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Cardiomyopathies are a clinically heterogeneous group of cardiac diseases
characterized by heart muscle damage, resulting in myocardium disorders,
diminished cardiac function, heart failure, and even sudden cardiac death. The
molecular mechanisms underlying the damage to cardiomyocytes remain
unclear. Emerging studies have demonstrated that ferroptosis, an iron-
dependent non-apoptotic regulated form of cell death characterized by iron
dyshomeostasis and lipid peroxidation, contributes to the development of
ischemic cardiomyopathy, diabetic cardiomyopathy, doxorubicin-induced
cardiomyopathy, and septic cardiomyopathy. Numerous compounds have
exerted potential therapeutic effects on cardiomyopathies by inhibiting
ferroptosis. In this review, we summarize the core mechanism by which
ferroptosis leads to the development of these cardiomyopathies. We
emphasize the emerging types of therapeutic compounds that can inhibit
ferroptosis and delineate their beneficial effects in treating cardiomyopathies.
This review suggests that inhibiting ferroptosis pharmacologically may be a
potential therapeutic strategy for cardiomyopathy treatment.
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Introduction

Cardiomyopathies are a clinically heterogeneous group of cardiac diseases characterized
by heart muscle damage, causing cardiac muscle or myocardium disorders, diminished
cardiac function, heart failure, and even sudden cardiac death (Franz et al., 2001; Schultheiss
et al., 2019; Li D. et al., 2022). Cardiomyopathies are often related to electrical or mechanical
dysfunction, frequently with a genetic origin or etiology (Maron et al., 2006). The
2006 American Heart Association classification categorizes and groups cardiomyopathy
into primary or secondary categories (Maron et al., 2006). In primary categories (genetic,
mixed, or acquired), the disease process is solely or predominantly confined to the heart.
Secondary cardiomyopathies (i.e., dilated, hypertrophic, and restrictive cardiomyopathy)
result from systemic conditions, i.e., cardiac involvement occurs as a part of systemic
conditions (Brieler et al., 2017; Li T. et al., 2022). Researchers have divided the secondary
causes of cardiomyopathy into various categories, including infectious, toxic, ischemic,
metabolic, autoimmunogenic, and neuromuscular categories. The burden of ischemic
cardiomyopathy (ICM), diabetic cardiomyopathy (DCM), doxorubicin-induced
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cardiomyopathy (DICM), and septic cardiomyopathy (SCM) is
increasing in nearly all countries. The basic pathological
mechanism of these cardiomyopathies (ICM, DCM, DICM and
SCM) is cell death in cardiomyocytes. The pathogenesis and
molecular mechanisms underlying these cardiomyopathies are
poorly understood, warranting further investigation (Gilgenkrantz
et al., 2021). Therefore, it is important to acquire insights into their
pathogenesis to achieve the appropriate management and treatment
of these disorders, thus providing support for protecting cardiac
function.

In the past decades, ferroptosis, a non-apoptotic iron-dependent
and peroxidation-driven regulated cell death (RCD)mechanism, has
been rapidly acquiring attention in cardiomyopathies. Novel studies
have explored the role of ferroptosis in DICM and ICM in murine
models of cardiomyopathy (Conrad and Proneth, 2019; Fang et al.,
2019), which demonstrated an association between ferroptosis and
cardiac cell death induced by iron overload in vivo. Thereafter,
several studies have revealed that ferroptosis plays a vital role in the
pathogenesis of cardiomyopathy (Li D. et al., 2022). Meanwhile,
certain compounds exert their therapeutic effects on experimental
cardiomyopathy models by inhibiting ferroptosis.

In this review, we summarize the core mechanism by which
ferroptosis leads to the genesis of cardiomyopathies. We focus on the
emerging variety of therapeutic compounds that can inhibit
ferroptosis and delineate their beneficial effects for treating
cardiomyopathies. This review indicates that inhibiting
ferroptosis pharmacologically may be a promising therapeutic
strategy for treating cardiomyopathies.

Core molecular mechanisms underlying
ferroptosis

Ferroptosis is an iron-dependent, oxidative form of non-
apoptotic RCD, characterized by the iron-dependent oxidative
modification of phospholipid membranes (Dixon et al., 2012). A
delicate imbalance between ferroptosis inducers and inhibitors
dictates its execution and induction. The inhibition of the solute
carrier family 7 member 11/glutathione peroxidase 4 (SLC7A11/
GPX4) antioxidant system and free iron accumulation are two
key signals for inducing ferroptosis (Chen H. Y. et al., 2021).
When the levels of iron-dependent ROS and lethal lipid peroxide
(LPO), the two promoting factors of ferroptosis, substantially
surpass the antiferroptotic capacity of ferroptosis defense
systems, peroxidated phospholipid polyunsaturated fatty acids
(PUFA-PL-OOH) accumulate on cellular membranes and induce
its rupture, eventually resulting in ferroptosis (Lei et al., 2022).
Phospholipid polyunsaturated fatty acids (PUFA-PLs) have an
intrinsic susceptibility to peroxidation chemistry, which makes
them the primary substrates for LPO (Hadian and Stockwell,
2020). Acyl-coenzyme A synthetase long chain family member 4
(ACSL4) catalyzes the addition of coenzyme A (CoA) to the long-
chain polyunsaturated bonds of arachidonic acid (AA), causing
PUFA esterification to form phospholipids. Following the
activation of ACSL4, lysophosphatidylcholine acyltransferase 3
(LPCAT3) inserts acyl groups into lysophospholipids and
incorporates free PUFAs into phospholipids (PL),
participating in ferroptotic lipid signaling. Under the catalysis

of oxidase and bioactive iron, PUFA-PLs in the membrane can be
converted to phospholipid peroxides by both non-enzymatic
Fenton reactions and enzymatic LPO reactions (Chen et al.,
2021b; Liang et al., 2022). Iron serves as an essential cofactor
for arachidonate lipoxygenases (ALOXs) and cytochrome
P450 oxidoreductase (POR) to initiate the non-enzymatic
Fenton reaction. ALOXs and POR promote lipid
peroxidation. In enzymatic LPO, ACSL4 catalyzes the ligation
of free PUFAs [such as AA and adrenic acid (AdA)] with CoA to
generate PUFA-CoAs, which include AA-CoA or AdA-CoA
(Dixon et al., 2015; Doll et al., 2017). Subsequently,
LPCAT3 incorporates PUFA-CoAs into pLs to generate
PUFA-PLs, which includes AA-phosphatidylethanolamine or
AdA-phosphatidylethanolamine (Dixon et al., 2015; Kagan
et al., 2017). Once the PUFA-PLs incorporated lipid bilayers,
the iron-dependent enzymes (such as POR and ALOXs) and
labile iron use O2 to perform a peroxidation reaction, generating
peroxidated PUFA-PL or polyunsaturated-fatty-acid-containing
-phospholipid hydroperoxides (PUFA-PL-OOH) (Hadian and
Stockwell, 2020; Zou et al., 2020). Other membrane electron
transfer proteins, particularly the NADPH oxidases, are also
involved in ferroptosis by contributing to ROS production for
LPO (Xie et al., 2017). LPO and its secondary products, namely,
malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE),
cause pore formation in the lipid bilayers, eventually resulting
in cell death and ferroptosis (Tang and Kroemer, 2020).
Ferroptosis has acquired substantial attention in
cardiomyopathy research. Further, it plays a vital role in the
pathogenesis of cardiomyopathies, such as ICM, DCM, DICM,
and SCM. Therapeutic strategies targeting ferroptosis may
facilitate the treatment of these cardiomyopathies.

Ferroptosis in cardiomyopathy

Ferroptosis in ischemic cardiomyopathy

Ischemic cardiomyopathy (ICM) principally results from long-
term ischemia/hypoxia within coronary atherosclerosis; it impairs
the systolic or diastolic function of the heart. ICM represents the
leading cause of heart failure (HF) worldwide (Chang et al., 2022;
Del Buono et al., 2022). Further, it leads to numerous phenotypic
changes, such as myocardial remodeling and HF.

Metabolic, neurohumoral, and inflammatory alterations are
involved in the pathophysiological mechanisms underlying ICM,
leading to hypertrophy in cardiomyocytes, fibrosis, calcium
dyshomeostasis, inflammation, oxidative stress, and even
cardiomyocyte death (Cabac-Pogorevici et al., 2020). Ischemic
heart disease is a major contributor to the global disease burden
and constitutes the leading cause of global mortality worldwide.
Acute myocardial infarction (AMI) resulting from reduced oxygen
supply causes initial damage to the cardiac tissues, thus making it
the primary cause of disability and mortality. Myocardial
reperfusion strategies and reoxygenation are effective and the
preferred treatment for AMI; non-etheless, reperfusion
inevitably triggers the cell death of cardiomyocytes, increases
the infarct size, and worsens the condition, which is referred to
as myocardial ischemia-reperfusion injury (MIRI) (Ibáñez et al.,
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2015). MIRI leads to oxidative stress and energy metabolism
disturbances, among other issues (Li D. et al., 2021). Therefore,
understanding the mechanisms of MIRI is essential for attenuating
the triggers of cardiomyocyte cell death and preventing left
ventricular remodeling and HF.

