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Hepatocellular carcinoma (HCC) is a major global health burden, causing
approximately 8.3 million deaths each year, and it is the third leading cause of
cancer-related death worldwide, with a relative 5-year survival rate of around 18%.
Due to the advanced stage of diagnosis inmost patients, systemic treatment based
on targeted therapy has become the only feasible option. Genomic studies have
established a profile of molecular alterations in hepatocellular carcinoma with
potentially actionable mutations, but these mutations have yet to be translated
into clinical practice. The first targeted drug approved for systemic treatment of
patients with advanced hepatocellular carcinoma was Sorafenib, which was a
milestone. Subsequent clinical trials have identified multiple tyrosine kinase
inhibitors, such as Lenvatinib, Cabozantinib, and Regorafenib, for the treatment
of hepatocellular carcinoma, with survival benefits for the patient. Ongoing
systemic therapy studies and trials include various immune-based combination
therapies, with some early results showing promise and potential for new therapy
plans. Systemic therapy for hepatocellular carcinoma is complicated by the
significant heterogeneity of the disease and its propensity for developing drug
resistance. Therefore, it is essential to choose a better, individualized treatment
plan to benefit patients. Preclinical models capable of preserving in vivo tumor
characteristics are urgently needed to circumvent heterogeneity and overcome
drug resistance. In this review, we summarize current approaches to targeted
therapy for HCC patients and the establishment of several patient-derived
preclinical models of hepatocellular carcinoma. We also discuss the challenges
and opportunities of targeted therapy for hepatocellular carcinoma and how to
achieve personalized treatment with the continuous development of targeted
therapies and bioengineering technologies.
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1 Introduction

Worldwide, hepatocellular carcinoma (HCC) remains the fourth most common cause of
cancer-related death, and its global burden continues to increase each year (Villanueva, 2019;
Llovet et al., 2021; Vogel et al., 2022). With the development of diagnosis and treatment
technologies in recent decades, the treatment of HCC has progressed greatly. However,
except for cases detected early, most patients are currently diagnosed at a later stage and
curative treatments are frequently not available (Benson et al., 2021; Llovet et al., 2021; Vogel
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et al., 2022). Therefore, systemic therapies (combination therapies)
are the key to the survival of advanced HCC patients (Gordan et al.,
2020). Targeted therapy and immunotherapy are the most studied
and applied systemic treatment methods in recent years, and they
are playing an increasingly important part in the treatment of
patients with advanced HCC (Llovet et al., 2018; Huang et al.,
2020). In order to enhance the survival rate of HCC patients, precise
and individualized treatments will become the future of HCC
systemic treatment.

The extensive intratumoral heterogeneity of HCC and the non-
negligible drug resistance of targeted drugs are the main obstacles for
developing individualized HCC treatments (Fisher et al., 2013;
Schulze et al., 2015; Zucman-Rossi et al., 2015; Mcgranahan and
Swanton, 2017). In the past, traditional tumor models could not
reflect the heterogeneity of different HCC patients nor could they be
used for research on targeted drug resistance in different patients
hindering the development of personalized treatment for HCC.
With the development of bioengineering techniques in recent
years, patient-derived liver cancer preclinical models reflecting
the complex characteristics of tumors can now be created,
showing great promise to benefit the development of
personalized medicine for HCC patients and improve clinical
outcomes (Bresnahan et al., 2020).

In this review, we examine recent advances in targeted therapies
for liver cancer and discuss the application of bioengineered models
of liver cancer to personalized treatment of liver cancer, including
the novel clinical trials and technology platforms expected to
facilitate substantial progress over the next decade.

2 Targeted therapy

Targeted therapy embodies the precise treatment for HCC.With
the completion of the Genome Project, the molecular alteration
profile of HCC is well known (Craig et al., 2020; Rebouissou and
Nault, 2020). Numerous studies demonstrated genes from multiple
signaling pathways, such as Wnt/β-catenin, P53/cell cycle
regulation, oxidative stress, epigenetic modifiers, et al., were
frequently mutated in HCC (Boyault et al., 2007; Hoshida et al.,
2009; Schulze et al., 2015). Molecularly targeted drugs modulating
these molecules and pathways have become a hot area in liver cancer
research, but only a small number of tumors, about 25%, have
potentially targetable drivers (Schulze et al., 2015). Therefore, it is
extremely difficult to develop effective therapies other than surgery
for HCC. Similarly, various cytokines involved in these signaling
pathways, such as vascular endothelial growth factor (VEGF),
fibroblast growth factor (FGF), transforming growth factor-α
(TGF-α), and insulin-like growth factor-II have also been
extensively studied. Among them, anti-angiogenic drugs targeting
the VEGF play an important role in the targeted therapy of HCC
(Weis and Cheresh, 2011).

