TTP slope.
A proportional error model with both common and replicate-
specific error terms for each replicate was included in the final
model. GOF plots are presented in Supplementary Figure S3F-J,
stratified VPCs per treatment arm and prediction-corrected VPC are
available in Supplementary Figure S7 and Supplementary Figure S4
column b.

Both treatments based on simulated data for Arm A and Arm B
were shown to have statistically significant EBA (p < 0.05). In
addition, simulated Arm B was shown to have statistically
significantly higher TTP slope than simulated Arm A (3.7 times

higher TTP slope). Predicted typical and individual model-based
EBA for 0–2, 0–7, and 0–14 days were derived. Prediction of
individual TTP over time using Bayes estimates of the final
model is shown in Figure 6. Predicted typical and individual
model-based EBA for 0–2, 0–7, and 0–14 days are presented in
Supplementary Tables S9, 10.

In addition, an exponential PK-PD relationship between the
meropenem AUC and TTP slope and thereby TTP-EBA0-14 was
established. In this simulated example, TTP increased by 0.44 h per
each 1 h mg/L meropenem AUC0-inf on the natural logarithm scale
(Figure 7).

3.2 Sample size to detect early bactericidal
activity

To investigate the sample size needed to detect EBA, eight
different TTP slopes (0.0017 h/day to 0.0628 h/day)
corresponding to TTP-EBA0-14 values ranging from 3 h to 152 h
were combined with low and high IIV in TTP slope (22% and 104%,
respectively). In total, 16 scenarios were explored (Supplementary
Table S3). Simulated typical profiles and corresponding variability
based on 30 individuals (expressed as a 95% prediction interval) are
visualized for both low and high variability in TTP slope (22% and
104%) and TTP-EBA0-14 values of 30 h (slope 0.0174 h/day) and
152 h (slope 0.0627 h/day) (Figure 2).

Sample sizes per arm needed to detect EBA with 80% power at a 5%
significance level are presented in Table 1 and power curves are presented
in Figure 8 for the difference scenarios. TTP-EBA0-14 had to be equal to or
greater than 11 h, irrespective of IIV in TTP slope, to achieve 80% power
at a 5% significance level with 13 participants enrolled per treatment arm.
An increase in sample size, to 18 participants per arm, resulted in a study
having 80% power to detect EBA when TTP-EBA0-14 was 7 h and high
IIV in TTP slope was present (104%). For a scenario with low IIV in TTP
slope (22%) 31 participants/arm were required to reach the same power.
If theTTP-EBA0-14was 3 h, 97 and 180 participants/arm for high IIV and
low IIV, respectively, were required to achieve 80% power to detect TTP-
EBA0-14.

For treatments showing TTP-EBA0-14 of 30 h or less (typical
prediction), the power to detect the EBA given the same sample size,
was higher when IIV was larger. This trend was present for even
lower TTP-EBA0-14 values (Figure 8). The posthoc step of the Bayes
estimates of the IIV showed that the mean of the individual etas was
skewed towards large positive values of the TTP slope (Figure 9).
Due to this, when low EBA effect (TTP-EBA0-14 of 30 h or less) was
combined with high IIV in TTP slope, the probability of having a
significant EBA was higher compared to a scenario where low EBA
was combined with low IIV. Opposite effect was observed with high
EBA (TTP-EBA0-14 of 152 h), as the distribution of individual TTP-
EBA0-14 values was narrower (Figure 9) and very few extremely low
TTP slope values were present.

3.3 Sample size to detect treatment effect
difference

To characterize the sample size needed to detect an effect
difference between two treatment groups, several different

FIGURE 7
Established pharmacokinetic-pharmacodynamic (PK-PD)
relationship between area under the curve (AUC) of meropenem and
early bactericidal activity (EBA) based on time-to-positivity of
0–14 days (TTP-EBA0-14) for the typical individual with one or
several cavities <4 cm. The black line represents the median and the
shaded area represents the 95% confidence interval. 95% confidence
interval is derived from Sampling Importance Resampling (SIR)
method followed by Stochastic Simulation and Estimation (SSE) step
of 1,000 samples. Arm A resembling meropenem in 2 g meropenem
thrice daily with 500 mg amoxicillin and 125 mg clavulanate thrice
daily on days 1–14 (De Jager et al., 2022). Arm B resembling
meropenem in 6 g meropenem once daily with 2 × 1000 mg
amoxicillin and 62.5 mg clavulanate plus 400 mg bedaquiline once
daily on days 1–14 (unpublished data, ClinicalTrials.gov Identifier:
NCT04629378).
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scenarios with various combinations of different TTP slope (TTP-
EBA0-14), IIV in TTP slope and effect difference values were
explored (Supplementary Table S4). Simulated typical profiles for
the different effect differences are presented in Figure 3. Power
curves and a summary table presenting the number of participants
per group required to achieve 80% power are presented in Figure 10
and Table 2.