A novel study reported on the role of ferroptosis in ischemia/
reperfusion (I/R)-induced cardiomyopathy in murine models (Fang
et al., 2019), which established an in vivo correlation between
ferroptosis and cardiac cell death (Conrad and Proneth, 2019).
Thereafter, emerging studies delved into the pathophysiological
role of ferroptosis in the development of MIRI and ICM
(Figure 1). Numerous molecular mechanisms and pathways are
related to the genesis of MIRI, including iron homeostasis
imbalance, lipid peroxidation, and redox homeostasis imbalance.
Since the introduction of ferroptosis in 2012, researchers have
revisited the role of iron homeostasis imbalance, lipid
peroxidation, or glutathione metabolism disorder in MIRI, thus
proposing that ferroptosis participates in MIRI pathogenesis.
Among all types of organ ischemia/reperfusion injury (IRI), the
role of ferroptosis in the pathogenesis of MIRI has been the most
extensively studied.

Role of dysregulation of iron metabolism in MIRI
The accumulation of iron, a core characteristic of ferroptosis,

plays a pathogenic role in AMI and MIRI. Excessive iron is
transported into the cardiomyocytes, thus predisposing them to
undergo ferroptosis by the Fenton reaction and ROS generation after
I/R (Li J. Y. et al., 2021). Ferroptosis predominantly occurs in the
reperfusion phase of cardiac tissues, characterized by a gradual
increase in the ACSL4, Fe2+, and MDA levels, along with
decreased levels of GPX4 (Tang et al., 2021a). Cardiomyocytes
are vulnerable to the dysregulation of iron homeostasis, which is
central to MIRI through different pathways to increase the iron
content. The heart utilizes several iron uptake transport systems,
including L-type (LTCC) or T-type (TTCC) voltage-dependent Ca2+

channels, transferrin (TF) receptor (TfR1), and divalent metal
transporter (DMT1) (Lillo-Moya et al., 2021).

Iron enters the cardiomyocytes principally through TfR1 as TF
or through LTCC as non-TF-bound iron, TTCC, and DMT1.
During MIRI, the intracellular iron-storing protein, the degraded
ferritin to release iron and perform iron-mediated Fenton reaction,
resulting in oxidative damage to cardiomyocytes and loss of cardiac
function. Studies have demonstrated excessive iron accumulation in

FIGURE 1
Regulation of ferroptosis in model in ICM, DCM, DICM, and SCM. ATF3, activating transcription factor 3; DNMT-1, DNA (cytosine-5)
-methyltransferase 1; FUNDC1, FUN14 domain containing 1; LCN2, neutrophil-derived lipocalin-2; SENP1, sentrin-specific protease 1; TMEM43,
transmembrane protein 43; USP7, ubiquitin-specific protease 7.
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the myocardial scar in mice MIRI models (Baba et al., 2018; Fang
et al., 2019), thereby suggesting iron overload as a primary
characteristic of ferroptosis. The ferroptosis inhibitor ferostatin-1
(Fer-1) or iron chelator dexrazoxane (DXZ) inhibits cardiac
remodeling and fibrosis induced by IRI (Fang et al., 2019).
Increased cellular iron content exists in IRI mice, apart from
decreased activities of GPX4 and ferritin heavy chain-1 (FTH1)
as well as decreased glutathione (GSH) levels in the cardiac issue
after MIRI (Chen et al., 2021c). Moreover, the ubiquitin-specific
protease 7 (USP7)/p53 pathway activates TfR1 to exacerbate
cardiomyocyte ferroptosis in subsequent I/R (Tang et al., 2021a).
The pharmacological inhibition of USP7 results in increased
p53 activity and decreased TfR1, thus leading to decreased
ferroptosis and MIRI (Tang et al., 2021b). Therefore, the
pharmacological inhibition of TfR1 activity may inhibit
ferroptosis in MIRI.

Nuclear receptor coactivator 4 (NCOA4)-mediated
autophagy, i.e., ferritinophagy, causes I/R-induced ferroptosis.
The activation of ferritinophagy degrades ferritin and increases
the availability of iron in the cells (Lin et al., 2020). FTH1 binds to
NCOA4 that functions as a selective autophagy receptor; it
transports intracellular ferritin to the autophagy lysosomes
and releases free iron (Mancias et al., 2014). Ferritinophagy
induces ferroptosis through iron homeostasis regulation and
ROS production in cells (Gao et al., 2016; Hou et al., 2016;
Liu H. et al., 2022). Inhibiting DNA (cytosine-5)-
methyltransferase 1 attenuates ferroptosis by impeding
NCOA4 -mediated ferritinophagy in diabetic MIRI (Li J. Y.
et al., 2021). The iron exporter ferroportin 1 (FPN1) plays a
vital role in regulating iron homeostasis. Hepcidin, an iron-
regulating hormone, mediates the internalization and
degradation of FPN1, which maintains cardiac iron
homeostasis (Lakhal-Littleton et al., 2015). Nuclear factor
erythroid 2–related factor 2 (Nrf2) transcriptionally regulates
FPN1. Nrf2/FPN1 signaling activation can alleviate MIRI by
inhibiting ferroptosis (Tian H. et al., 2021). FTH deletion in
the myocardium upregulates heme oxygenase-1 (HO-1) among
other antiferroptotic proteins, which induces SLC7A11 and
finally inhibits IRI-induced ferroptosis, thereby maintaining
the function of myocardium (Machado et al., 2022).

Role of LPO in MIRI
Deferoxamine therapy decreases myocardial injury by inhibiting

ferroptosis in I/R-induced rat hearts. The specific redox reactions of
PUFA-PLs in ischemia-induced cardiomyocytes initiate oxidative
damage in the reperfusion phase. ALOX15 induction by ischemia/
hypoxia initiates the oxidation of PUFA-PLs (particularly PUFA-
PE) and results in cardiomyocyte ferroptosis. Further,
ALOX15 ablation in mice confers resistance to PUFA-dependent
ischemia-induced cardiac injury (Ma X. et al., 2022). The
overexpression of activating transcription factor 3 (ATF3)
inhibits the classical ferroptosis activators ras-selective lethal
small molecule 3 and erastin-induced ferroptosis in
cardiomyocytes. ATF3 expression increases in the early phase of
reperfusion, whereas its ablation significantly aggravates IRI. The
binding of ATF3 to the transcriptional start site of the FA
complementation group D2 can enhance its promoter activity,
thereby exerting cardioprotective effects against H/R injury

through an antiferroptosis mechanism (Liu M. Z. et al., 2022).
Bai and colleagues have demonstrated that SENP1 expression is
upregulated by hypoxia, which protects cardiomyocytes against
ferroptosis through deSUMOylating hypoxia-inducible factor-1α
and ACSL4 (Bai et al., 2021).

Role of SLC7A11/GPX4 axis inhibition in MIRI
Increased levels of ACSL4, Fe2+, andMDA, along with decreased

GPX4 levels, are observed in the myocardium after MIRI (Tang
et al., 2021a). The inhibition of the GSH-generation pathway, either
iron chelation or glutaminolysis, could alleviate IRI by blocking
ferroptosis (Gao et al., 2015). A specific ferroptosis inhibitor suitable
for animal models, i.e., liproxstatin 1, can protect the mouse
myocardium against IRI by decreasing voltage-dependent anion-
selective channel protein 1 levels and upregulating GPX4 levels
(Feng et al., 2019). The expression of USP22, SIRT1, and SLC7A11 is
inhibited after IRI injury, whereas p53 is highly expressed in the
myocardial tissues. Conversely, the overexpression of USP22, SIRT1,
or SLC7A11 reduces the degree of IRI injury by inhibiting
ferroptosis and improves the viability of cardiomyocytes (Ma
et al., 2020).

Ferroptosis in diabetic cardiomyopathy

DCM, a specific form of cardiomyopathy independent of
hypertension and coronary artery disease (Tan et al., 2020), is
caused by diabetes mellitus (DM)-associated dysregulated
glucose and lipid metabolism (Tan et al., 2020). DM increases
oxidative stress and activates multiple inflammatory pathways,
leading to cellular injury, cardiac remodeling, and systolic and
diastolic dysfunction (Tan et al., 2020; Khan et al., 2021). The
eventual outcome is cardiomyocyte cell death. The clinical
features and pathogenesis of DCM have been well-
characterized in the past 4 decades; however, its effective
therapeutic regimen is still limited, thus suggesting the need
to explore novel mechanisms underlying DCM development.
Ferroptosis may be associated with the pathological
progression of DCM (Chen et al., 2020; Wei LY. et al., 2022;
Wei Z. et al., 2022). Ferroptosis plays a role in DM (Behring et al.,
2014; Bruni et al., 2018; Lutchmansingh et al., 2018; Shu et al.,
2019; Krümmel et al., 2021) (Figure 1). A novel study reported on
the role of ferroptosis in the heart of diabetic mice in 2022, thus
demonstrating that Nrf2 activation attenuates ferroptosis by
upregulating SLC7A11 and ferritin levels (Wang D. et al.,
2022). GPX4 can inhibit DCM in GPX4 transgenic mouse
models (Baseler et al., 2013).

