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Background: T cell exhaustion (TEX) heterogeneity leads to unfavorable
immunotherapeutic responses in patients with cancer. Classification of TEX
molecular phenotypes is pivotal to overcoming TEX and improving
immunotherapies in the clinical setting. Cuproptosis is a novel form of
programmed cell death associated with tumor progression. However, the
relation between cuproptosis-related genes (CuRGs) and the different TEX
phenotypes has not been investigated in lung adenocarcinoma (LUAD).

Methods: Unsupervised hierarchical clustering and principal component analysis
(PCA) algorithmwere performed to determine CuRGs-relatedmolecular subtypes
and scores for patients with LUAD. The tumor immune microenvironment (TIME)
landscape in these molecular subtypes and scores was estimated using ESTIMATE
and ssGSEA algorithms. Furthermore, TEX characteristics and phenotypes were
evaluated in distinct molecular subtypes and scores through GSVA and Spearman
correlation analysis. Finally, TIDE scores, immunophenoscore, pRRophetic,
GSE78220, and IMvigor210 datasets were employed to appraise the
distinguishing capacity of CuRGscore in immunotherapy and pharmacotherapy
effectiveness.

Results: We identified three CuRGclusters, three geneClusters, and CuRGscore
based on 1012 LUAD transcriptional profiles from five datasets. Compared with
other molecular subtypes, CuRGcluster B, geneCluster C, and low-CuRGscore
group with good prognosis presented fewer TEX characteristics, including
immunosuppressive cells infiltration and TEX-associated gene signatures, signal
pathways, checkpoint genes, transcription and inflammatory factors. These
molecular subtypes were also responsive in distinguishing TEX phenotype in
the terminal, GZMK+, and OXPHOS- TEX subtypes, but not the TCF7+ TEX
subtype. Notably, copper importer and exporter, SLC31A1 and ATP7B, were
remarkably associated with four TEX phenotypes and nine checkpoint genes
such as PDCD1, CTLA4, HAVCR2, TIGIT, LAG3, IDO1, SIGLEC7, CD274,
PDCD1LG2, indicating that cuproptosis was involved in the development of
TEX and immunosuppressive environment in patients with LUAD. Moreover,

OPEN ACCESS

EDITED BY

Zhijie Xu,
Xiangya Hospital, Central South
University, China

REVIEWED BY

Allen K. L. Cheung,
Hong Kong Baptist University, Hong Kong
SAR, China
Changbin Ke,
Hubei University of Medicine, China

*CORRESPONDENCE

Qiang-Zhe Zhang,
zhangqiangzhe@nankai.edu.cn

†These authors have contributed equally
to this work

SPECIALTY SECTION

This article was submitted to
Pharmacology of Anti-Cancer Drugs,
a section of the journal
Frontiers in Pharmacology

RECEIVED 17 January 2023
ACCEPTED 29 March 2023
PUBLISHED 11 April 2023

CITATION

Zhu Y-P, Deng H-T, Wang X, Rahat MA,
Sun S and Zhang Q-Z (2023),
Cuproptosis-related molecular subtypes
direct T cell exhaustion phenotypes and
therapeutic strategies for patients with
lung adenocarcinoma.
Front. Pharmacol. 14:1146468.
doi: 10.3389/fphar.2023.1146468

COPYRIGHT

© 2023 Zhu, Deng, Wang, Rahat, Sun and
Zhang. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Original Research
PUBLISHED 11 April 2023
DOI 10.3389/fphar.2023.1146468

https://www.frontiersin.org/articles/10.3389/fphar.2023.1146468/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1146468/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1146468/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1146468/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1146468/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2023.1146468&domain=pdf&date_stamp=2023-04-11
mailto:zhangqiangzhe@nankai.edu.cn
mailto:zhangqiangzhe@nankai.edu.cn
https://doi.org/10.3389/fphar.2023.1146468
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2023.1146468


CuRGscore was significantly related to the TIDE score, immunophenoscore, and
terminal TEX score (Spearman R = 0.62, p < 0.001) to effectively predict
immunotherapy and drug sensitivity in both training and external validation cohorts.

Conclusion: Our study demonstrated the extensive effect of cuproptosis on TEX.
CuRGs-related molecular subtypes and scores could illuminate the heterogeneity
of TEX phenotype as reliable tools in predicting prognosis and directing more
effective immunotherapeutic and chemotherapeutic strategies for patients
with LUAD.