For low TTP-EBA0-14 (30 h), high IIV in TTP slope and an
increased effect difference between the two arms of at least 175%,

15 participants/arm were sufficient to detect a difference between
the two treatment groups with 80% power at a 5% significance
level (Table 2; Figure 10). At 30 participants/arm, the power
was ≥80% to detect an increased effect difference between the two
arms of at least 125%. To detect smaller increased effect
differences (<100%), more participants were required. For an
increased effect difference of 25% at 80% power, more than
125 participants/arm were needed to detect an effect
difference between the two arms.

TABLE 1 Sample size per group needed to detect early bactericidal activity (EBA) with 80% power at a 5% significance level for various changes in time-to-
positivity between days 0 and 14 (TTP-EBA0-14) and inter-individual variability (IIV) in TTP slope. Power calculations were performed using a mono-exponential
model with various TTP-EBA0-14 values for both low and high IIV in TTP slope. For each scenario, power calculations included a minimum of 3 patients.

TTP-EBA0-14a
N per treatment group

Low IIV in TTP slopeb High IIV in TTP slopec

152 hd 3 3

30 he 3 3

25 h 3 3

20 h 5 3

16 h 7 5

11 h 13 8

7 h 31 18

3 h 180 97

aTTP-EBA0-14: typical change in TTP between day 0 and day 14 (expressed in hours).
bLow IIV in TTP slope was 22% coefficient of variation (unpublished data, ClinicalTrials.gov Identifier: NCT04629378).
cHigh IIV in TTP slope was 104% coefficient of variation (De Jager et al., 2022).
dTTP-EBA0-14 corresponding to treatment composed of 6 g meropenem once daily with 2 × 1,000 mg amoxicillin and 62.5 mg clavulanate plus 400 mg bedaquiline once daily on days 1–14

(unpublished data, ClinicalTrials.gov Identifier: NCT04629378).
eTTP-EBA0-14 corresponding to treatment composed of 2 g meropenem thrice daily with 500 mg amoxicillin and 125 mg clavulanate thrice daily on days 1–14 (De Jager et al., 2022).

EBA: early bactericidal activity.

IIV: inter-individual variability expressed on coefficient of variation scale.

FIGURE 8
The impact of change in time-to-positivity between days 0 and 14 (TTP-EBA0-14) on sample size per arm and power to detect early bactericidal
activity (EBA). Low and high inter-individual variability (IIV) in TTP slope are represented by 22% and 104% coefficient of variation (CV). The red dashed line
represents 80% power.
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For high TTP-EBA0-14 (152 h) and high IIV in TTP slope, 80%
power was only reached when the increased effect difference was at least
150% between the two arms and with 28 participants/arm. None of the
explored scenarios reached 80% power with 15 participants/arm or less.
To detect 125% increased effect difference, 31 participants/arm were
required. For even smaller increased effect differences of 100%, 75%,
and 25%, sample sizes of 50, 87 and >125 participants, respectively were
required at 80% power and for high TTP-EBA0-14 (152 h) and high IIV
in TTP slope (Table 2).

At low TTP-EBA0-14 (30 h) and low IIV in TTP slope, an
increased effect difference of 75% or greater was detected with
15 participants/arm for at least 80% power, while 20 participants/
arm were required to detect an increased effect difference of 50%.
Similar, 64 participants/arm were required to detect an increased
25% effect difference (Table 2; Figure 10).

For all effect differences, the highest power was seen for
scenarios with low IIV in TTP slope and high TTP-EBA0-14

(152 h). Less than 15 participants/arm were required for
increased effect differences of ≤50%. To detect a 25% increased
effect difference between the two arms, 21 participants/arm were
sufficient to achieve 80% power at a 5% significance level. For other
scenarios, more participants were needed to differentiate between
the treatments at this effect difference level (Table 2; Figure 10).

To explore IIV in TTP slope on the power to detect an effect
difference between the two arms, a scenario with a 50% increase in
effect difference was used. IIV in TTP slope in the simulations
ranged from very low to very high IIV in TTP slope, 10% CV to

104% CV (Supplementary Table S5). Power curves and
corresponding numbers of participants/arm needed to achieve
80% power are presented in Figure 11 and Table 3.

When TTP-EBA0-14 was low (30 h), 90 participants/arm were
required to achieve 80% power to detect 50% increase in effect
difference between the two treatment groups with IIV in TTP slope
of 104%.With a decrease in IIV in TTP slope to 40%, the sample size
decreased to 28 participants/arm (Table 3). When IIV in TTP slope
was 10% and 50% increase in effect difference, 17 participants/arm
were required to reach 80% power for a low TTP-EBA0-14 (30 h).

For cases with high TTP-EBA0-14 (152 h) and IIV in TTP slope of
104%, 87 participants/arm were required to achieve 80% power to
detect an increase of 50% effect difference between the two treatment
groups. Decreasing the IIV in TTP slope to 40% resulted in a decreased
sample size of 17 participants/arm. Less than seven and three
participants/arm were required to achieve a power of 80% when IIV
in TTP slope was 22% or 10%, respectively (Table 3; Figure 11).