The ablation of cluster of differentiation 74 (CD74; a receptor for
the regulatory cytokine macrophage migration inhibitory factor)
prevents DM-evoked and oxidative stress. Ferroptosis inhibitors
preserve the cardiomyocyte function and inhibit LPO induced by the
high glucose/high fat (HGHF) challenge in vitro. Recombinant MIF
mimics HGHF-induced LPO and depletes GSH and ferroptosis.
Conversely, MIF inhibitors reverse these effects mediated by
recombinant MIF. Taken together, CD74 ablation rescues DCM
by inhibiting ferroptosis, thus indicating CD74 as a promoter of
ferroptosis (Chen H. et al., 2022). FUN14 domain-containing 1
(FUNDC1) insufficiency sensitizes DCM through ACSL4-mediated
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ferroptosis, thus indicating FUNDC1 as an inhibitor of ferroptosis
(Pei et al., 2021). Further, long non-coding RNAs (LncRNAs)
regulate ferroptosis in DCM. The lncRNA-zinc finger antisense
1 works as a competing endogenous RNA that sponges miR-150-
5p and downregulates cyclin D2 (CCND2), promoting ferroptosis
and DCM development (Ni J. et al., 2021). In summary, ferroptosis
plays a significant role in the development of DCM. However, the
molecular mechanism warrants further investigation.

Ferroptosis in DOX-induced
cardiomyopathy

Anthracyclines are the most widely used anticancer
chemotherapeutic agents. However, doxorubicin (DOX) causes
cardiotoxicity, resulting in DICM, thereby limiting its clinical
efficacy (Herrmann, 2020; Fang et al., 2023). Ferroptosis plays an
essential role in the pathogenesis of DICM (Fang et al., 2023)
(Figure 1). Wang et al. have demonstrated that DOX induces
heart injury and increases cardiac iron levels, lipid-derived ROS,
and the biomarkers of ferroptosis (Fang et al., 2019). They
presented novel evidence that the contributions of ferroptosis
to DICM in DOX-treated mice and its subsequent inhibition
exert cardioprotection (Fang et al., 2019). Their findings were
corroborated by other studies which revealed that ferroptosis is a
crucial mechanism in DICM and that acyl-CoA thioesterase 1
(ACOT1) plays a critical role during the process. Thus, they
demonstrated ACOT1 as a ferroptosis inhibitor and that
targeting the inhibition of ferroptosis is a strategy for DICM
treatment (Liu et al., 2020). Tadokoro and colleagues have
revealed that DOX inhibits GPX4 and induces LPO, thus
leading to mitochondria-dependent ferroptosis in a DICM
mouse model (Tadokoro et al., 2020). Further, the ferroptosis
inhibitor ferrostatin-1 (Fer-1) can protect cardiomyocytes
against DOX-induced cell injury (Tadokoro et al., 2020).
Zhang et al. (2021) have indicated that DOX upregulates high
mobility group box 1 expression, which promotes ferroptosis-
associated cardiotoxicity in DOX-treated rats. Fer-1 or DXZ
reverse DOX-induced ferroptosis and DICM. In summary,
ferroptosis inhibition is a therapeutic target for DICM.

Ferroptosis in septic cardiomyopathy

Sepsis is a life-threatening organ dysfunction resulting from
dysregulated immune response to an infection. Seventy percent
of patients with sepsis develop septic cardiomyopathy (SCM),
which is the leading cause of sepsis-related morbidity and
mortality (Nabzdyk et al., 2019; Hollenberg and Singer, 2021).
Ferroptosis is involved in SCM (Figure 1). GSH depletion and the
downregulation of GPX4 expression, as well as increased iron
content and LPO levels, exist in cecal ligation and puncture-
induced sepsis animal model, implying the involvement of
ferroptosis in the pathogenesis of SCM (Wang et al., 2020).
Dexmedetomidine exerts cardioprotective effects through
ferroptosis inhibition by decreasing iron accumulation,
downregulating the protein levels of HO-1, and inducing
GPX4 (Wang et al., 2020). The ferroptosis inhibitors

deferoxamine and Fer-1 can improve cardiac function and
decrease mortality in septic mice by decreasing the levels of
ferroptosis in cardiomyocytes (Li et al., 2020). These results
support the hypothesis that ferroptosis is involved in the
pathogenesis of sepsis-induced myocardial injury.
Ferritinophagy-mediated ferroptosis plays a pathogenic role in
sepsis-induced myocardial injury (Li et al., 2020). Li et al. (2020)
have demonstrated that ferroptosis plays a crucial role in sepsis-
induced cardiomyopathy in sepsis-related models, including a
lipopolysaccharide (LPS)-induced model of septic
cardiomyopathy (Li et al., 2020).

Specific regulators play a role in modulating ferroptosis and
SCM. The transmembrane protein 43 (TMEM43), a transmembrane
protein related to cardiomyopathy, protects against SCM by
inhibiting ferroptosis in LPS-induced mice (Chen L. et al., 2022).
The knockdown of TMEM43 in the heart aggravates LPS-induced
cardiomyopathy, accompanied by an increased cardiac ferroptosis.
TMEM43 overexpression decreases LPS-induced ferroptosis and
cardiac injury by inhibiting LPO. TMEM43 silencing promotes
ferroptosis and cell injury in LPS-induced rat
H9c2 cardiomyocytes. TMEM43 downregulates the expression of
P53 and ferritin but upregulates the levels of GPX4 and SLC7A11,
thereby inhibiting LPS-induced ferroptosis. Fer-1 can ameliorate
TMEM43 knockdown-induced deteriorating effects in LPS-induced
cardiac injury. Taken together, TMEM43 protects against SCM by
inhibiting ferroptosis (Chen Z. et al., 2022). The islet cell autoantigen
69, which can regulate inflammation and immune response, induces
ferroptosis to cause septic cardiac dysfunction through the
stimulator of interferon gene trafficking (Kong et al., 2022). The
neutrophil-derived lipocalin-2 induces ferroptosis by increasing the
labile iron pool in the cardiomyocytes of LPS-induced mouse SCM
model (Huang Q. et al., 2022).

Pharmacological inhibition of
ferroptosis for treating cardiomyopathy

Ferroptosis was first described in 2012; the studies on its role in
cardiomyopathy are still in their infancy. However, existing evidence
suggests a strong correlation between ferroptosis and
cardiomyopathy. Thus, the inhibition of ferroptosis may be a
promising target for treating cardiomyopathy. Ferroptosis
reportedly plays a pathogenic role in cardiomyopathy; thus,
scientists have begun identifying a targeted antiferroptosis
approach for cardiomyopathy treatment. Numerous drugs have
been recognized to exert a therapeutic impact on cardiomyopathy
treatment by inhibiting ferroptosis. Several experimental
compounds and clinical drugs inhibit ferroptosis to achieve
therapeutic purposes in cardiomyopathies. The pharmacological
inhibition of ferroptosis is becoming a cardioprotective strategy
for cardiomyopathy prevention in vitro or in vivo. We try to sort
these ferroptosis-inhibiting small molecules by mode of action.
These categories maybe include activator of system Xc−,
ferroptosis-inhibiting Nrf2 activators, GPX4 activator (direct or
indirect), ferroptosis inhibitors through combined mechanisms,
or ferroptosis inhibitors through unknown mechanisms.
However, it is hard to clearly classify the ferroptosis-inhibiting
small molecules into a specific categories.
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TABLE 1 Emerging compounds targeting key regulators of ferroptosis to inhibit ischemic cardiomyopathy.