2.1 Sorafenib

The groundbreaking study (SHARP) in 2007 demonstrated that
the tyrosine kinase inhibitor (TKI) sorafenib resulted in a 3-month
overall survival (OS) benefit to patients with advanced liver cancer

(Llovet et al., 2008; 2018). Subsequent clinical trials also proved the
effectiveness of sorafenib in improving OS and objective response
rate (ORR). Sorafenib was the only therapy with confirmed survival
benefits for patients with advanced liver cancer for a long time
thereafter (Cheng et al., 2009). Although the efficacy and safety of
sorafenib have brought improvements to the treatment of HCC,
(Bruix et al., 2012; Raoul et al., 2012; EASL Clinical Practice
Guidelines and European Association for the Study of the Liver,
2018), the average survival time of patients is still less than 1 year.
Therefore, some studies have turned their attention to combination
therapy. The existing clinical trials proved that in the treatment of
advanced HCC, sorafenib combined with Transarterial
chemoembolization (TACE), external irradiation, and other
therapies prolong the disease-free survival time and OS time
compared with sorafenib alone (Qu et al., 2012; Meyer et al.,
2017; Zhao et al., 2019). In recent years, targeted therapies have
continued to develop. Currently, there are first-line TKIs lenvatinib
and donafenib, as well as second-line treatments regorafenib,
cabozantinib and apatinib, which have been proven to be
effective for advanced liver cancer (Table 1).

2.2 Lenvatinib

Compared with sorafenib, lenvatinib has advantages in reducing
drug resistance. Drug resistance caused by long-term sorafenib
treatment of liver cancer is one of the leading clinical problems
at present. Sorafenib resistance is generally believed to be due to the
presence of FGF, a pro-angiogenic factor thought to increase tumor
cell resistance to anti-VEGF therapy (Tang et al., 2020). As a TKI,
lenvatinib can selectively inhibit VEGF receptors (VEGFR) 1-3, FGF
receptors 1-4, platelet-derived growth factor receptor-α, RET, and
cKIT, which may reduce the occurrence of drug resistance during
treatment (Al-Salama et al., 2019). The results of the REFLECT trial
in 2018 showed that in the treatment of advanced HCC, the
inhibitory effect of lenvatinib on tumors was not inferior to that
of sorafenib (Kudo et al., 2018). Lenvatinib especially improved the
efficacy of secondary endpoints, compared with sorafenib and it
significantly prolonged the median progression-free time and
improved the ORR. The curative effect of lenvatinib on patients
with hepatitis B virus-related HCC is better than that of sorafenib
(Al-Salama et al., 2019). Lenvatinib is the second first-line drug for
advanced HCC and was developed 10 years after sorafenib (Hiraoka
et al., 2019). It not only provides new drug options for patients with
advanced liver cancer but also provides evidence for subsequent
drug development.

2.3 Regorafenib

The current second-line molecular targeted drugs,
regorafenib and cabozantinib, can be used as monotherapy for
HCC patients who have progressed on sorafenib. Regorafenib
was approved as the first second-line treatment for HCC patients
who progressed during or after sorafenib treatment and ushered
in the era of second-line and sequential therapy (Finn et al.,
2018). Regorafenib is a multi-target TKI discovered during the
process of adjusting the molecular structure of sorafenib to
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optimize its curative effect. It has a stronger effect antagonizing
VEGFR kinase and inhibiting TIE2, cKIT, and RET kinases. The
results of the RESORCE trial showed that for HCC patients
whose tumors continued to progress during sorafenib
monotherapy, regorafenib could significantly prolong the
patient’s OS (2.8 months), progression-free survival (PFS), and
time to progression (TTP) which were significantly longer than
those of the placebo group (Bruix et al., 2017). Subsequent
relevant clinical studies have also confirmed the effectiveness
of regorafenib, and sequential treatment with sorafenib has been
shown to be effective for patients with HCC recurrence after liver
transplantation (Iavarone et al., 2019; Yoo et al., 2019).