4 Discussion

This paper presents a standardized pharmacometric model-
based EBA analysis approach employing the expertise of
microbiologists, clinicians and pharmacometricians. The
presented approach is composed of seven pivotal steps, which
allows for both model-based pharmacometric EBA detection and
treatment comparison in Phase 2a for TB drug development, and is

FIGURE 9
Distribution of individual simulated change in time-to-positivity between days 0 and 14 (TTP-EBA0-14) values for two TTP-EBA0-14 values; 30 h and
152 h, for different magnitudes of inter-individual variability (IIV) in TTP slope. The blue color is low IIV in EBA (22% coefficient of variation [CV]), and the
green color is high IIV in TTP slope (104%). To visualize the spread of values, 2000 individuals per scenario of IIV in TTP slope and TTP-EBA0-14 were
simulated, and the difference between TTP on day 0 and day 14 was calculated. The top panel of the plot shows the spread of individual TTP-EBA0-14

values over the TTP-EBA0-14 space. Black dashes represent individual medians. The bottom panels show density plots for the individual TTP-EBA0-14

values. A solid black line represents the median, and dashed lines represent the 2.5th and 97.5th percentiles of IIVs. The second peak in TTP-EBA0-14 of
152 h and high IIV in TTP slope was related to TTP censoring at 1,008 h.
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identical for evaluation of monotherapies as well as combination
regimen. Using the standardized approach, the treatment/drug
effect is evaluated through the TTP slope estimation together
with uncertainty. It allows for a rational estimation of EBA, as
both typical and individual predictions can be derived to perform
treatment comparisons, describing the PD response on both the
population and individual levels. These model-based predictions can
be further used to make the decision for the treatments to be tested
in the following phases supporting TB drug development.

The herein presented pharmacometric model-based EBA
analysis approach has many advantages over traditional analysis
approaches. It provides a robust way to account for covariates that
might be influential on TTP slope, and explain variability in EBA.

Covariate analysis can be turned into an automated process, where
prespecified parameter-covariate relationships are tested, and a
higher p-value can be set for a backward deletion step of
covariates to protect from inflating type 1 error (Lindbom et al.,
2005). As IIV reflects the variability on the population level, the
application of covariate analysis which can reduce and explain
variability in efficacy, i.e., TTP slope is therefore central for
detecting treatment arm differences in EBA trial as the power
will increase compared to not accounting for IIV. In this
example, introducing drug exposure (meropenem AUC) as a
covariate on TTP slope decreased the IIV in TTP slope by 29%.
Using the standardized approach presented here, all factors
contributing to the power to detect EBA and treatment

FIGURE 10
The impact of effect difference on the sample size and power to detect a difference between two treatment groups. Low and high inter-individual
variability (IIV) in early bactericidal activity (EBA) are represented by 22% and 104% coefficient of variation, respectively. The red dashed line represents
80% power.
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differences between treatment arms can rationally be controlled for.
As variability plays a pivotal role in EBA detection and treatment
comparison, PK-PD model building is a critical step in the
standardized pharmacometric model-based EBA analysis
approach, as variability in PK translates into variability in PD,
and incorporation of PK information in the model can decrease

IIV in efficacy. Population PK models can be used to derive
secondary PK parameters such as AUC, Cmax and Cmin to drive
the PK-PD relationship as an alternative to use a PK-PD model
linked to a population PK model. As such, the incorporation of
secondary PK parameters into the EBA model may increase the
power to detect EBA, and to find a difference between treatment

TABLE 2 Sample size per group in an early bactericidal activity (EBA) clinical trial needed to detect an effect difference between two treatment groups with 80%
power at a 5% significance level. Power calculations were performed using amono-exponential time-to-positivity (TTP) model for different change in TTP between
days 0 and 14 (TTP-EBA0-14), inter-individual variability (IIV) in TTP slope, and increased effect difference values. For each scenario, power calculations included a
minimum of 3 patients.

Effect difference between two
treatmentsa

N per treatment group

TTP-EBA0-14 of 30 hoursb TTP-EBA0-14 of 152 hoursc

Low IIV in TTP
sloped

High IIV in TTP
slopee

Low IIV in TTP
sloped

High IIV in TTP
slopee

+25% 64 >125 21 >125

+50% 20 90 7 87

+75% 10 48 3 50

+100% 6 31 3 37

+125% 5 23 3 31

+150% 4 18 3 28

+175% 3 15 3 26

+200% 3 13 3 26

aIncrease in TTP-EBA0-14 between two drugs.
bTTP-EBA0-14 corresponding to treatment composed of 2 g meropenem thrice daily with 500 mg amoxicillin and 125 mg clavulanate thrice daily on days 1–14 (De Jager et al., 2022).
cTTP-EBA0-14 corresponding to treatment composed of 6 g meropenem once daily with 2 × 1,000 mg amoxicillin and 62.5 mg clavulanate plus 400 mg bedaquiline once daily on days 1–14

(unpublished data, ClinicalTrials.gov Identifier: NCT04629378).
dLow IIV in TTP slope was 22% coefficient of variation (unpublished data, ClinicalTrials.gov Identifier: NCT04629378).
eHigh IIV in TTP slope was 104% coefficient of variation (De Jager et al., 2022).