Compounds Type Experimental
model

Findings Mode of
action

References

Icariin (1) Flavonoid HR/H9c2 cells ↑Cell viability; ↓oxidative stress; ↓lactate dehydrogenase
content; ↓Fe2+; ↓ACSL4; ↑ GPX4; ↑Nrf2 and HO-1

Nrf2/GPX4 Liu et al. (2021a)

Xanthohumol (2) Chalcone IRI/SD rats ↓Myocardial infarct size; ↓Ptgs2 and Acsl4; ↑NRF2; ↑GPX4;
↓ACSL4

Nrf2/GPX4 Lin et al. (2022)

Xanthohumol (2) Chalcone HR/H9c2 cells ↑Cell viability; ↓lipid peroxidation and ROS; ↓Fe2+;↑NRF2;
↑GPX4

Nrf2/GPX4 Lin et al. (2022)

Britanin (3) Sesquiterpene
lactone

IRI/SD rats ↓Infarct area; ↓myocardial apoptosis; ↓CK; ↓LDH;
↓ferroptosis; ↑AMPK/GSK3β/Nrf2

Nrf2/GPX4 Lu et al. (2022)

Britanin (3) Sesquiterpene
lactone

HR/H9c2 cells ↑Cell viability; ↓LDH; ↑GPX4; ↑GSH; ↓ROS; ↓Fe2+; ↓MDA Nrf2/GPX4 Lu et al. (2022)

Etomidate (4) Anesthetic agent IRI/SD rats ↓Cardiac dysfunction; ↓myocardium damage; ↓CK and
LDH; ↓collagen II and α-smooth muscle actin;
↓inflammatory factors (IL-6, IL-1β, and TNF-α); ↑SOD
content; ↑GSH; ↑GPX4; ↓MDA; ↓Fe2+; ↓ACSL4; ↑Nrf2 and
HO-1

Nrf2/GPX4 Lv et al. (2021)

GAA (5) Polyphenol MIRI/rat ↓Infarct size; ↓HNE; ↓PTGS2; ↓ACSL4; ↓Nrf2; ↑GPX4 Nrf2/GPX4 Lin et al. (2021)

Dexmedetomidine (6) Sedative agent IRI/rats ↓Myocardial infarction; ↑heart function; ↓Fe2+ and LPO in
cardiomyocytes; ↑Nrf2, SLC7A11, and GPX4

Nrf2/xCT/
GPX4

Wang et al.
(2022a)

Dexmedetomidine (6) Sedative agent HR/H9c2 cells ↑Cell viability; ↓Fe2+ and lipid peroxidation; ↑levels of GSH
and SOD activity; ↑AMPK/GSK-3β/Nrf2

Nrf2/xCT/
GPX4

Wang et al.
(2022b)

Dexmedetomidine (6) Sedative agent IRI/rats ↓Myocardial injury; ↓mitochondrial dysfunction; ↓ROS;
↓mitochondrial dysfunction; ↑SLC7A11; ↑GPX4; ↓FTH;
↓COX-2

Nrf2/xCT/
GPX4

Yu et al. (2022a)

Sulforaphane (7) Dietary
phytochemicals

Rat/HFD/STZ ↓Myocardial infarct size; ↓CK-MB and LDH; ↓protein levels
of ACSL4; ↑Nrf2 and FPN1; ↑GPX4

Nrf2/xCT/
GPX4

Tian et al.
(2021a)

Sulforaphane (7) Dietary
phytochemicals

H9C2/high glucose ↑Cell viability; ↓protein levels of ACSL4; ↑Nrf2 and FPN1;
↑GPX4

Nrf2/xCT/
GPX4

Tian et al.
(2021b)

Naringenin (8) Natural flavonoid MIRI/SD rat ↓Pathological damage; ↓ inflammation and LPO; ↓LDH and
CPK; ↑Nrf2; ↑SLC7A11; ↑GPX4; ↑FTH1; ↑FPN1; ↓ NOX1

Nrf2/xCT/
GPX4/Fe2+

Xu et al. (2021)

Naringenin (8) Natural flavonoid OGD/R/H9c2 cells ↓MDA and LPO; ↓Fe2+;↑GSH and SOD; ↑Nrf2; ↑SLC7A11;
↑GPX4; ↑FTH1; ↑FPN1; ↓ NOX1

Nrf2/xCT/
GPX4/Fe2+

Xu et al. (2021)

C3G (9) Anthocyanin MIRI/rat ↓Infarction area; ↓pathological alterations; ↓ST segment
elevation; ↓ferroptosis related protein expression; ↓oxidative
stress; ↓USP19; ↓Beclin1; ↓NCOA4; ↓ LC3II/LC3I

GPX4/Fe2+ Shan et al.
(2021a)

C3G (9) Anthocyanin OGD/R/H9c2 cell ↓Oxidative stress; ↓LC3II/LC3I; ↓ autophagosome number;
↓ TfR1; ↑FTH1 and GPX4

GPX4/Fe2+ Shan et al.
(2021b)

Resveratrol (10) Natural polyphenol MIRI/rat ↓Oxidative stress; ↓Fe2+ content; ↑GPX4 and FTH1;
↑USP19-Beclin1 autophagy

GPX4/Fe2+ Li et al. (2022a)

Resveratrol (10) Natural polyphenol OGD/R/H9c2 cells ↓Oxidative stress; ↓Fe2+ content; ↑GPX4 and FTH1;
↑USP19-Beclin1 autophagy

GPX4/Fe2+ Li et al. (2022b)

5-aza-CdR (11) DNMT-1 inhibitor MIRI/rat ↓Oxidative stress; ↓Fe2+ content; ↑GPX4 and FTH1;
↓NCOA4 and DNMT-1; ↑Beclin1

GPX4/Fe2+ Li et al. (2021a)

5-aza-CdR (11) DNMT-1 inhibitor OGD/R/H9c2 cells ↓Oxidative stress; ↓Fe2+ content; ↑GPX4 and FTH1;
↓NCOA4 and DNMT-1; ↑Beclin1

GPX4/Fe2+ Li et al. (2021b)

Ferulic acid (12) Natural phenolic
antioxidant

MIRI/SD rat ↓Infarct size; ↓ST segment; ↓CK; ↓LDH; ↓NT-proBNP
content; ↓Ptgs2 mRNA; ↓Fe2+; ↑GSH/GSSG; ↑SOD, CAT
and GSH-Px; ↓MDA; ↓ROS; ↑generation of ATP;
↑AMPKα2 and GPX4

GPX4/Fe2+ Liu et al. (2021b)

PDA NPs (13) Polydopamine MIRI/mice ↓Infarct size; ↑cardiac functions; ↓MDA; ↓Fe2+ deposition;
↓LPO; ↑GPX4

GPX4 Zhang et al.
(2021b)

(Continued on following page)
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Inhibiting ferroptosis to treat ICM

Icariin (1) (Liu X. et al., 2021), xanthohumol (2) (Lin et al.,
2022), britanin (3) (Lu et al., 2022), etomidate (4) (Lv et al.,
2021),GAA(5) (Lin et al., 2021),dexmedetomidine (6) (Wang H.
et al., 2022), sulforaphane (7) (Tian Y. et al., 2021), naringenin (8)
(Xu et al., 2021), C3G (9) (Shan X. et al., 2021), resveratrol (10) (Xu
et al., 2019; Li D. et al., 2022),5-aza-CdR (11) (Li W. et al., 2021),
ferulic acid (12) (Liu XJ. et al., 2021), PDANPs (13) (Zhang H. et al.,
2021), atorvastatin (14) (Peng et al., 2022), baicalin (15) (Fan et al.,
2021), and ponatinib + deferoxamine(16) (Tu et al., 2021) alleviate
ICM through inhibiting ferroptosis (Table 1).

Activators of System Xc-

Icariin (1), a natural flavonoid compound, is the main
component of the Chinese herb Epimedium (also called
YinYangHuo in Traditional Chinese Medicine) that has the
functions of anti-aging, anti-inflammation, antioxidation, anti-
osteoporosis, and ameliorating fibrosis (Su et al., 2023).1 is a
potent inducer of Nrf2 (Moratilla-Rivera et al., 2023). 1 inhibit
hypoxia/reoxygenation (H/R)-induced ferroptosis by increasing
GPX4 and decreasing ACSL4 and content of Fe2+ in
cardiomyocytes through activating the Nrf2/HO-1 signaling
pathway (Liu X. et al., 2021). Owing to outstanding medicinal
properties in preventing and curing many common health issues,
1 and its derivates, icariside II (ICS) and icaritin (ICT) have
garnered great interest in drug development. 1 possesses a variety
of beneficial effects in regulating cardiovascular inflammation

and other biological activities. In China, YinYangHuo and its
compound have been used in the treatment of numerous diseases,
like AD, stroke, and depression. ICA and its metabolites, which
contain flavonoids, polysaccharides, vitamin C, and other active
compounds, have been proven to have cardio-cerebrovascular
protective benefits (Wang et al., 2023). 1 can works as a prodrug
was subjected to preclinical studies. We must realize that the oral
bioavailability rate is only 12.02% for 1. Studies have shown the
addition of cyclodextrins (CDs) to ICA can result in a vast
increase in its water solubility, consequently achieving
considerably better bioavailability (Cui et al., 2013; Jin et al.,
2013). The degradation of ICA into ICS in vivo promotes ICA
absorption (Cheng et al., 2015).