2.4 Cabozantinib

Cabozantinib is a TKI targeting kinases such as MET, AXL, and
VEGFR1-3. It is also used as a second-line drug for advanced liver
cancer that is not responsive to sorafenib treatment. The
CELESTIAL Phase 3 clinical trials showed that cabozantinib can
significantly prolong the OS of patients (2.2 months) and the ORR
and PFS were not significantly different from the RESORCE trial of
regorafenib (Abou-Alfa et al., 2018). Cabozantinib, which differs
from regorafenib, can be used in patients who are intolerant to
sorafenib. However, cabozantinib treatment may have more toxic
side effects than regorafenib (Kudo, 2018). The results of the cost-
effectiveness analysis also showed that its economic cost is higher
than that of regorafenib, although sorafenib-resistant HCC patients
can benefit from cabozantinib treatment (Parikh et al., 2017; Soto-
Perez-De-Celis et al., 2019). Therefore, choosing the right patient
population is very important.

2.5 Ramucirumab

Unlike the above-mentioned second-line TKI drugs,
ramucirumab is a recombinant monoclonal antibody
targeting VEGFR2, which can block the ligand-receptor
interaction and its downstream signaling to exert anti-tumor
effects (Syed, 2020). Ramucirumab failed to meet its primary
endpoint as second-line therapy in the REACH trial and
ramucirumab did not significantly improve OS compared
with placebo (9.2 months vs. 7.6 months) (Zhu et al., 2015).
However, subgroup analysis confirmed that patients with
elevated AFP (≥400 ng/mL) could obtain a better survival

benefit from ramucirumab treatment (Chau et al., 2017; Zhu
et al., 2017; Gilabert and Raoul, 2018). This was subsequently
confirmed by the REACH-2 trial, (Zhu et al., 2019), and
ramucirumab was the first FDA-approved drug for HCC
patients in a biomarker-selected group (AFP ≥400 ng/mL),
but its underlying biomarker-driven mechanism still needs to
be further explored (Montal et al., 2019; Zhu et al., 2021).

2.6 Immune checkpoint inhibitors

In addition to molecularly targeted therapy, immunotherapy is
becoming another clinical weapon for the systemic treatment of liver
cancer. Immune evasion in HCC is an important cause of tumor
progression. Immune checkpoint proteins are glycoproteins on the
cell surface that transmit inhibitory signals to T cells and natural
killer cells, and are widely expressed on tumor cells, macrophages,
dendritic cells, and other immune cells. These proteins inhibit the
excessively activated T cell response, thereby acting on the tumor-
immune tolerance process. Tumor cells can inhibit the activation of
T cells by expressing immune checkpoint-related molecules and
escape the body’s immune surveillance (Llovet et al., 2022). In HCC,
anti-PD-1 monoclonal antibodies and anti-PD-L1 monoclonal
antibodies are currently the most studied, clinically meaningful
immune checkpoint inhibitors (ICIs).

As more clinical trials are completed, the number of first- or
second-line drugs for immunotherapy also increases. Currently,
immune drugs approved for the first-line treatment include
atezolizumab, sindilizumab, camrelizumab, and pembrolizumab.
The combination of these drugs or with anti-angiogenic
molecularly targeted drugs, for example, the combination of
atezolizumab and bevacizumab, (Finn et al., 2020), sintilizumab
and bevacizumab biosimilar IBI305, (Ren et al., 2021),
camrelizumab Mab plus apatinib, (Xu et al., 2021), or
pembrolizumab plus lenvatinib, (Ikeda et al., 2019), were
promising in completed clinical trials.

The immune drugs that have been approved for second-line
treatment include camrelizumab, pembrolizumab, nivolumab,
and ipilimumab. Treatment options include immune
monotherapy, immunotherapy combined with anti-angiogenic
targeted therapy, and combined immunotherapies (El-Khoueiry
et al., 2017; Qin et al., 2020; Qin et al., 2022). Overall,
combination therapy including immunotherapy significantly
improved ORRs and prolonged OS compared with
immunotherapy alone (Table 2).