EBA: early bactericidal activity.

IIV: inter-individual variability expressed on coefficient of variation scale.

FIGURE 11
The impact of inter-individual variability (IIV) in early bactericidal activity (EBA) on the sample size and power to detect a difference between two
treatment groups. The effect difference between the two treatment groups was set to 50%. The red dashed line represents 80% power.
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groups by decreasing the variability in PD. Additionally,
information about factors influencing variation in EBA
biomarkers could be employed for individualized treatment, if
deemed beneficial. Another advantage of PK-PD modeling over
traditional EBA analysis is that half maximal effective concentration
(EC50) can be estimated with a smaller sample size. In the traditional
EBA modeling, dose would be driving the effect if several different
dose levels are given, thus, variability in PK will be attributed to
variability in EBA and more participants would be required for
estimating EBA. Further, in a design with only one dose level,
exposure cannot be attributed for in a traditional EBA analysis
whereas in the pharmacometric model-based EBA analysis, between
patient variability in drug exposure can still be accounted for
through a PK summary indice which reduces the IIV in TTP
slope and thereby leads to smaller sample sizes compared
without accounting for between patient variability in drug exposure.

The presented workflow is built on similar techniques for model
development and evaluation as presented in the FDA and EMA
guidelines for analysis and reporting (European Medicines Agency,
2008; Food and Drug Administration, 2022). Koele et al. summarize
the different historical analysis methods presented in the literature
for analyzing EBA trials and concluded that a standardized analysis
method, accounting for different levels of variability in the data,
could aid the generalization of study results and facilitate
comparison between drugs or treatments (Koele et al., 2023).

The presented standardized approach can be easily coupled with
other modeling approaches, like the multistate tuberculosis
pharmacometric (MTP) model. In the MTP model, data is
analyzed using a semi-mechanistic approach describing different
bacterial subpopulations (Clewe et al., 2016). This approach
determined the contribution of clofazimine to TB treatment and
its effect on persisters (Faraj et al., 2020), while it showed no EBA
effect when analyzed using a hierarchical Bayesian non-linear mixed
effects regressionmodel (Diacon et al., 2015). Incorporation of semi-
mechanistic features would help establish EBA when empirical
methods are not able to as for the situation for drugs with

predominant persister efficacy, and this would further improve
drug development.

While the application of the standardized approach was
exemplified using TTP, the same approach can be used for CFU
as well. In addition, this standardized approach is not limited to CFU
or TTP biomarkers and can be easily applied to others. Many novel
sputum-based biomarkers have been developed in recent years and
are currently in various stages of clinical validation and regulatory
approval, and may provide a near real-time quantification of
mycobacterial health and/or load, like the molecular bacterial
load assay (MBLA) (Sabiiti et al., 2020), RNA synthesis ratio (RS
ratio) (Walter et al., 2021), and the lipoarabinomannan enzyme-
linked immunosorbent assay (LAM-ELISA) (Jones et al., 2022).
Therefore, the approach can be extended to new biomarkers as most
of the steps would remain the same, and only the structural model
might be different. In addition, novel and more informative
biomarkers that better captures efficacy on persistent bacteria will
make an empirical model approach more informative.

In addition to providing a structured approach to EBA trial
analysis, the models developed using this approach can be further
used in other clinical trial simulations and model-based sample size
determinations. To exemplify this, models used to visualize the
modeling workflow were used in MCMP to characterize the number
of participants needed to detect EBA and to detect a difference
between two treatment groups with a significance level of 5% and a
target power of 80%. Using the presented approach, even extremely
low EBA (TTP-EBA0-14 of 11 h) 13 and 8 participants was sufficient
to reach 80% power for low IIV in TTP slope (22%) and high IIV in
TTP slope (104%) scenarios (Figure 8), and less participants were
required for treatments with stronger EBA (Table 1).

Sample sizes to identify a treatment difference between two groups
were characterized in addition to detecting EBA. Here, it was observed
that for drugs with low IIV in TTP slope, irrespective of TTP-EBA0-14

value, a sample size of 15 participants/arm were sufficient to detect a
difference in EBAwith at least 80%power at a 5% significance level when
the effect difference is at least 75% for TTP-EBA0-14 of 30 h or 50% for

TABLE 3 Sample size per group in an early bactericidal activity (EBA) clinical trial needed to detect an effect difference between two treatment groups with 80%
power at a 5% significance level under different inter-individual variability (IIV) in time-to-positivity (TTP) slope. Power calculations were performed using amono-
exponential model with an effect difference between two treatment groups of 50%, various changes in TTP between days 0 and 14 (TTP-EBA0-14), and inter-
individual variability (IIV) in TTP slope. For each scenario, power calculations included a minimum of 3 patients.

IIV in TTP slope (%) N per treatment group

TTP-EBA0-14 of 30 ha TTP-EBA0-14 of 152 hb

10 17 3

22 20 7

40 28 17

60 44 33

80 63 54

104 90 87

aTTP-EBA0-14 corresponding to treatment composed of 2 g meropenem thrice daily with 500 mg amoxicillin and 125 mg clavulanate thrice daily on days 1–14 (De Jager et al., 2022).
bTTP-EBA0-14 corresponding to treatment composed of 6 g meropenem once daily with 2 × 1,000 mg amoxicillin and 62.5 mg clavulanate plus 400 mg bedaquiline once daily on days 1–14

(unpublished data, ClinicalTrials.gov Identifier: NCT04629378).