Xanthohumol (2) is a principal prenylated chalcone isolated
from hops with its anti-inflammatory, anti-oxidative, and cancer-
preventive properties (Zhou et al., 2021; Neumann et al., 2022;
Vicente de Andrade Silva et al., 2023).2 protect cardiomyocytes
against Fe-SP- and RSL3-induced ferroptosis by decreasing the
production of lipid peroxidation and ROS, chelating iron,
increasing the Nrf2 and GPX4 protein, while decreasing the
mRNA levels of Ptgs2 and Acsl4, and the protein levels of
ACSL4 (Lin et al., 2022). The poor solubility and stability
severely limit 2 utilization (Luo et al., 2023). Britanin (3) is a
potent inducer of Nrf2(Wu et al., 2017). 3 exert cardioprotective
effect against IR-mediated damage through inhibiting ferroptosis
by activation of the AMPK/GSK3β/Nrf2 signalling thereby
upregulating GPX4 (Lu et al., 2022). Etomidate (4) is an
ultrashort-acting, non-barbiturate hypnotic intravenous

TABLE 1 (Continued) Emerging compounds targeting key regulators of ferroptosis to inhibit ischemic cardiomyopathy.

Compounds Type Experimental
model

Findings Mode of
action

References

Atorvastatin (14) Statins IRI/SD rats ↓Ferroptosis in I/R rat myocardium through the SMAD7/
hepcidin pathway

Fe2+ Peng et al.
(2022)

Atorvastatin (14) Statins HR/H9c2 cells ↑Cell viability; ↓mitochondrial shrinkage; ↓ROS; ↓Fe2+;
↓FPN1; ↑SMAD7; ↓hepcidin

Fe2+ Peng et al.
(2022)

Ponatinib +
deferoxamine(15)

Iron ion chelator IRI/SD rats ↓Myocardial infarct size; ↓CK; ↓ferroptosis - Tu et al. (2021)

Ponatinib +
deferoxamine(15)

Iron ion chelator HR/H9c2 cells ↓H/R injury (↓LDH release and necrosis percent);
↓ferroptosis

- Tu et al. (2021)

Baicalin (16) Natural flavonoid MIRI/rat ↓ST segment elevation; ↓coronary flow (CF); ↓left
ventricular systolic pressure; ↓ infarct area; ↓ pathological
changes; ↓ lipid peroxidation; ↓ iron accumulation

LPO/Fe2+ Fan et al. (2021)

Baicalin(16) Natural flavonoid OGD/R/H9c2 cells ↓ Cell viability loss; ↓ lipid peroxidation; ↓ iron
accumulation

LPO/Fe2+ Fan et al. (2021)

PDA NPs (13) Polydopamine OGD/R/H9c2 cells ↑Cells viability; ↓Fe2+ content; ↑mitochondrial functions Fe2+ Zhang et al.
(2021a)

GAA (5) Polyphenol Ferroptosis inducer/
NRCM

↑Cells viability; ↓LPO LPO Lin et al. (2021)

GAA (5) Polyphenol Ferroptosis inducer/
H9c2 cells

↑Cells viability; ↓Fe2+ content; ↓MDA; ↓ ROS; ↑PTGS2 Fe2+ Lin et al. (2021)

GAA (5) Polyphenol OGD/R//NRCM ↑Cells viability; ↓LPO LPO Lin et al. (2021)

ACSL4, acyl-CoA, synthetase long-chain family member 4;AMPK, adenosine monophosphate activated protein kinase; C3G, Cyanidin-3-Glucoside; CK, creatine kinase; DNMT-1, DNA

(cytosine-5)-methyltransferase 1; FTH1, ferritin heavy chain 1; GAA, gossypol acetic acid; GPX4, glutathione peroxidase 4; GSK3β, glycogen synthase kinase 3β; HR, Hypoxia/reoxygenation;

H2S, hydrogen sulfide; HR, Hypoxia/reoxygenation; LDH, lactate dehydrogenase; LPO, lipid peroxidation; NCOA4, nuclear receptor coactivator 4; NRCM, neonatal rat cardiomyocytes; Nrf2,

nuclear factor erythroid 2-related factor 2; TfR1, transferrin receptor protein 1.
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anesthetic agent. 4mitigated IR-induced ICM through inhibiting
ferroptosis by upregulating GPX4 expression, and decreasing the
levels of MDA and iron and ACSL4. Nrf2 inhibitors
ML385 eliminated the inhibition of 4 on ferroptosis induced
by IR, suggesting that 4 attenuated the myocardial injury by
inhibiting IR-induced ferroptosis via Nrf2(Lv et al., 2021).
Gossypol Acetic Acid (GAA, 5), a natural product taken from
the seeds of cotton plants, attenuates ICM through inhibiting
ferroptosis by chelating iron content, and downregulating mRNA
levels of Ptgs2 in RSL3, and Fe-SP-induced H9c2, inhibiting LPO
in oxygen-glucose deprivation/reperfusion (OGD/R)-induced
H9c2.5 attenuates IR-induced ICM through inhibiting
ferroptosis by decreasing the production of LPO, increasing
the Nrf2 and GPX4 protein, while decreasing the mRNA levels
of Ptgs2 and Acsl4, and the protein levels of ACSL4 (Lin et al.,
2021). Dexmedetomidine (6), a highly selective alpha2-
adrenoceptor agonist with sedative, analgesic, sympatholytic,
and hemodynamic-stabilizing properties, posess the protective
effect against I/R (Xiao Z. et al., 2021; Chen Y. et al., 2021; Deng
et al., 2022; Yang et al., 2022; Hu et al., 2023) and H/R (Wu W.
et al., 2022; Wang L. et al., 2022) induced cardiomyocyte injury. 6
attenuates ICM through inhibiting ferroptosis by activating
AMPK/GSK-3β-dependant Nrf2/SLC7A11/GPX4 (Wang et al.,
2022d).

Sulforaphane (7) is a naturally occurring dietary
phytochemical extracted from cruciferous vegetables (Zheng
et al., 2022).7 is a potent Nrf2 activators and inhibit
cardiomyopathy (Xin et al., 2018; Su et al., 2021; Wang et al.,
2022e). 7 is an important member of the isothiocyanates, and is
abundant in cruciferous plants with excellent anti-cancer effects
(Wei LY. et al., 2022).7 attenuates ICM in diabetic rats through
inhibiting ferroptosis by activation of Nrf2/FPN1 pathway (Tian
H. et al., 2021). As a well known activator of Nrf2, 7 can
upregulate multiple antioxidants and protect against various
oxidative damages. 7 prevents rat cardiomyocytes from H/R
injury in vitro via activating SIRT1 and subsequently
inhibiting ER stress (Li et al., 2016). 7 protects from
myocardial ischemia-reperfusion damage through activating
Nrf2 (Silva-Palacios et al., 2019).7 inhibit intermittent
hypoxia-induced cardiomyopathy in mice through activating
Nrf2 (Zhou et al., 2018). Several clinical studies with 7 for the
(supportive) treatment of non-alcoholic fatty liver disease
(NCT04364360), chronic kidney disease (NCT05153174,
NCT04608903) and anthracycline related cardiotoxicity in
breast cancer (NCT03934905) are ongoing. A multi-center,
randomized, placebo-controlled clinical trial is needed to be
conducted to investigate 7 in adult patients with ICM.

The dietary natural polyphenolic flavonoid compounds are
found in various citrus fruits, bergamots, tomatoes, and other
fruits, naringenin (8) ameliorates myocardial injury and cardiac
dysfunction (Yu et al., 2019; Ye et al., 2020; He et al., 2022; Sutanto
et al., 2022). 8 alleviates ICM by regulating the Nrf2/SLC7A11/
GPX4 axis to inhibit ferroptosis (Xu et al., 2021). C3G (9) (a natural
anthocyanins) (Shan X. et al., 2021), resveratrol (10) (Xu et al., 2019;
Li T. et al., 2022), 5-aza-CdR (11) (Li Y. et al., 2021), ferulic acid (12)
(Liu XJ. et al., 2021), and polydopamine nanoparticles (PDA NPs,
13) (Zhang H. et al., 2021) alleviate ICM through inhibiting
ferroptosis by upregulating GPX4.

Ferroptosis-related compounds targeting iron
13 (Zhang et al., 2021b),atorvastatin (14) (Peng et al.,

2022),ponatinib/deferoxamine (15) [76], and baicalin (16) (Fan
et al., 2021) are classified into this groups (Table 1).13 functions
as a new type of ferroptosis inhibitor through inhibiting Fe2+

accumulation and restoring mitochondrial functions in
H9c2 cells and reduced Fe2+ deposition and lipid peroxidation in
a myocardial I/R injury mouse model (Zhang H. et al., 2021).
Atorvastatin (14) is a potent, orally available inhibitor of hepatic
3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase,
the major rate-limiting enzyme in cholesterol synthesis.14
reversed erastin or H/R-induced cell injury in H9C2 cells
through inhibiting ferroptosis by decreasing Fe2+ via upregulating
expression of FPN1(Peng et al., 2022). 14 increased the expression of
the SMAD7 and decreased the expression of the hepcidin in
H/R-induced H9C2 cells (Peng et al., 2022).14 protects
myocardium against ischemia-reperfusion injury through various
mechanisms (Zuo et al., 2016; Chen et al., 2017; Yang et al., 2018;
Cao et al., 2019). Two clinical studies with 14 for the treatment of
dilated cardiomyopathy (www.clinicaltrials.gov,NCT01015144) and
hypertrophic cardiomyopathy (www.clinicaltrials.
gov,NCT00317967) were completed ongoing. However, there is
no clinical trials to study the effect of 14 on ICM, remaining an
open conundrum for future investigate on.15, an iron chelators can
block ferroptosis. The combination of ponatinib with 15 exerted
synergistic effect on reducing H/R injury, showing simultaneous
suppression of ferroptosis[76].