TABLE 1 Approved clinical trials of targeted therapy for advanced HCC.

Name/identifier Study type Drug Target Line

SHARP/NCT00105443 Phase III Sorafenib Multikinases First-line

REFLECT/NCT01761266 Phase III Lenvatinib Multikinases First-line

RESORCE/NCT01774344 Phase III Regorafenib Multikinases Second-line

CELESTIAL/NCT01908426 Phase III Cabozantinib Multikinases Second-line

REACH-2/NCT02435433 Phase III Ramucirumab VEGFR2 Second-line

AHELP/NCT02329860 Phase III Apatinib Multikinases Second-line
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3 Challenges and opportunities of
targeted therapy for HCC

3.1 Challenges

Asmentioned above, the occurrence and development of HCC is
a complex multi-pathway-mediated process. The emergence of the
aforementioned targeted drugs has given people more confidence in
the future treatment of HCC. New drugs for targeted therapy are
also being continuously developed.

Because of the complexity of HCC, monotherapy often leads to
dose- or time-dependent severe adverse events (AEs), resulting in
treatment interruption due to intolerance. Consequently, the
efficacy of single drugs such as TKI or ICI has reached a
bottleneck at an OS of 14–16 months. This also suggests that the
developmental process of targeted drugs should be changed.
Therefore, in the past 2 years, various combinations of ICI and
anti-VEGF monoclonal antibodies have been the research focus of
HCC-targeted therapy, which has greatly improved the survival rate
of advanced HCC patients and created a new combination for
targeted therapy (Ouyang et al., 2022).

As mentioned above, for the first-line immunotherapy regimen,
the combination of ICIs and anti-VEGF monoclonal antibodies
(atezolizumab combined with bevacizumab), has better clinical
outcomes than sorafenib and there is no significant difference in
the risk of AEs (Finn et al., 2020). The phase II study (RESCUE) of
the novel VEGFR2 TKI apatinib in combination with camrelizumab
showed an exciting survival benefit and safety profile. An ongoing
randomized, open-label, multicenter, phase III trial (NCT03764293)
comparing this combination with sorafenib in advanced HCC is
promising; however, combination did not meet the expected
endpoint. The double-blind, randomized controlled phase III
LEAP-002 trial of lenvatinib plus placebo, which completed
recently, showed the median OS period of lenvatinib and
pembrolizumab was 21.2 months but did not meet its
prespecified co-endpoints of significantly improved OS or PFS
(Finn Rs, 2022). In conclusion, various combinations of ICIs and
anti-angiogenic drugs significantly improved the clinical survival of
advanced HCC patients. The clinical applicability of combined

targeting is promising, but at the same time, the accompanying
risk of AEs cannot be ignored.

3.2 Opportunities

The continuous emergence of the above-mentioned targeted
drugs and combined treatment options in recent years increased
confidence in the treatment of HCC. Nevertheless, it cannot be
ignored that HCC is a type of solid tumor with a complex tumor
microenvironment consisting of various liver non-parenchymal
cells, extracellular matrix proteins, and signaling molecules,
which play an important role in tumor evolution and response to
treatment by inducing inflammation, angiogenesis, hypoxia, and
fibrosis. Drug resistance in HCC is closely related to its tumor
heterogeneity and evolution, and drug resistance is also the main
reason for targeted therapy treatment failure. Therefore, in the
individualized treatment of HCC, avoiding tumor heterogeneity
and mastering tumor evolution to overcome drug resistance are
the key points to achieving breakthrough progress. In short,
identifying specific patient populations that respond to individual
treatments and finding clear drug-sensitivity markers are clinical
problems that urgently need to be solved for precise targeted
therapy.

The rapid development of next-generation sequencing
technology (NGS) provides new hope for the precision of
targeted therapy (Collins and Varmus, 2015). Biomarker-driven
targeted therapy can be adjusted and customized individually by
NGS. Therefore, NGS can improve the ability to differentiate
individual characteristics of tumors and has the potential to
identify new therapeutic targets, thereby ushering in the era of
precision medicine (Collins and Varmus, 2015; Karlovich and
Williams, 2019). But much remains to be done to successfully
bring NGS closer to impacting clinical care in HCC.