EBA: early bactericidal activity.

CV: coefficient of variation.

IIV: inter-individual variability expressed on coefficient of variation scale.
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TTP-EBA0-14 of 152 h (Table 2; Figure 10). For scenarios with high IIV
in TTP slope, larger sample sizes were required to ensure the same
power, as high IIV dilutes the intrinsic difference between the two
treatment arms (Table 2; Figure 10). This is seen in the results presented
in Figure 11, where the sample size needed to achieve 80% power
decreasedwith decreasing IIV inTTP slope, indicating the importance of
decreasing IIV in TTP slope to increase the power where determination
of an effect difference is sought after. These results are in accordancewith
other investigations, where the difference between arms was detected in
CFU but not in TTP, as IIVwas higher in TTP compared to CFU (104%
CV versus 48% CV) (De Jager et al., 2022).

In a model-based analysis, preclinical data can be integrated to
inform about the expected EBA, which can be used to identify the
sample size needed to achieve the desired power. As shown in this
study, the standard set-up with 15 participants per arm might not be
suitable for all treatments and adjustments might be needed. While a
set-up with 15 participants is enough to detect even low TTP-EBA0-14

of 11 h, the trial might be underpowered to detect a difference between
two treatment groups. Due to this potential variability should be
considered when designing the trial. One way to decrease IIV is to
collect PK information in EBA studies and include this in the EBA
analysis in order to increase the power and keep the sample sizes on
the lower end. If no PK information is included in the EBA analysis,
higher sample size should be enrolled into EBA trials.

In this work, an unexpected relationship between IIV in TTP slope
and power to detect and/or compare the EBA of treatments was found.
The scenario with less spread out individual TTP slope values (low IIV
in TTP slope) resulted in a lower probability of overlapping confidence
intervals between two arms, compared to high IIV in TTP slope. This
subsequently led to a higher power to detect an effect difference when
IIV in TTP slope was low, and the TTP slope itself had no impact here.
While these results are in accordancewith results fromEBAdetection of
TTP-EBA0-14 152 h (TTP slope 0.0627 h/day), an opposite effect was
observed for low TTP slope values (0.0174 h/day and lower). Here, high
IIV in TTP slope resulted in smaller sample sizes compared to scenarios
with low IIV in TTP slope, as etas of IIV in TTP slope were skewed
towards large positive values of the TTP slope.

In conclusion, a robust standardized pharmacometric model-based
EBA analysis approach established in close collaboration between
microbiologists, clinicians, and pharmacometricians was presented.
The work illustrates the importance of accounting for covariates and
drug exposure in EBA analysis in order to increase the power of
detecting EBA for a single treatment arm as well as differences in EBA
between treatments arms in Phase 2a trials of TB drug development.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

Author contributions

LM, AF, RvW, CU, GvH, AD, and US analyzed data, conducted
the analysis, interpreted the results, wrote the manuscript, revised
the manuscript, and approved the submitted version. This work was
carried out within the UNITE4TB consortium.

Funding

This project has received funding from the InnovativeMedicines
Initiative 2 Joint Undertaking (JU) under grant agreement No
101007873. The JU receives support from the European Union’s
Horizon 2020 research and innovation programme and EFPIA,
Deutsches Zentrum für Infektionsforschung e. V (DZIF), and
Ludwig-Maximilians-Universität München (LMU). EFPIA/AP
contribute to 50% of funding, whereas the contribution of DZIF
and the LMU University Hospital Munich has been granted by the
German Federal Ministry of Education and Research.

Acknowledgments

The computations were enabled by resources in projects SNIC
2021/5-541 and SNIC 2021/23-657 provided by the Swedish
National Infrastructure for Computing (SNIC) at UPPMAX,
partially funded by the Swedish Research Council through grant
agreement no. 2018-05973.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphar.2023.1150243/
full#supplementary-material

References

Alffenaar, J.-W. C., Diacon, A. H., Simonsson, U. S. H., Srivastava, S., andWicha, S. G.
(2022). Pharmacokinetics and pharmacodynamics of anti-tuberculosis drugs: An

evaluation of in vitro, in vivo methodologies and human studies. Front. Pharmacol.
13, 1063453. doi:10.3389/fphar.2022.1063453

Frontiers in Pharmacology frontiersin.org17

Mockeliunas et al. 10.3389/fphar.2023.1150243

https://www.frontiersin.org/articles/10.3389/fphar.2023.1150243/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2023.1150243/full#supplementary-material
https://doi.org/10.3389/fphar.2022.1063453
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1150243


Allaire, J., Xie, Y., McPherson, J., Lurasch, J., Ushey, K., Atkins, A., et al. (2020).
rmarkdown: Dynamic documents for R. Available at: https://rmarkdown.rstudio.com
(Accessed December 20, 2022).