KEYWORDS

cuproptosis, T cell exhaustion, tumor immune microenvironment, lung adenocarcinoma,
immunotherapy

1 Introduction

Lung cancer is the leading cause of cancer-related deaths
worldwide (Sung et al., 2021), with a 5-year survival rate of only
22% (Siegel et al., 2022). Approximately 85% of lung cancer cases are
non-small cell lung cancer (NSCLC), of which lung adenocarcinoma
(LUAD) are the major subtypes (Molina et al., 2008; Herbst et al.,
2018). The carcinogenesis of LUAD is associated with smoking,
alcohol consumption, metabolic disorders, and other factors (Alberg
et al., 2013), which cause molecular and pathological alterations,
genetic mutations, and immune escape in tumor (Zhang et al., 2021).
The death rate of LUAD is high due to lack of effective diagnostics
and treatment.

Immune checkpoint blockade (ICB) therapy has revolutionized the
treatment of advanced NSCLC. It has improved the overall survival of
NSCLC patients, but only a few patients have benefited in the clinical
setting (Jiang et al., 2021). The objective response rate to PD-1 blockade
(Pembrolizumab) is 19.4% for all the patients with a median overall
survival of 12.0 months (Garon et al., 2015). In anothermonotherapy of
anti-PD-1, median overall survival of Nivolumab was 9.9 months in
129 patients with an objective response rate of 17% (Gettinger et al.,
2015). Functional phenotypes of T cells are considered as key deciders
for immunotherapy efficiency.

Tumor-infiltrating CD8+ T cells serve as primary executors that
can recognize and kill tumor cells (Durgeau et al., 2018). They
encounter immunosuppressive signals in the tumor
microenvironment (TME) respond by becoming exhausted, and
multiple subsets of T cell exhaustion (TEX) were identified (Crespo
et al., 2013; Cai et al., 2020). Four TEX subsets have been defined
based on Ly108 and CD69 expression: TEX progenitor 1 (Ly108+
CD69+) and 2 (Ly108+ CD69−), TEX intermediate (Ly108- CD69−),
and TEX terminal (Ly108- CD69+) (Beltra et al., 2020). Progenitor
and intermediate TEX selectively respond to anti-PD-1 therapy,
while terminal TEX cells do not (Blackburn et al., 2008; Miller et al.,
2019; Beltra et al., 2020). The heterogeneity of TEX could obstruct
the favorable therapeutic response in patients with cancer (Dolina
et al., 2021). Therefore, a deeper understanding and microdissection
of TEX heterogeneity that would point to possible new biomarkers
are crucial to alleviate TEX and improve tumor immunotherapy
efficacy and clinical outcomes.

Cuproptosis is recently identified as a new copper-dependent
form of regulated cell death, which is different from other known
regulated cell death (Tang et al., 2022; Tsvetkov et al., 2022; Wang
et al., 2022). Accumulation of intracellular copper induces

mitochondrial stress through the aggregation of lipoylated
tricarboxylic acid cycle enzymes and the loss of Fe–S cluster
proteins, and ultimately causes cuproptosis (Chen et al., 2022;
Tsvetkov et al., 2022). Copper (Cu) ionophores such as
elesclomol raising intracellular Cu concentration induced cell
death and executed antineoplastic activity (Tsvetkov et al., 2022;
O’Day et al., 2013). Similarly, artificially overexpressing copper
importer SLC31A1 resulted in Cu over-accumulation, thereby
triggered cuproptosis in A549 lung cancer cells (Tsvetkov et al.,
2022). Whereas, depleting cupric ion with copper chelators reduced
PD-L1 expression by both inhibiting PD-L1 transcription and
promoting PD-L1 ubiquitination degradation in xenograft mouse
(Voli et al., 2020). The evidence suggested that cuproptosis was
tightly associated with tumor progression. However, the relationship
between cuproptosis-related genes (CuRGs) dissecting molecular
subtypes and TEX phenotypes in patients with LUAD was largely
unknown.