Several studies have shown the value of NGS in precisely
targeted therapy of HCC. Utilizing archived tumor tissue and
baseline plasma samples from HCC patients in the RESORCE
trial of regorafenib, a plasma miRNA panel and gene mutation
signature in tumors were found to predict response to regorafenib

TABLE 2 Clinical trials of combination therapy for advanced HCC.

Name/identifier Study type Drug Target Primary endpoint Line

IMbrave150/NCT03434379 Phase III Atezolizumab Bevacizumab PD-L1 19.2 months (mOS) First-line treatment

VEGF 29.8 (ORR)

NCT03794440 Phase II/III Sintilizumab IBI305 PD-1 — —

VEGF

RESCUE/NCT03463876 Phase II Camrelizumab Apatinib PD-1 — —

NCT03764293 Phase III VEGFR2 — —

KEYNOTE524/NCT03006926 Phase Ib Lenvatinib Pembrolizumab Multikinases 9.3 months (mPFS) —

PD-1 22 months (mOS)

46% (ORR)

LEAP-002/NCT03713593 Phase III — —
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(Teufel et al., 2019). In BIOSTORM, STORM’s biomarker
companion study identified polygenic signatures related to
improved relapse-free survival (RFS) with sorafenib adjuvant
therapy after hepatectomy, which could be used to guide
treatment options in the future (Pinyol et al., 2019). In addition,
NGS is also a key tool for developing potential drug-sensitivity
markers for targeted therapies. Using the FDA-approved 468-
genome MSK-IMPACT, Harding et al (Harding et al., 2019)
were able to prospectively identify mutations that were predictive
of adverse outcomes with sorafenib and ICIs.

Important advances have been made in lung and colorectal
cancers by selecting patients for treatment based on their molecular
characteristics, whereas HCC is limited by complex significant
molecular heterogeneity. But the improved resolution of NGS
technology enables the discovery of significant tumor
heterogeneity. With an appropriate and well-designed protocol,
the prediction of a potential biomarker response to a specifically
targeted drug is greatly increased. In recent years, the field of
artificial intelligence (AI) has experienced rapid growth, driven
by the development of big data models and deep learning
algorithms. This technology has shown great potential for
predicting targeted therapy biomarkers and managing the
prognosis of hepatocellular carcinoma (Chen et al., 2020; Ahn
et al., 2021; Zeng et al., 2022). Therefore, the combination of AI
with NGS is expected to further enhance the accuracy of precision
medicine for hepatocellular carcinoma.

In addition to identifying response biomarkers by NGS,
establishing individual drug screening platforms is an urgent
need to overcome drug resistance. Fortunately, the rapid
development of bioengineering technology has made it possible
to develop excellent HCC preclinical models to track tumor
evolution and study drug resistance mechanisms. At present,
patient-derived xenograft (PDX) and patient-derived organoid
(PDO) models are widely used, which can simulate the
occurrence of liver cancer and the tumor microenvironment and
provide a preclinical platform for drug screening, biomarker
development, drug resistance changes, and mechanism research.
Additionally, the rapid development of three dimensional (3D)

biology in recent years has provided more possibilities for the
development of HCC preclinical models.

4 Bioengineering

4.1 Patient-derived xenografts

The PDX model first appeared more than 50 years ago and was
applied to the research of colorectal cancer (Rygaard and Povlsen,
1969). In 1996, the HCC PDX model was established for the first
time (Sun et al., 1996). The subsequent HCC PDX development was
slow, cumbersome, and inefficient. However, clinical research results
in recent years stimulated hope for the application of PDXmodels in
liver cancer research. The HCC PDX model is currently a mature
and ideal tumor model for HCC, which accurately recapitulates the
genetic complexity of human tumors, mimics the in vivo
interactions of tumors with their surrounding tissues and has
good clinical predictability (Figure 1); (Brown et al., 2018; Invrea,
et al., 2020)