Ammerman, N. C., Swanson, R. V., Tapley, A., Moodley, C., Ngcobo, B., Adamson, J., et al.
(2017). Clofazimine has delayed antimicrobial activity against Mycobacterium tuberculosis
both in vitro and in vivo. J. Antimicrob. Chemother. 72, 455–461. doi:10.1093/jac/dkw417

Ayoun Alsoud, R., Svensson, R. J., Svensson, E. M., Gillespie, S. H., Boeree, M. J.,
Diacon, A. H., et al. (2022). Combined quantitative tuberculosis biomarker model for
time-to-positivity and colony forming unit to support tuberculosis drug development.
Submitted. Front. Pharmacol.

Beal, S., Sheiner, L., Boeckmann, A., and Bauer, R. (1989). NONMEM 7.4 users guides.

Bowness, R., Boeree, M. J., Aarnoutse, R., Dawson, R., Diacon, A., Mangu, C., et al.
(2015). The relationship between Mycobacterium tuberculosis MGIT time to positivity
and cfu in sputum samples demonstrates changing bacterial phenotypes potentially
reflecting the impact of chemotherapy on critical sub-populations. J. Antimicrob.
Chemother. 70, 448–455. doi:10.1093/jac/dku415

Clewe, O., Aulin, L., Hu, Y., Coates, A. R. M., and Simonsson, U. S. H. (2016). A
multistate tuberculosis pharmacometric model: A framework for studying anti-
tubercular drug effects in vitro. vitro. J. Antimicrob. Chemother. 71, 964–974. doi:10.
1093/jac/dkv416

Conradie, F., Diacon, A. H., Ngubane, N., Howell, P., Everitt, D., Crook, A. M., et al.
(2020). Treatment of highly drug-resistant pulmonary tuberculosis.N. Engl. J. Med. 382,
893–902. doi:10.1056/NEJMoa1901814

De Jager, V., Gupte, N., Nunes, S., Barnes, G. L., van Wijk, R. C., Mostert, J., et al.
(2022). Early bactericidal activity of meropenem plus clavulanate (with or without
rifampin) for tuberculosis: The COMRADE randomized, phase 2A clinical trial. Am.
J. Respir. Crit. Care Med. 205, 1228–1235. doi:10.1164/rccm.202108-1976OC

Diacon, A. H., Dawson, R., von Groote-Bidlingmaier, F., Symons, G., Venter, A.,
Donald, P. R., et al. (2015). Bactericidal activity of pyrazinamide and clofazimine alone
and in combinations with pretomanid and bedaquiline. Am. J. Respir. Crit. Care Med.
191, 943–953. doi:10.1164/rccm.201410-1801OC

Diacon, A. H., Dawson, R., Von Groote-Bidlingmaier, F., Symons, G., Venter, A.,
Donald, P. R., et al. (2013). Randomized dose-ranging study of the 14-day early
bactericidal activity of bedaquiline (TMC207) in patients with sputum microscopy
smear-positive pulmonary tuberculosis. Antimicrob. Agents Chemother. 57, 2199–2203.
doi:10.1128/AAC.02243-12

Diacon, A. H., Maritz, J. S., Venter, A., van Helden, P. D., Dawson, R., and Donald, P.
R. (2012). Time to liquid culture positivity can substitute for colony counting on agar
plates in early bactericidal activity studies of antituberculosis agents. Clin. Microbiol.
Infect. 18, 711–717. doi:10.1111/j.1469-0691.2011.03626.x

Donald, P. R., and Diacon, A. H. (2008). The early bactericidal activity of anti-
tuberculosis drugs: A literature review. Tuberculosis 88, S75–S83. doi:10.1016/S1472-
9792(08)70038-6

Dorman, S. E., Nahid, P., Kurbatova, E. V., Phillips, P. P. J., Bryant, K., Dooley,
K. E., et al. (2021). Four-month rifapentine regimens with or without
moxifloxacin for tuberculosis. N. Engl. J. Med. 384, 1705–1718. doi:10.1056/
NEJMoa2033400

European Medicines Agency (2017). Addendum to the guideline on the evaluation of
medicinal products indicated for treatment of bacterial infections to address the clinical
development of new agents to treat pulmonary disease due to Mycobacterium
tuberculosis. Available at: https://www.ema.europa.eu/en/documents/scientific-
guideline/addendum-guideline-evaluation-medicinal-products-indicated-treatment-
bacterial-infections-address_en.pdf (Accessed December 20, 2022).

European Medicines Agency (2008). Guidance on reporting the results of population
pharmacokinetic analyses. Available at: https://www.ema.europa.eu/en/documents/
scientific-guideline/guideline-reporting-results-population-pharmacokinetic-analyses_
en.pdf (Accessed March 24, 2023).

Faraj, A., Svensson, R. J., Diacon, A. H., and Simonsson, U. S. H. (2020). Drug effect of
clofazimine on persisters explains an unexpected increase in bacterial load in patients.
Antimicrob. Agents Chemother. 64, e01905-19–e01919. doi:10.1128/AAC.01905-19

Food and Drug Administration (2022). Population pharmacokinetics guidance for
industry. Available at: https://www.fda.gov/media/128793/download (Accessed March
24, 2023).