In the study, we chose thirteen previously identified cuproptosis-
related genes (CuRGs) and four gene expression omnibus (GEO)
datasets with the same platformGPL570 as candidate genes and data
to hold the accuracy of model building. The principal component
analysis (PCA) algorithm considers the contribution of each gene in
a large gene set rather than several genes to define the CuRGscore for
each patient; hence, we employed it together with unsupervised
hierarchical clustering to construct three CuRGclusters, three
geneClusters, and CuRGscore based on 1012 patients with LUAD
in the training cohort. Two independent GEO datasets and two pre-
treatment immunotherapy response datasets were used to validate
the accuracy of the results. Finally, our results concluded that these
molecular subtypes and CuRGscores could distinguish the
heterogeneity of TEX phenotype to predict prognosis and
immuno- and chemotherapeutic responses reliably in patients
with LUAD.

2 Materials and methods

2.1 LUAD data sets and preprocessing

The flow diagram of the study is illustrated in Figure 1. The
transcriptome data and clinical information of patients with
LUAD were obtained from The Cancer Genome Atlas (TCGA)
repositories (https://portal.gdc.cancer.gov). Six microarray
datasets, namely, GSE30219, GSE31210, GSE37745, GSE50081,
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GSE72094, and GSE68465, were downloaded from the GEO
database (https://www.ncbi.nlm.nih.gov/geo/). Information
about these datasets is described in detail in Supplementary
Table S1. Four GEO datasets (GSE30219, GSE31210,
GSE37745, and GSE50081 from the same platform GPL570)
and the TCGA-LUAD (Illumina HiSeq) dataset were chosen
as training cohort, while two independent GEO datasets
(GSE72094 from the GPL96 platform and GSE68465 from the
GPL15048 platform) were used as external validation cohorts.
Samples without documented survival information were
excluded. The fragments per kilobase million (FPKM) values
in the TCGA-LUAD dataset were converted to transcripts per
kilobase million (TPM) values for our analysis (Conesa et al.,
2016; Gustafsson et al., 2021). For GEO datasets, the expression
of genes with multiple probes was averaged. Then the “Combat”
algorithm of the SVA package was used to correct the batch effect
of samples and merge the training data into one dataset (Zhang
et al., 2020). Based on the above procedures, 1012 patients with
LUAD in the training dataset and 840 in the testing cohort were
collected for subsequent analysis.

2.2 Unsupervised hierarchical clustering for
CuRGclusters and geneClusters

Firstly, 13 reported genes were chosen as CuRGs in the study,
including 3 genes of copper transporter protein (CuPT;ATP7A,ATP7B,
and SLC31A1), 4 components in lipoic acid (LA) pathway (FDX1, LIAS,
LIPT1, and DLD), 3 pyruvate dehydrogenase (PDH) complex (DLAT,
PDHA1, and PDHB) and other three proteins (MTF1, GLS, and
CDKN2A) (Tsvetkov et al., 2022). Based on the expression level of
the 13 CuRGs, 1012 patients with LUAD were categorized into distinct
molecular subtypes using the “ConsensusClusterPlus” R package. To
ensure cluster stability, 1,000 iterations were performed (Wilkerson and
Hayes, 2010). The clusters were identified according to the optimal k
value of the consensus matrix in the training cohort and were named
CuRGclusters. Subsequently, gene expression profiles were analyzed
between these CuRGclusters using an empirical Bayesian approach in
the “limma”Rpackage (Ritchie et al., 2015). The differentially expressed
genes (DEGs) from different CuRGclusters with adjusted
p-values <0.001 were considered statistically significant. The
univariate Cox regression analysis was used to process the DEGs to

FIGURE 1
The flow diagram of the study.
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extract the expression profile of significant prognostic genes. Based on
these prognostic DEGs, 1012 patients with LUAD were dissected again
by unsupervised hierarchical clustering. The clusters were identified
according to the optimal k value and were termed geneClusters.

2.3 Construction of the CuRGscore

CuRGs-related gene signature was developed using the PCA
algorithm based on the prognostic-related DEGs, named
CuRGscore. Principal components 1 and 2 were extracted to
serve as the signature score using a method similar to GGI
(Sotiriou et al., 2006; Zhang et al., 2020). The CuRGscore for
each patient was calculated using: CuRGscore = Σ(PC1i + PC2i),
where is the expression of these significant prognostic genes. The
patients were divided into high- and low-CuRGscore groups
according to the optimal cutoff value derived from the Survminer
algorithm. Kaplan-Meier survival analysis was executed to evaluate
the overall survival (OS) of patients with LUAD (log-rank test, p <
0.001).