One of the key points in establishing HCC PDX models is the
selection of animals for transplantation. Another key point is the
selection of the injection site. Subcutaneous injection of cells/tumor
(heterotopic model) is the simplest in vivomethod, which can more
accurately measure tumor growth and response to treatment (Brown
et al., 2018). However, this approach results in subcutaneously
transplanted tumors lacking a tumor-associated
microenvironment. Orthotopic transplantation can provide a
microenvironment similar to that of the matched tumor tissue
and has a rich blood supply, which greatly retains the specificity
and microenvironmental characteristics of the patient’s tumor
(Hernandez-Gea et al., 2013). It is currently the most ideal
transplantation method, but compared with heterotopic
transplantation, its technical difficulty, low success rate,
cumbersome tumor assessment, and other issues affect its
expanded application.

Currently, the most commonly used model is a xenograft model
implanting patient-derived samples in an immunodeficient mouse

FIGURE 1
Generation and application of PDX. Patient-derived tumors are implanted in mice, and after the implantation phase, it is transplanted and expanded
to generate PDX cohorts suitable for preclinical studies, including drug testing and molecular profiling studies. In addition, PDX-derived tumor samples
can be collected to create tissue biobanks, which have important implications for sustainable preclinical research, his figure was cited from Invrea, et al.
(2020). Note: This is an open access article distributed under the Creative Commons Attribution License that permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
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to prevent the mouse’s immune system from rejecting the human
tumor. However, this PDX model in immunodeficient mice cannot
be used to study immunotherapeutic approaches. Therefore,
recapitulating the complexity of the human immune system in
preclinical models is critical for studying immunity and
immunotherapy in HCC. One strategy to achieve this goal is to
use humanized mouse models modified to contain human immune
cells (Brown et al., 2018; Zhao et al., 2018). There are different
approaches to humanizing the mouse immune system. Even so, a lot
of work is needed to fully personalize humanizedmice tomatch each
patient sample.

PDXs are already a mature and excellent individualized
treatment platform in the preclinical model of HCC, and have
shown advantages as a preclinical model in mechanism research,
drug and biomarker screening, and combined clinical trials (Hu
et al., 2019). PDXliver is the first public database of liver cancer PDX
models, including drug response data, which fully reflects the

heterogeneity of HCC and is conducive to the discovery of
biomarkers for specific treatments (He et al., 2018). Recently, Jin
et al. (2021) found that lenvatinib and gefitinib had antitumor
activity in HCC PDX with high expression of epidermal growth
factor receptor (EGFR), and EGFR has been used as a biomarker to
achieve a more informed patient stratification in clinical trials. The
HCC PDX model has proven valuable in exploring many different
aspects of precision oncology in preclinical research. However, the
time commitment, low success rate, and large resource requirement
of PDX also limit its wide application.

4.2 Patient-derived organoids

To circumvent the limitations of two dimensional (2D),
monolayer cell line tumor models, researchers have been trying
to grow tumors in 3D for a long time using methods, such as liver

FIGURE 2
Preclinical applications of patient-derived tumor organoids. Whether in preclinical basic research or clinical research, patient-derived tumor
organoids have great application value. This figure was cited from Fan, et al. (2019). Note: This is an open access article distributed under the Creative
Commons Attribution License that permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
(CC BY 4.0).
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slices and mechanical 3D culture devices (Tharehalli et al., 2019).
However, these models fall short in terms of culture time and
preservation of the original tumor characteristics. One of the
main purposes of 3D tumor cell culture is to simulate the growth
environment of tumors in the human body and to preserve the
genetic and histological characteristics of the parent tumor to the
greatest extent. Only such preclinical models can be applied to
individualized treatment.

In 2012, the first tumor organoids were developed, derived from
intestinal tumors (Sato et al., 2011). Tumor organoids have given
rise to a new concept of 3D culture, characterized by self-organized
3D structures that mimic the original in vivo structure of an organ or
tumor and can be obtained from different sources (Figure 2); (Fan,
et al., 2019; Tuveson and Clevers, 2019) Thus far, organoids have
been derived from organ-specific adult stem cells, pluripotent stem
cells (PSCs), embryonic stem cells, or induced pluripotent stem cells
(iPSCs), as well as tumors. Huch et al. (2015) established the first
liver organoids from mice and human liver stem cell organoids, in
2013 and 2015, respectively, in which stem cells can be expanded for
a long time and differentiated into biliary or hepatic cells according
to the composition of the medium. In addition, tissue-specific
organoids can be established using PSCs. Takebe et al. (2013)
constructed liver organoids from human iPSCs combined with
endothelial and mesenchymal cells in Matrigel. At present, liver
multicellular co-culture organoids have been reported by many
studies, including a mixed culture of hepatocytes and various
mesenchymal cells and iPSC-derived liver organoids on perfusion
microcolumn chips.