Inhibiting ferroptosis to treat DCM

6- Gingerol (17) (Wu X. et al., 2022), curcumin (18) (Wei
J. et al., 2022), canagliflozin (19) (Du et al., 2022), L6H21 (20)
(Sumneang et al., 2022), sulforaphane (7) (Wang Z. et al., 2022), and
SR9009 (21) (Huang Q. et al., 2022) attenuate DCM through
inhibiting ferroptosis (Table 2). The major active components of
ginger 17 have protect cardioprotective effect (Zhang et al., 2019; Ma
et al., 2021; Han et al., 2022a; Han et al., 2022b). 17 alleviates DCM
through inhibiting ferroptosis by decreaseing the expression of
FACL4 and the content of iron and enhancing the expression of
Nrf2/GPX4 (Wu X. et al., 2022). 18, a natural polyphenol
phytochemical derived from turmeric with antioxidant, anti-
inflammatory, and anticancer properties, activates Nrf2/HO-
1 signaling to relieve diabetic cardiomyopathy injury (Ren et al.,
2020; Wu et al., 2020; Wei et al., 2021; Wu S. et al., 2022).18
alleviates DCM through inhibiting ferroptosis by activating Nrf2,
leading to upregulating GPX4, highlighting a potentially new
therapeutic route for investigation for the treatment DCM(Wei
J. et al., 2022). 19 is an anti-diabetes drug belongs to sodium-
glucose cotransporter 2 inhibitor with extra cardiovascular benefits
(Zhang et al., 2023). 19 alleviates DCM through inhibiting
ferroptosis by activating system Xc−/GSH/GPX4 axis and
regulating iron homeostasis (Du et al., 2022). Myeloid
differentiation factor 2 (MD2) inhibitor L6H21 (20) alleviates
DCM through inhibiting ferroptosis in prediabetic rats
(Sumneang et al., 2022). As a Rev-erbs agonist SR9009 (21)
alleviates DCM through inhibiting ferroptosis through by down-
regulating ferritinophagy (Huang Y. et al., 2022). Sulforaphane (7)
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also works as an activators of System Xc− to alleviates DCM(Wang
D. et al., 2022).

Inhibiting ferroptosis to treat DICM

Compounds that alleviate DICM through inhibiting ferroptosis
include huaier polysaccharide (22) (Ma X. et al., 2022), LCZ696 (23)
(Liu X. et al., 2022), fisetin (24) (Li D. et al., 2021), salidroside (25)
(Chen H. et al., 2022), resveratrol (10) (Yu P. et al., 2022),
dexazoxane (26) (Zhang H. et al., 2021), melatonin(27) (Sun
et al., 2022), EGCG(28) (He et al., 2021), 16d and 16e (29) (Xu
et al., 2022), ethoxyquin (30) (Tadokoro et al., 2022), and 7j (31)
(You et al., 2022) inhibit DICM through inhibiting ferroptosis
(Table 3). 22 is a naturally occurring bioactive macromolecule,
found in Huaier fungus and has been shown to exert antitumor
and antimetastasis activity (Tian Y. et al., 2021; Gou et al., 2022).22
attenuates DICM through inhibiting ferroptosis by upregulating
GPX4, suggesting its a direct activators of GPX4 (Ma X. H. et al.,
2022). 23 is a first-in-class angiotensin receptor neprilysin inhibitor
that can attenuate DICM through inhibiting ferroptosis (Liu H.
et al., 2022). 23 significantly attenuated DICM by decreasing lipid

ROS and MDA and increasing GPX4 and GSH. 23 activate AKT
leading to increase SIRT3 expression and deacetylated SOD2.
SIRT3 knockdown and AKT inhibition reversed the protective
effect of 23 in H9c2 cells, suggesting that 23 prevents DICM by
inhibiting ferroptosis via AKT/SIRT3/SOD2 signaling pathway (Liu
M. Z. et al., 2022). Fisetin (24), a naturally occurring polyphenol that
is frequently present in a variety of fruits and vegetables, exert
cardioprotective effect against cardiomyopathy (Althunibat et al.,
2019; ALTamimi et al., 2021).24 attenuates DICM through
inhibiting ferroptosis in vivo and in vitro by activating SIRT1/
Nrf2 signaling pathway (Li J. Y. et al., 2021). 24 increases
GPX4 and GSH, thereby reducing the MDA and lipid ROS
levels. Moreover, 24 exerted its protective effect by increasing the
SIRT1 expression and the Nrf2 mRNA and protein levels and its
nuclear translocation, which resulted in the activation of its
downstream genes such as HO-1 and FTH1. Selective inhibition
of SIRT1 reversed the protective effects of 24 in the H9c2 cells,
suggesting 24 exerts its therapeutic effects againstDICM by
inhibiting ferroptosis via SIRT1/Nrf2 signaling pathway
activation (Li W. et al., 2021). Salidroside (25), a glucoside of the
phenylpropanoid tyrosol isolated from Rhodiola rosea L, is a natural
bioactive compound with anti-oxidative, anti-inflammatory, and

TABLE 2 Emerging compounds targeting key regulators of ferroptosis to inhibit diabetic cardiomyopathy.

Compounds Type Experimental
model

Effects Mode of
action

References

6-Gingerol (17) Natural Antioxidant C57BL/6J mice/
HFD/STZ

↓Cardiac injury; ↓cardiomyocyte hypertrophy and
interstitial fibrosis; ↑heart function; ↓FACL4; ↓Fe2+;
↑GPX4; ↓IL-1β, IL-6, and TNF-α; ↑Nrf2 pathway;
↑SOD; ↓MDA

Nrf2/GPX4 Wu et al. (2022a)

6-Gingerol (17) Natural Antioxidant Rat H9C2/high glucose ↓Cardiac injury; ↓FACL4; ↓Fe2+;↑GPX4; ↓IL-1β, IL-6,
and TNF-α; ↑Nrf2; ↑SOD; ↓MDA

Nrf2/GPX4 Wu et al. (2022b)

Curcumin (18) Natural polyphenol Rabbits/Streptozotocin ↓Fibrosis and collagen expression; ↓ACSL4 and COX2;
↑Nrf2,GPX4

Nrf2/GPX4 Wei et al. (2022a)

Curcumin (18) Natural polyphenol Rat H9C2/high glucose ↑Nrf2,GPX4; ↓ROS Nrf2/GPX4 Wei et al. (2022b)

Sulforaphane (7) Dietary
phytochemicals

C57BL/6J mice/
HFD/STZ

↑ Activation of AMPK/Nrf2; ↑ferritin; ↑SLC7A11; ↑
GSH and GSH/GSSG; ↓Fe2+; ↓COX2; ↓MDA

Nrf2/
SLC7A11/Fe2+

Wang et al. (2022c)

Sulforaphane (7) Dietary
phytochemicals

ECTs/AGE ↑Cell viability; ↑Nrf2; ↓COX2; ↓MDA; ↑ferritin;
↑SLC7A11; ↑ GSH and GSH/GSSG; ↓Fe2+; ↑activation
of AMPK

Nrf2/
SLC7A11/Fe2+

Wang et al. (2022d)

Canagliflozin (19) Antidiabetic drug C57BL/6 mice/STZ ↓Damage of cardiac function; ↓LDH; ↓cTnI; ↓
myocardial fiber breakage, inflammation, collagen fiber
deposition and mitochondrial structural disorder;
↓PCO; ↓MDA; ↑SOD; ↑CAT; ↑GSH; ↓deposition of
total iron and Fe2+; ↓FTH; ↑SLC7A11

Nrf2/xCT/Fe2+ Du et al. (2022)

Canagliflozin (19) Antidiabetic drug Rat H9C2/high glucose ↓ROS; ↓Lipid-ROS; ↑MM; ↓PCO; ↓MDA; ↑SOD;
↑CAT; ↑GSH; ↓deposition of total iron and Fe2+; ↓FTH;
↑SLC7A11

Nrf2/xCT/Fe2+ Du et al. (2022)

L6H21 (20) MD2 inhibitor C57BL/6 mice/HFD ↓Insulin resistance; ↓cardiac autonomic imbalance and
LV dysfunction; ↓cardiac mitochondrial dysfunction;
↓oxidative stress and inflammation; ↓cardiac apoptosis
and ferroptosis; ↓ACSL4; ↑GPX4

GPX4/ACSL4 Sumneang et al.
(2022)

SR9009 (21) Rev-erbs agonist Rat/HFD/STZ ↓Myocardial injury; ↓ferritinophagy/ferroptosis-related
proteins

- Huang et al. (2022b)

CAT, catalase; cTnI, cardiac troponin I; FTH, ferritin heavy chain;GSH, glutathione; GSSG, oxidized glutathione; HFD, high-fat diet; LC3Ⅱ, microtubule associated protein 3 Ⅱ; L6H21, myeloid

differentiation factor 2 (MD2) inhibitor; MDA,malondialdehyde;MMP, mitochondrial membrane potential; NCOA4, nuclear receptor coactivator 4; LDH, lactate dehydrogenase;PCO, protein

carbonyl; SLC7A11, solute carrier family 7 member 11; SOD, superoxide dismutase; STZ, streptozotocin.
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TABLE 3 Emerging compounds targeting ferroptosis to inhibit DOX-induced cardiomyopathy.