2.4 Evaluation of TEX molecular
characterization in different molecular
subtypes

Six gene signatures of CD8 TEX were chosen from previous
studies to investigate the molecular characterization of TEX in
different molecular subtypes, including NSCLC (Guo et al.,
2018), colorectal cancer (Zhang et al., 2018), hepatocellular
carcinoma (Zheng et al., 2017), melanoma (Sade-Feldman et al.,
2018), metastatic melanoma (Tirosh et al., 2016) and chronic
infection (Bengsch et al., 2018). Four gene signatures of the TEX
phenotype were collected from pan-cancer single-cell sequencing
data (Zheng et al., 2021). Eight signaling pathways and hallmark
genesets associated with TEX were extracted from the Molecular
Signatures Database (MSigDB, V7.5.1) (Liberzon et al., 2015). These
TEX signatures were further used to conduct gene set variation
analysis (GSVA) to evaluate the TEX stage in CuRGclusters,
geneClusters, and CuRGscore. Subsequently, checkpoint genes,
transcription, and inflammatory factors associated with TEX were
further analyzed in different molecular subtypes. Nine checkpoint
genes such as PDCD1, CTLA4, HAVCR2, TIGIT, LAG3, IDO1,
SIGLEC7, CD274, PDCD1LG2 were chosen as TEX-associated
checkpoint genes (Yang et al., 2022). Furthermore, eleven
transcription factors, including TOX, TBX21, EOMES, BATF,
NFATC1-4, NR4A1-3, as well as seven inflammatory factors such
as IL1RN, IL4, IL10, CCL18, TGFB1, IL1B, CCL2 were employed to
evaluate the TEX progress (Zheng et al., 2021; Zhang et al., 2022).
Finally, the difference in these genes was compared between distinct
subtypes using the “limma” R package.

2.5 Correlation analysis for CuRGscore and
TEX characterization

To uncover the correlation between CuRGscore and TEX
progress, Spearman correlation analysis was conducted between

CuRGscore and four TEX phenotypes. A p-value less than
0.05 was considered statistically significant. Moreover, CuRGs
were extracted and normalized by the limma R package. The
correlation of CuRGs with TEX phenotypes and checkpoint
genes was estimated with the Spearman analysis.

2.6 Stratification analyses between
CuRGscore and TEX phenotype or immune
checkpoint genes

Patients were divided into subgroups according to the four TEX
phenotypes or the nine immune checkpoint genes. Subsequently, the
Kaplan-Meier survival curve of patients in each subgroup was
analyzed to evaluate the stability of CuRGscore prognostic
efficacy (log-rank test, p < 0.01).

2.7 Evaluation of TIME in different molecular
subtypes

The cell infiltration of LUAD samples with the immune,
stromal, and ESTIMATE scores, as well as tumor purity, were
evaluated using the ESTIMATE R package (Yoshihara et al.,
2013). A higher stromal score or immune score indicates a
higher relative content of stromal or immune cells in the TME,
while an ESTIMATE score indicates an aggregated TME stromal or
immune score. Tumor purity represents the amount of tumor cells
in TME. Subsequently, the ssGSEA algorithm was used to assess the
abundance of 23 infiltrated immune cells in TIME for each LUAD
sample (Barbie et al., 2009).

2.8 Assessment of immunotherapeutic
response of CuRGscore

To test the predictive ability of CuRGscore in immunotherapy,
the immunophenoscore was downloaded from the cancer
immunome atlas (TCIA, https://tcia.at) (Charoentong et al.,
2017). Tumor immune dysfunction and exclusion (TIDE) score,
another robust predictor for immunotherapy, was estimated by
uploading the data normalized to the average to the TIDE web
(http://tide.dfci.harvard.edu/) (Jiang et al., 2018; Fu et al., 2020).
High immunophenoscore represents better responses to immune
checkpoint blockade (ICB) therapy, while a high TIDE score implies
more immune evasion. Then, the Spearman correlation was
calculated between CuRGscore and immunophenoscore or TIDE
score. The distribution of TIDE score or immunophenoscore was
also analyzed in the high- and low-CuRGscore groups.