The application of the above healthy liver organoids in tumor
therapy is mainly used to the study carcinogenesis, such as the
carcinogenesis induced by the hepatitis B virus. Of course, organoids
from patient-derived liver tumors are the most direct and effective
method to study the individualized treatment of tumors. There are
two main sources of PDOs, needle biopsy and surgically obtained
human tumor specimens. Due to the difficulty and complexity of
organoid culture, both routes are less effective in establishing HCC
organoids (37.5% and 26%, respectively) (Broutier et al., 2017;
Nuciforo et al., 2018). However, even at low tumor to stromal
cell ratios, there are opportunities to establish PDO. This helps avoid
short comings of NGS. Furthermore, it is more important that HCC
PDOs are highly concordant with original tumor biopsies in terms of
growth pattern, degree of differentiation, expression of HCC-
specific markers, genomic alterations, and ability to form tumors
in xenograft models (Broutier et al., 2017; Nuciforo et al., 2018). This
makes PDOs more suitable for precision medicine, including
targeted therapy resistance research, drug screening, and
treatment response prediction. Li et al. established HCC
organoids for drug screening using surgical specimens of primary
human liver cancer, and proved that PDOs can be used as preclinical
models for the individualized treatment of HCC (Li et al., 2019). By
establishing HCC PDOs, Wang et al. (2020); Leung et al. (2020)
found reactivation of Hedgehog signaling and receptor tyrosine
kinase-induced MEK/ERK and AKT signaling pathways may be
related to sorafenib resistance in HCC. In addition to Matrigel
encapsulation, a recent study used hydrogel capsules to culture HCC
PDOs to simulate the tumor microenvironment of liver cancer, and
demonstrated the heterogeneity of the platform for targeted drugs
and other applications that can be used to assist individualized

therapy (Dong et al., 2022). Clinical trials (NCT05384184 and
NCT02436564) examining HCC PDOs are already underway.

The ongoing development of HCC PDOs will be focused on
better simulating the tumor microenvironment in vivo. Loh et al.
(2021) constructed a HCC PDO model and explored signaling axes
that enhance hepatocyte resistance to sorafenib by culturing
organoids in conditioned medium to mimic the tumor
microenvironment. Recently, Lim et al. (2022) used a hydrogel
system to establish a co-culture model to mimic and characterize
pro-angiogenic secretory signaling between hepatoma cells and
endothelial cells in vitro. A PDO-TME model combining PDOs
and the tumor microenvironment cells will provide a more accurate
platform for liver cancer-targeted therapy to avoid heterogeneity
and overcome drug resistance research, and it will also be more
conducive to the development of new drugs.

4.3 3D bioprinting of HCC

In recent years, additive manufacturing, or 3D printing, has been
applied to biomedicine, called 3D bioprinting (3DP). The
development of 3DP has opened a new chapter in bioengineered
medicine (Murphy and Atala, 2014). 3DP is mainly achieved
through inkjet, micro-extrusion, or laser-assisted bioprinting,
among which micro-extrusion is the most widely used
(Mandrycky et al., 2016; Matai et al., 2020). The core material of
3DP is bio-ink and its potential for clinical translation depends on
the formulation of the bio-ink (Gu et al., 2022). Bio-inks that have
been extensively studied include alginate, fibrinogen, gelatin,
collagen, chitosan, agarose, Pluronic, hyaluronic acid, GelMA,
PEG, and decellularized extracellular matrix. The choice of bio-
ink is also based on the choice of bioprinting technology (Gu et al.,
2022).