Compounds Type Experimental
model

Effects Mode of
action

Reference

Huaier
Polysaccharide (22)

Polysaccharide DOX/BALB/c mice ↓cTnI and lactate dehydrogenase; ↓myocardial fibrosis;
↑GPX4

GPX4 Ma et al. (2022a)

LCZ696 (23) Angiotensin receptor
neprilysin inhibitor

DOX/H9c2 cell ↓lipid reactive oxygen species; ↓malondialdehyde; ↑GPX4;
↑GSH in cells and heart tissues; ↑SIRT3 expression and
deacetylated its target gene SOD2

GPX4 Liu et al. (2022a)

LCZ696 (23) Angiotensin receptor
neprilysin inhibitor

DOX/rat ↑Remodeled myocardial structures; ↑heart ventricular
function; ↑GPX4; ↑ GSH in cells and heart tissues

GPX4 Liu et al.
(2022b)

Fisetin (24) Flavonol DOX/rat ↓Cardiac dysfunction; ↓cardiac hypertrophy; ↓myocardial
fibrosis; ↑GPX4; ↓MDA; ↓lipid ROS; ↑GSH; ↓Fe2+; ↑Nrf2;
↓Keap1; ↑HO-1; ↑FTH1; ↓FPN; ↑TfR1

Nrf2/
GPX4/Fe2+

Li et al. (2021c)

Fisetin (24) Flavonol DOX/H9c2 cell ↑GPX4 level; ↑SIRT1; ↑Nrf2 activation; ↑HO-1 and
FTH1; ↓Fe2+

Nrf2/
GPX4/Fe2+

Li et al. (2021d)

Salidroside (25) Glucoside DOX/Male C57/BL
mice

↓Cardiac dysfunction; ↓cell damage; ↓fibrosis; ↓Fe2+;
↑GPX4; ↓LPO (↓MDA+4-HNE); ↓ROS; ↑MMP;
↑mitochondrial biogenesis; ↑mitochondrial iron-sulfur
clusters; ↑mitochondrial OXPHOS complexes;
↑mitochondrial function; ↑AMPK

GPX4/
Fe2+/LPO

Chen et al.
(2022a)

Salidroside (25) Glucoside DOX/H9c2 cell ↓Fe2+;↑GPX4; ↓4-HNE; ↑AMPK GPX4/Fe2+ Chen et al.
(2022b)

Dexazoxane (26) Iron chelator DOX/Male Wistar
rats

↓Cardiac dysfunction; ↓PTGS2 mRNA and protein;
↓HMGB1

GPX4/Fe2+ Zhang et al.
(2021a)

Dexazoxane (26) Iron chelator DOX/H9c2 cell ↑Cell viability; ↑GPX4 and FTH1; ↓MDA; ↓LDH GPX4/Fe2+ Zhang et al.
(2021b)

Melatonin (27) Phytohormones DOX/H9c2 cell ↑Cell viability; ↓mitochondrial dysfunction; ↓ACSL4; ↑
GPX4; ↑GSH-PX; ↑ p-YAP; ↓YAP

GPX4/
ACSL4

Sun et al. (2022)

Melatonin (27) Phytohormones DOX/rat ↓Myocardial injury; ↓mitochondrial dysfunction;
↓cardiomyocyte size; ↓cardiac collagen fraction

GPX4/
ACSL4

Sun et al. (2022)

Melatonin (27) Phytohormones DOX/zebrafish ↓Pericardial edemar; ↑ heart rate↓ACSL4; ↑ GPX4 GPX4/
ACSL4

Sun et al. (2022)

EGCG (28) Polyphenol DOX/H9c2 cell ↑Cell viability; ↓LDH; ↓PTGS2; ↑GPX4; ↑AMPKα2 and
promoted TCA cycle activation; ↓MDA; ↓4-HNE; ↑GSH;
↑GSH/GSSG; ↓ROS; ↓iron accumulation; ↓oxidative stress;
↓ipid metabolism

GPX4/LPO He et al. (2021)

EGCG (28) Polyphenol DOX/C57BL/6 mice ↓CK-MB and LDH activity; ↑left ventricular function;
↓morphological myocardial changes; ↓PTGS2; ↑GPX4;
↑AMPKα2 and promoted TCA cycle activation

GPX4/LPO He et al. (2021)

Resveratrol (10) Natural polyphenol DOX/H9c2 cell ↑Cell viability; ↓iron accumulation; ↓LPO; ↓mitochondrial
ROS; ↑p62-Nrf2/HO-1

Nrf2/LPO Yu et al. (2022a)

Resveratrol (10) Natural polyphenol DOX/mice ↑ Left ventricular function; ↓myocardial fibrosis; ↑ p62-
Nrf2/HO-1; ↓ferroptosis

Nrf2 Yu et al. (2022b)

16d and 16e (29) Steviol derivatives DOX/zebrafish ↓Cardiac dysfunction; ↓ferroptosis; ↓GSH depletion; ↓iron
accumulation; ↓LPO; ↓ROS; ↑MMP

LPO Xu et al. (2022)

Ethoxyquin (30) Radical-Trapping
Antioxidant

DOX/Mice ↓Cardiac impairments; ↓serum LDH and CK; ↓MDA and
acrolein; ↓cardiac fibrosis; ↓ TUNEL-positive cells

LPO Tadokoro et al.
(2022)

Ethoxyquin (30) Radical-Trapping
Antioxidant

DOX/
Cardiomyocytes

↓Cell death; ↓ferroptosis; ↓MDA and mitochondrial lipid
peroxides

LPO Tadokoro et al.
(2022)

7j (31) Phenothiazine
derivatives

DOX/C57BJ/6 mice ↓Fibrosis; ↓serum ALT; ↓serum AST; ↓serum CK;
↓serum LDH

- You et al. (2022)

ALT, Alanine aminotransferase;AST, Aspartate aminotransferase;GSH, glutathione; GSSG, oxidized glutathione; Keap1, Kelch-like ECH-associated protein 1; MDA, malondialdehyde;

SLC7A11, solute carrier family 7 member 11; FTH, ferritin heavy chain; NCOA4, nuclear receptor coactivator 4; MMP, mitochondrial membrane potential; MDA, malondialdehyde; SOD,

superoxide dismutase; Nrf2, nuclear factor erythroid 2-related factor 2; ROS, reactive oxygen species.
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neuroprotective properties (Zhao et al., 2021; Jin et al., 2022). 25 has
cardiovascular benefits against cardiomyopathy (Ni T. et al., 2021; Li
Y. et al., 2021). 25 attenuates DICM through inhibiting ferroptosis in
vivo and in vitro by limiting iron accumulation, restoring GPX4, and
preventing LPO (Chen L. et al., 2022). AMPK inhibitor compound C
reversed protective function of 25 against DICM, suggesting that 25
markedly downregulated ferroptosis by activating AMPK-
dependent signaling pathways (Chen Z. et al., 2022).
Dexazoxane(26) (Zhang Y. et al., 2021), melatonin(27) (Sun
et al., 2022), and EGCG(28) (He et al., 2021) also works as a
GPX4 activators to attenuates DICM through inhibiting ferroptosis.