Moreover, the GSE78220 dataset with pre-treatment melanomas
undergoing anti-PD-1 therapy and the IMvigor210 dataset with pre-
treatment urothelial cancer samples underlying anti-PD-
L1 treatment were employed to evaluate the predictive
performance of CuRGscore in immunotherapeutic response.
GSE78220 (Illumina HiSeq 2000) was downloaded from the GEO
database and normalized using the limma package.
IMvigor210 dataset (Illumina HiSeq 2500) was obtained from
http://research-pub.gene.com/IMvigor210CoreBiologies/. The raw
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FIGURE 2
TEX and TIME characteristics of each CuRGcluster. (A) Survival analyses for the three CuRGclusters based on 1012 patients from the training cohort
(GSE30219, GSE31210, GSE37745, GSE50081, TCGA-LUAD). (B) Immune score analyses using the ESTIMATE algorithm in three CuRGclusters. (C) The
abundance of each tumor microenvironment infiltrating cell in CuRGcluster A-C. (D–H)GSVA enrichment analysis between CuRGcluster A-C with TEX-
related signatures (D), signal pathways (E), immune checkpoint genes (F), transcription factors (G), or inflammatory factors (H). The line in the box
represents the median value, and the asterisk represents the p-value. *p < 0.05; **p < 0.01; ***p < 0.001.
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data were normalized by DEseq2 and converted to TPM value to
calculate the CuRGscore. The distribution of distinct anti-PD-
L1 clinical responses in the CuRGscore subgroups was analyzed
with chi-square or Wilcoxon test.

2.9 Assessment of chemotherapeutic
response of CuRGscore

To predict the therapeutic performance in the high- and low-
CuRGscore patients with LUAD, the R package “pRRophetic” was
employed to determine the half maximal inhibitory concentration
(IC50) in different CuRGscore groups by ridge regression. The
cutoff criteria for the spearman correlation and drug sensitivity
were p-value <0.001, and for the |Spearman Cor| was >0.1.

2.10 Statistical analysis

Statistical analyses of data were performed in the R software
(version 4.1.3). For comparisons between two groups, unpaired
Student’s t-tests were used to analyze variables with a normal
distribution, while Wilcoxon tests were used for non-normal
distribution. One-way ANOVA and Kruskal–Wallis tests were
employed to compare the differences between three or more
groups (Hazra and Gogtay, 2016). Spearman correlation analysis
then estimated the correlation coefficients. Log-rank tests were used
to determine the significance of Kaplan-Meier analysis-generated
OS curves. Unless noted otherwise, statistical significance in two-
tailed tests was considered when p < 0.05.

3 Results

3.1 TEX characterization of CuRGs-related
molecular subtypes in LUAD

Three distinct molecular subtypes were identified according to
the optimal consensus matrix k = 3, which included 377 patients in
cluster A, 325 in cluster B, and 310 in cluster C (Supplementary
Figure S1A and Supplementary Table S2). The survival curve
revealed that patients in CuRGcluster B had a prominent
survival advantage, while patients in CuRGcluster C exerted an
unfavorable prognosis (log-rank test, p < 0.001; Figure 2A). The
ESTIMATE analysis showed that CuRGcluster C and A had higher
immune scores than CuRGcluster B (Figure 2B). Further, we
investigated the proportions of 23 types of infiltrating immune
cells using ssGSEA. Consistent with ESTIMATE results, most
innate and adaptive immune cells were high in CuRGcluster C,
while these cells were infiltrated lowly in CuRGcluster B
(Figure 2C). According to the above findings, we speculated
that TEX was prevalent in high levels of immune cell
infiltration CuRGcluster C with poor prognosis. Hence, TEX-
associated signatures and signaling pathways were analyzed to
verify this hypothesis. Six TEX signatures derived from published
articles were found to be highly expressed in CuRGcluster C
compared with CuRGcluster B (Figure 2D). The signaling
pathways associated with TEX in CuRGcluster C, including

IFNα, IFNγ, TNFα, IL2, IL6, and glycolysis, except TGFβ, were
also significantly upregulated compared to those in CuRGcluster B
(Figure 2E). The canonical immune checkpoint genes of TEX, such
as PDCD1, CD274, PDCD1LG2, CTLA4, HAVCR2, TIGIT, LAG3,
IDO1, and SIGLEC7 were highly expressed in CuRGcluster C
(Figure 2F). We further investigated the inflammatory and
transcription factors involved in TEX development in the three
CuRGclusters. While TBX21, BATF, and NFATC2 were
significantly upregulated, NFATC3, NFATC4, NR4A1, and
NR4A2 were significantly downregulated in CuRGcluster C
(Figure 2G). Meanwhile, inflammatory factors, including IL1RN,
IL10, CCL18, TGFB1, IL1B and CCL2, were also highly expressed
in CuRGcluster C (Figure 2H). The collective data demonstrated
that patients in CuRGcluster C with high TEX levels result in poor
OS. In contrast, CuRGcluster B patients presented a low TEX level
with a better prognosis.