3DP has been widely used in cancer research (Almela et al., 2018;
Wang et al., 2018; Swaminathan et al., 2019; Sbirkov et al., 2021; Xie
et al., 2021). 3DP tumor models can provide physiologically relevant
cell-cell and cell-matrix interactions by mimicking the 3D
heterogeneity of real tumors (Figure 3); (Knowlton et al., 2015;
Augustine et al., 2021; Jung, et al., 2022) We initially created a 3DP
model of HepG2 cells by 3DP technology based on a gelatin-sodium
alginate bio-ink system (Sun et al., 2020). We found that compared
with 2D-HepG2 cells, the 3DP-HepG2model displayed significantly
increased levels of various liver function-related proteins and genes
as well as those involved in proliferation, metastasis, drug resistance,
anti-tumor immunosuppression, and tumor cell epithelial-
mesenchymal transition. This gives the 3DP tumor model unique
advantages in the preclinical research of liver cancer and the 3DP
tumor model can be used as a more suitable platform for anti-tumor
drug development. Next, we have previously revealed that patient-
derived primary hepatocellular carcinoma cells could maintain high
activity long-term in gelatin-sodium alginate bio-ink-based 3DP
model and could be used for liver cancer-targeted therapy drug
testing for the prediction of personalized therapy (Xie et al., 2021).
We found that 3DP tumor models offer advantages in terms of cost,
modeling success rate, maintenance of cell viability, establishment
success rate, and low time commitment. 3DP printing relies on a
computer to generate the design, high precision, and repeatability of
the tumor model, which has inherent advantages over the PDX and
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PDO models. In addition, if a technological breakthrough in the
rapid expansion of primary liver cancer cells can be achieved, 3D
bioprinting will play a greater role in the application of liver cancer
in vitro models.

3DP cancer models can recapitulate a tumor’s microstructure and
function and preserve the parental tumor’s features. Therefore, it is an
ideal 3D, preclinical model with a higher success rate in construction
and drug testing than existing traditional cancer models (Table 3);
(Shukla et al., 2022) In addition, the absolute advantage of 3DP models
as preclinical models is that printers can enable the fabrication of high-
resolution microstructures to reproduce the complexity of the tumor
microenvironment, including the vascularization of tumors (Shukla
et al., 2022). At present, bioprinting has been applied in 3DP models of
breast cancer and glioblastoma (Zhou et al., 2016; Heinrich et al., 2019).

The application of a 3DP-TME cancer model combining 3DP HCC
tumors and the tumor microenvironment needs to be verified by
additional research.

3DP can also be combined with cancer chip technology to
reproduce key tumor microenvironmental characteristics
(Monteiro et al., 2022; Shukla et al., 2022) and generate an
increasing number of biomimetic tumor models for precision
and personalized medicine, which is of great significance for
studying HCC drug resistance and tumor evolution in vitro.

5 Conclusion

The systemic treatment of HCC has made considerable progress,
and a higher number of treatment options are now available.
However, due to the huge heterogeneity of HCC, the focus of
HCC research should not only be on drug development but also
on how to accurately select individualized treatment options. This
will save more advanced patients from the toxic side effects of drugs
with no tumor response and increase patient survival time. The
development of bioengineered models of tumors shows great
promise for personalized medicine and improved HCC outcomes.
At present, there are relatively few clinical studies, and more studies
using clinical specimens are needed to clarify whether the
bioengineered model of HCC is suitable for capturing
intratumoral heterogeneity and predicting patient response to
treatments such as targeted therapy.

FIGURE 3
The development process of patient-derived tumor 3DP models. Tumor cells are wrapped in specific bio-inks with high biocompatibility, and then
3DP tumor models can be generated in different ways in high-precision bioprinters, including droplet-based (DBB), extrusion-based (EBB), laser -based
(LBB) and stereolithography (SLB) bioprinting. This figure was cited from Jung, et al. (2022). Note: This is an open access article distributed under the
Creative Commons Attribution License that permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited (CC BY 4.0).

TABLE 3 Relative advantages related to PDX and PDO.

PDX PDO 3DP

Establishment success rate − − ++

Cost − + ++

Recapitulates tumoural heterogeneity + + +

Multi-Cell culture conditions + + ++

Microenvironment construction ++ + ++

High-throughput screening − + +
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