While compounds 16d and 16e (29) (Xu et al., 2022),
ethoxyquin (30) (Tadokoro et al., 2022), and resveratrol (10) (Yu
P. et al., 2022) functions as inhibitors of LPO to attenuates DICM
through inhibiting ferroptosis. 29 is two derivatives of steviol, an
ent-kaurene diterpenoid, possesses broad-spectrum bioactivity. 29
attenuates DICM in zebrafish cardiomyopathy model through
inhibiting ferroptosis via suppressing the GSH depletion, iron
accumulation, and LPO, decreasing ROS overproduction, and
restoring the mitochondrial membrane potential (Xu et al., 2022).
Ethoxyquin (6-ethoxy-1,2-dihydro-2,2,4-trimethylquinoline, 30 is a
competent radical-trapping antioxidant. 30 effectively prevented
GPX4-deficient ferroptosis in cultured cardiomyocytes,

accompanied by the suppression of MDA and mitochondrial
lipid peroxides (Tadokoro et al., 2022). 30 ameliorated DICM in
vivo through decreasing the levels of lipid peroxides such as MDA
and acrolein (Tadokoro et al., 2022). 10 works as a potent
p62 activator has potential as a therapeutic target in preventing
DICM via inhibiting ferroptosis (Yu W. et al., 2022). The 2-vinyl-
10H-phenothiazine derivatives 7j (31) is a new class of ferroptosis
inhibitors, maintaining high ferroptosis inhibitory activity (EC50 =
0.001 µM on the erastin-induced HT1080 cell ferroptosis model)
(You et al., 2022). 31 acted as a ROS scavenger displayed favorable
pharmacokinetic properties and exhibited no obvious toxicity in
vivo and vitro and could relieve DICM, providing a promising lead
compound for drug discovery targeting ferroptosis to treat
DICM(You et al., 2022).

Inhibiting ferroptosis to treat SCM

Compounds that alleviate SCM through inhibiting ferroptosis
include vitamin B6 (32) (Shan M. et al., 2021), ferrostatin-1 (33)
(Xiao Y. et al., 2021), puerarin (34) (Zhou et al., 2022), H2S (NaHS)
(35) (Cao et al., 2022), dexmedetomidine (6) (Wang et al., 2020),
resveratrol (10) (Wang H. et al., 2022; Zeng et al., 2023), and

TABLE 4 Emerging compounds targeting ferroptosis to inhibit sepsis-induced cardiomyopathy.

Compounds Type Experimental
model

Effects Mode of
action

Reference

Resveratrol (10) Natural
polyphenol

CLP/rats ↓Cardiac dysfunction; ↓myocardial damage; ↓impaired
mitochondria; ↓lipid peroxidation; ↑Sirt1/Nrf2

Nrf2 Zeng et al.
(2023)

Resveratrol (10) Natural
polyphenol

LPS/mice ↑Cardiac function; ↓cardiomyocyte injury Nrf2 Wang et al.
(2022f)

Vitamin B6 (32) Vitamin LPS/C57BL/6 mice ↓Myocardial injury; ↓oxidative stress; ↓lipid peroxidation; ↓MDA;
↑SOD; ↑GSH; ↑Nrf2

Nrf2 Shan et al.
(2021a)

Vitamin B6 (32) Vitamin LPS/rat
H9c2 cardiomyocytes

↓MDA; ↑SOD; ↓lipid peroxidation; ↓TFR; ↓ferritin; ↑FPN1;
↑Nrf2; ↑GPX4; ↑HO-1; ↑NQO1

Nrf2/
GPX4/Fe2+

Shan et al.
(2021b)

Dexmedetomidine
(6)

Sedative agent CLP/rats ↓Myocardial injury; ↓MDA; ↓8-hydroxy-2′-deoxyguanosine; ↓IL-
6 and monocyte chemoattractant protein-1; ↑GPX4, SOD and
GSH; ↓HO-1; ↓TfR; ↓cleaved caspase 3; ↓inducible nitric oxide
synthase; ↓ gasdermin D; ↓iron concentration

GPX4/
Fe2+/LPO

Wang et al.
(2020)

Ferrostatin-1 (33) Ferroptosis
antagonist

LPS/rat ↑Cardiac systolic function; ↓cardiac injury markers; ↓PTGS2;
↓iron deposition in the myocardium; ↑ferroportin (FPN,
SLC40A1); ↓FTL; ↓FTH1 expression; ↓lipid peroxidation; ↑GPX4;
↓TNF-α, IL-1β, and IL-6; ↓TLR4, phospho-NF-κB, and phospho-
IκBα

GPX4/Fe2+ Xiao et al.
(2021b)

Puerarin (34) Isoflavone LPS/SD rat ↓Myocardial injury; ↑GPX4 and ferritin; ↓ACSL4, TFR, and heart
iron content

GPX4/Fe2+/
ACSL4

Zhou et al.
(2022)

NaHS (35) H2S CLP/rats ↓Septic myocardial ferroptosis; ↑cardiac dysfunction; ↓myocardial
cell and tissue injury; ↓phosphorylation of BECN1; ↑expressions
of SLC7A11 and GPX4

SLC7A11/
GPX4

Cao et al.
(2022)

Resveratrol (10) Natural
polyphenol

LPS/ventricular tissues ↑Cardiomyocyte viability; ↑GSH; ↓ LDH secretion; ↓lipid ROS;
↓LPO; ↓iron accumulation

LPO/Fe2+ Wang et al.
(2022e)

NaHS (35) H2S LPS/rat
H9c2 cardiomyocytes

↑Cell viability; ↓ferroptosis; ↓Fe2+;↓oxidative stress Fe2+ Cao et al.
(2022)

CK-MB, Creatine Kinase MB; CLP, cecal ligation and puncture; FPN, ferroportin (SLC40A1); FTL, ferritin light chain;FTH, ferritin heavy chain; GSH, glutathione; GSSG, oxidized glutathione;

HO-1, heme oxygenase-1; IL-1β, interleukin-1; IκBα, inhibitor of kappa Bα; LDH, lactate dehydrogenase;LPO, lipid peroxidation; LPS, lipopolysaccharide; MDA, malondialdehyde; NCOA4,

nuclear receptor coactivator 4; NF-κB, nuclear factor kappa B; PTGS2,prostaglandin endoperoxide synthase 2; SLC7A11, solute carrier family 7 member 11; SOD, superoxide dismutase; TfR,

transferrin receptor; TLR4,toll-like receptor 4; TNF-α, tumor necrosis-alpha.
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attenuate SCM through inhibiting ferroptosis (Table 4).10 alleviate
SCM through inhibiting ferroptosis via decreasing LPO, and
increasing Sirt1/Nrf2 expression. EX527, a selective
Sirt1 inhibitor reversed the protective effect of 10 against
ferroptosis (Zeng et al., 2023). This observation was corroborated
by other study, which reported 10 upregulated miR-149 and
downregulated HMGB1 to inhibit ferroptosis and improve
SCM(Wang L. et al., 2022). Vitamin B6 (32) can suppress LPS-
induced oxidative stress and LPO that lead to ferroptosis in vivo and
in vitro through activating Nrf2. 32 can regulate the expression of
iron regulatory proteins, maintaining intracellular iron homeostasis
(Shan M. et al., 2021). Ferrostatin-1 (33), a ferroptosis inhibitor,
improves SCM through inhibiting ferroptosis (Xiao Y. et al.,
2021).33 alleviate SCM through inhibiting ferroptosis via
decreasing LPO, PTGS2, ferritin light chain (FTL) and ferritin
heavy chain (FTH1), while upregulating GPX4 and ferroportin
(FPN, SLC40A1) (Xiao Z. et al., 2021). Compounds puerarin
(34) is an isoflavone compound derived from Pueraria lobata in
traditional Chinese medicine with cardiovascular benefits against
cardiomyopathy (Qin et al., 2016; Li et al., 2017; Yin et al., 2019;
Wang et al., 2022d). 34 inhibite SCM induced by LPS through
inhibiting ferroptosis via upregulating GPX4 and ferritin and
downregulating ACSL4, TfR, and iron content (Zhou et al., 2022).

Conclusions and perspectives

The pathophysiology of cardiomyopathies is complex and
still undergoing extensive investigation. In this review, we
appraised articles that emphasized research progress in the
pathological roles of ferroptosis in ICM, DCM, DICM, and
SCM and ferroptosis inhibitors to mitigate cardiomyopathies.
Meanwhile, researchers have identified novel targeted treatments
for these cardiomyopathies through the pharmacological
inhibition of ferroptosis. The pharmacological inhibition of
ferroptosis is a potential therapeutic target for these
cardiomyopathies, with potential novel drug targets and
strategies for these diseases. However, the current research on
the role of ferroptosis in cardiomyopathies is still in the infancy,
and is still poorly understood. And more studies are required to
clarify its role and functional mechanisms. Furthermore, most
data reported in the literature are derived from experimental
studies that do not directly report clinical applications and
implications. Although a phase III clinical trial is underway to
determine if resveratrol exert the potential heart benefits of
resveratrol in patients with non-ischemic cardiomyopathy
(phase III, n = 40, NCT01914081). In addition, a multi-center,

randomized, placebo-controlled phase II clinical trial is also
being conducted to investigate the LCZ696 in adult patients
with non-obstructive hypertrophic cardiomyopathy (nHCM)
(phase II, n = 45, NCT04164732). However, there is still
lacking the study directly targeting ferroptosis to treat ICM,
DCM, DICM, and SCM using bioactive compounds.
Therefore, more clinical studies need to be conducted to
inform practical treatment and management strategies. Despite
these considerations, the current evidence strongly indicates that
inhibiting ferroptosis marks a significant new direction for
treating cardiomyopathies.
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