3.2 Identification and TEX characterization
of CuRGs-related gene subtypes in LUAD

Based on the optimal consensus matrix k = 3 from the
unsupervised clustering of 150 prognostic-related DEGs
identified by univariate Cox regression, the whole training
cohort was classified into three gene clusters, defined as
CuRGs-related gene clusters A-C, respectively (Supplementary
Figure S1B and Supplementary Table S3). The relationship
between CuRGs-related gene cluster A-C and the clinical
characteristics were presented in Figure 3A. The expression of
CuRGs was notably different in the three gene clusters, similar to
the results with CuRGcluster A-C (Figure 3B). These results
demonstrated the existence of three distinct CuRGs-classified
patterns in LUAD. The Kaplan-Meier survival analysis suggested
that 375 patients of gene cluster C presented the best prognosis,
while 254 patients of gene cluster B appeared to have the worst
OS (log-rank test, p < 0.001; Figure 3C). Consistent with the
ESTIMATE results of CuRGclusters, geneCluster C showed low
immune scores compared to geneCluster B and A (Figure 3D).
Moreover, the ssGSEA results of infiltrating immune cells
reconfirmed the immune score in gene cluster C, which had a
low level in most innate and adaptive immune cells (Figure 3E).
Together, we found that geneCluster B shows a similar result to
that of CuRGcluster C, with the worst prognosis in highly
immune-infiltrated subtypes in patients with LUAD. Further,
geneCluster B was significantly enriched in infiltrating immune
cells associated with TEX, including regulatory T cells (Treg),
myeloid-derived suppressor cells (MDSC), and tumor-associated
macrophages (TAM) (Figure 3E). All TEX-related signatures,
signaling pathways (except TGFβ), and checkpoint genes were
highly expressed in CuRGcluster B (Figures 3F–H). TBX21,
EOMES, and BATF were considerably upregulated, whereas
TOX, NFAT, and NR4A were remarkably downregulated in
CuRGcluster B (Figure 3I). Besides IL4, other inflammatory
factors were highly expressed in CuRGcluster B compared
with CuRGcluster C (Figure 3J). Collectively, these results
indicated that CuRGs-related geneCluster could potentially
direct T cell exhaustion class to predict the prognosis of
patients with LUAD.
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3.3 Construction and TEX characterization
of the CuRGscore in LUAD

To accurately quantify the grade of LUAD in individual
patient, we performed a PCA algorithm to compute the
CuRGscore of each tumor. Based on the cutoff value (1.034)
calculated by the survminer algorithm, 1012 patients in the

training cohort were divided into low- or high-CuRGscore
groups (low = 562 and high = 450; Supplementary Table S4).
The alluvial diagram illustrated the attribute changes of patients in
CuRGclusters, geneClusters, CuRGscore, and survival status
(Figure 4A). CuRGcluster B had the lowest median score,
whereas the median score of subtype C was the highest
(Figure 4B). On the contrary, geneCluster B also had the