Food andDrug Administration (2013). Pulmonary tuberculosis: Developing drugs for
treatment (guidance for industry). Available at: https://fda.report/media/87194/
Pulmonary-Tuberculosis–Developing-Drugs-for-Treatment.pdf (Accessed December
20, 2022).

Jindani, A., Aber, V. R., Edwards, E. A., and Mitchison, D. A. (1980). The early
bactericidal activity of drugs in patients with pulmonary tuberculosis. Am. Rev. Respir.
Dis. 121, 939–949. doi:10.1164/arrd.1980.121.6.939

Jindani, A., Doré, C. J., and Mitchison, D. A. (2003). Bactericidal and sterilizing
activities of antituberculosis drugs during the first 14 days. Am. J. Respir. Crit. Care Med.
167, 1348–1354. doi:10.1164/rccm.200210-1125OC

Jones, A., Saini, J., Kriel, B., Via, L. E., Cai, Y., Allies, D., et al. (2022). Sputum
lipoarabinomannan (LAM) as a biomarker to determine sputum mycobacterial load:
Exploratory andmodel-based analyses of integrated data from four cohorts. BMC Infect.
Dis. 22, 327. doi:10.1186/s12879-022-07308-3

Karlsson, M. O., Beal, S. L., and Sheiner, L. B. (1995). Three new residual error models
for population PK/PD analyses. J. Pharmacokinet. Biopharm. 23, 651–672. doi:10.1007/
BF02353466

Koele, S. E., Phillips, P. P., Upton, C.M., van Ingen, J., Simonsson, U. S., Diacon, A. H.,
et al. (2023). Early bactericidal activity studies for pulmonary tuberculosis: A systematic
review of methodological aspects. Int. J. Antimicrob. Agents 106775, 106775. doi:10.
1016/j.ijantimicag.2023.106775

Lindbom, L., Pihlgren, P., and Jonsson, N. (2005). PsN-toolkit—a collection of
computer intensive statistical methods for non-linear mixed effect modeling using
NONMEM. Comput. Methods Programs Biomed. 79, 241–257. doi:10.1016/j.cmpb.
2005.04.005

R Core Team (2020). R: A language and environment for statistical computing.
Available at: http://www.r-project.org/(Accessed December 20, 2022).

RStudio Team (2022). RStudio: Integrated development environment for R. Available
at: http://www.rstudio.com/(Accessed December 20, 2022).

Sabiiti, W., Mtafya, B., Lima, D. A., Dombay, E., Baron, V. O., Azam, K., et al. (2020).
A tuberculosis molecular bacterial load assay (TB-MBLA). J. Vis. Exp. doi:10.3791/
60460

Savic, R. M., and Karlsson, M. O. (2009). Importance of shrinkage in empirical Bayes
estimates for diagnostics: Problems and Solutions. AAPS J. 11, 558–569. doi:10.1208/
s12248-009-9133-0

Svensson, R. J., Gillespie, S. H., and Simonsson, U. S. H. (2017). Improved power for
TB Phase IIa trials using a model-based pharmacokinetic–pharmacodynamic approach
compared with commonly used analysis methods. J. Antimicrob. Chemother. 72,
2311–2319. doi:10.1093/jac/dkx129

Svensson, R. J., and Simonsson, U. (2016). Application of the multistate
tuberculosis pharmacometric model in patients with rifampicin-treated
pulmonary tuberculosis. CPT Pharmacometrics Syst. Pharmacol. 5, 264–273.
doi:10.1002/psp4.12079

van Wijk, R. C., Mockeliunas, L., Van den Hoogen, G., Upton, C. M., Diacon, A. H.,
et al. (2022). Reproducibility in pharmacometrics applied in a phase III trial of BCG-
vaccination for COVID-19.

Vong, C., Bergstrand, M., Nyberg, J., and Karlsson, M. O. (2012). Rapid sample size
calculations for a defined likelihood ratio test-based power in mixed-effects models. Am.
Assoc. Pharm. Sci. 14, 176–186. doi:10.1208/s12248-012-9327-8

Walter, N. D., Born, S. E. M., Robertson, G. T., Reichlen, M., Dide-Agossou, C.,
Ektnitphong, V. A., et al. (2021). Mycobacterium tuberculosis precursor rRNA as a
measure of treatment-shortening activity of drugs and regimens. Nat. Commun. 12,
2899. doi:10.1038/s41467-021-22833-6

Working Group on New TB Drugs (2022). Clinical pipeline. Available at: https://
www.newtbdrugs.org/pipeline/clinical (Accessed December 20, 2022).

World Health Organization (2021). Tuberculosis. Available at: https://www.who.int/
news-room/fact-sheets/detail/tuberculosis#:~:text=Key%20facts,with%20tuberculosis
%20(TB)%20worldwide. (Accessed December 20, 2022).

Zhang, L., Beal, S. L., and Sheiner, L. B. (2003). Simultaneous vs. Sequential
analysis for population PK/PD data I: Best-case performance. J. Pharmacokinet.
Pharmacodyn. 30, 387–404. doi:10.1023/b:jopa.0000012998.04442.1fJOPA.
0000012998.04442.1f

Frontiers in Pharmacology frontiersin.org18

Mockeliunas et al. 10.3389/fphar.2023.1150243

https://rmarkdown.rstudio.com
https://doi.org/10.1093/jac/dkw417
https://doi.org/10.1093/jac/dku415
https://doi.org/10.1093/jac/dkv416
https://doi.org/10.1093/jac/dkv416
https://doi.org/10.1056/NEJMoa1901814
https://doi.org/10.1164/rccm.202108-1976OC
https://doi.org/10.1164/rccm.201410-1801OC
https://doi.org/10.1128/AAC.02243-12
https://doi.org/10.1111/j.1469-0691.2011.03626.x
https://doi.org/10.1016/S1472-9792(08)70038-6
https://doi.org/10.1016/S1472-9792(08)70038-6
https://doi.org/10.1056/NEJMoa2033400
https://doi.org/10.1056/NEJMoa2033400
https://www.ema.europa.eu/en/documents/scientific-guideline/addendum-guideline-evaluation-medicinal-products-indicated-treatment-bacterial-infections-address_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/addendum-guideline-evaluation-medicinal-products-indicated-treatment-bacterial-infections-address_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/addendum-guideline-evaluation-medicinal-products-indicated-treatment-bacterial-infections-address_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-reporting-results-population-pharmacokinetic-analyses_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-reporting-results-population-pharmacokinetic-analyses_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-reporting-results-population-pharmacokinetic-analyses_en.pdf
https://doi.org/10.1128/AAC.01905-19
https://www.fda.gov/media/128793/download
https://fda.report/media/87194/Pulmonary-Tuberculosis�Developing-Drugs-for-Treatment.pdf
https://fda.report/media/87194/Pulmonary-Tuberculosis�Developing-Drugs-for-Treatment.pdf
https://fda.report/media/87194/Pulmonary-Tuberculosis�Developing-Drugs-for-Treatment.pdf
https://doi.org/10.1164/arrd.1980.121.6.939
https://doi.org/10.1164/rccm.200210-1125OC
https://doi.org/10.1186/s12879-022-07308-3
https://doi.org/10.1007/BF02353466
https://doi.org/10.1007/BF02353466
https://doi.org/10.1016/j.ijantimicag.2023.106775
https://doi.org/10.1016/j.ijantimicag.2023.106775
https://doi.org/10.1016/j.cmpb.2005.04.005
https://doi.org/10.1016/j.cmpb.2005.04.005
http://www.r-project.org/
http://www.rstudio.com/
https://doi.org/10.3791/60460
https://doi.org/10.3791/60460
https://doi.org/10.1208/s12248-009-9133-0
https://doi.org/10.1208/s12248-009-9133-0
https://doi.org/10.1093/jac/dkx129
https://doi.org/10.1002/psp4.12079
https://doi.org/10.1208/s12248-012-9327-8
https://doi.org/10.1038/s41467-021-22833-6
https://www.newtbdrugs.org/pipeline/clinical
https://www.newtbdrugs.org/pipeline/clinical
https://www.who.int/news-room/fact-sheets/detail/tuberculosis#:%7E:text=Key%20facts,with%20tuberculosis%20(TB)%20worldwide
https://www.who.int/news-room/fact-sheets/detail/tuberculosis#:%7E:text=Key%20facts,with%20tuberculosis%20(TB)%20worldwide
https://www.who.int/news-room/fact-sheets/detail/tuberculosis#:%7E:text=Key%20facts,with%20tuberculosis%20(TB)%20worldwide
https://doi.org/10.1023/b:jopa.0000012998.04442.1f
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1150243

	Standards for model-based early bactericidal activity analysis and sample size determination in tuberculosis drug development
	1 Introduction
	2 Materials and methods
	2.1 Standardized pharmacometric model-based early bactericidal activity analysis approach
	2.1.1 Simulated early bactericidal activity data
	2.1.2 Data exploratory analysis
	2.1.3 Base model development
	2.1.4 Covariate model development
	2.1.5 Early bactericidal activity detection
	2.1.6 Pharmacokinetic-pharmacodynamic modeling
	2.1.7 Early bactericidal activity comparison
	2.1.8 Early bactericidal activity reporting

	2.2 Sample size to detect early bactericidal activity
	2.3 Sample size to detect treatment effect difference
	2.4 Software

	3 Results
	3.1 Standardized pharmacometric model-based early bactericidal activity analysis approach
	3.1.1 Exploratory data analysis
	3.1.2 Base model building
	3.1.3 Covariate model building
	3.1.4 Early bactericidal activity detection
	3.1.5 Pharmacokinetic-pharmacodynamic modeling
	3.1.6 Early bactericidal activity comparison
	3.1.7 Early bactericidal activity reporting

	3.2 Sample size to detect early bactericidal activity
	3.3 Sample size to detect treatment effect difference

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