FIGURE 3
TEX and TIME characterization of the three geneClusters in LUAD. (A) Unsupervised clustering for 150 prognostic-related DEGs identified by
univariate Cox regression classifying patients of training cohort into geneClusters A-C, respectively. The geneClusters, CuRGclusters, projects, tumor
stage, survival status, relapse, smoking, gender, and age were used as clinical characteristics. (B) Expression of 13 cuproptosis genes in the three
geneClusters. (C) Survival analyses for the three geneClusters based on 1,012 patients. (D) Immune score analyses using the ESTIMATE algorithm in
the three geneClusters. (E) The abundance of each TME infiltrating cell in the three geneClusters. (F–J)GSVA enrichment analysis between geneClusters
A-C with TEX-related signatures (F), signal pathways (G), checkpoint genes (H), transcription factors (I), or inflammatory factors (J). The line in the box
represents the median value, and the asterisk represents the p-value. *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 4
TEX and TIME Characterisation of the CuRGscore in training and external validation cohorts. (A) Alluvial diagram showing the relation of patients in
CuRGcluster, geneCluster, CuRGscore, and survival status. (B, C) Differences of CuRGscore among three CuRGclusters (B) and geneClusters (C) in the
training cohort (GSE30219, GSE31210, GSE37745, GSE50081, TCGA-LUAD; Kruskal–Wallis test). (D–F) Survival analyses for the high- and low-
CuRGscore groups in the training cohort (D) and two independent external cohorts, GSE72094 (E) and GSE68465 (F). (G) Immune, stromal,
ESTIMATE, and tumor purity scores in high- and low-CuRGscore groups. (H) The abundance of each TME infiltrating cells in high- and low-CuRGscore
groups. (I–M) GSVA enrichment analysis in high- and low-CuRGscore groups with TEX-related signatures (I), signaling pathways (J), checkpoint genes
(K), transcription factors (L), and inflammatory factors (M). The line in the box represents the median value, and the asterisk represents the p-value. *p <
0.05; **p < 0.01; ***p < 0.001.
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highest median score, while the median score of geneCluster C was
the lowest (Figure 4C). Kaplan-Meier survival curves indicated
that low CuRGscore signifies a better prognosis in patients with
LUAD (log-rank test, p < 0.001; Figure 4D). This conclusion was
confirmed in the external validation cohorts, including GSE72094,

GSE68465, and GSE72094 + GSE68465 datasets (log-rank test, p <
0.001; Figures 4E, F, and Supplementary Figure S2A). We observed
high immune, stromal, and ESTIMATE scores and low tumor
purity in the high-CuRGscore group compared with the low-
CuRGscore group (Figure 4G and Supplementary Figure S2B).

FIGURE 5
Correlation analyses between CuRGscore and TEX in the training cohort. (A, B) Differences in the four TEX phenotype scores among CuRGclusters
A-C (A) or geneClusters A-C (B). (C) Differences in the four TEX phenotype scores between high- and low-CuRGscores. (D–G) Spearman correlation
analysis between CuRGscores and GZMK+ TEX (D), OXPHOS- TEX (E), Terminal TEX (F), or TCF7+ TEX (G) scores. (H) Spearman correlation analyses
between CuRGs and TEX markers, including TEX scores of the four subtypes and nine checkpoint genes. (I) Spearman correlation analysis between
HAVCR2 and SLC31A1. (J) Spearman correlation analysis between SLC31A1 and terminal TEX score. (K) Spearman correlation analysis between HAVCR2
and ATP7B. (L) Spearman correlation analysis between ATP7B and GZMK+ TEX score.
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Further, the high-CuRGscore group exhibited abundant TEX-
related infiltrating immune cells in both training and external
validation cohorts (Figure 4H and Supplementary Figure S2C).
Moreover, all gene signatures, signaling pathways, and checkpoint
genes of TEX were significantly increased in the high-CuRGscore
group (Figures 4I–K and Supplementary Figures S2D–F). Notably,
TBX21, EOMES, and NFATC2 were significantly upregulated,
while TOX, NFATC3, and NR4A were downregulated in the
high-CuRGscore group (Figure 4L and Supplementary Figure
S2G). Except for IL4, other inflammatory factors were highly
expressed in the high-CuRGscore group compared with the
low-CuRGscore group (Figure 4M and Supplementary Figure
S2H). These findings indicated that CuRGscore could evaluate
TEX phenotype and clinical outcomes of patients with LUAD in
both training and external validation cohorts.

3.4 CuRGscore was positively associated
with TEX in LUAD

To further illustrate the correlation between TEX phenotypes
and molecular subtypes, TEX scores were calculated for pan-
cancer gene signatures of four TEX phenotypes (TCF7+,
GZMK+, and OXPHOS- and terminal TEX) (Zheng et al.,
2021) for 1012 patients with LUAD. Kruskal–Wallis test
showed that terminal, GZMK+, and OXPHOS- TEX were
significantly higher in CuRGcluster C and geneCluster B,
while TCF7+ TEX was the lowest (Figures 5A, B). Similarly,
terminal, GZMK+, and OXPHOS- TEX were higher in the high-
CuRGscore group compared to the low-CuRGscore group
(Figure 5C). Spearman correlation analyses revealed that
CuRGscore was positively associated with the terminal,
GZMK+, and OXPHOS- TEX scores, but not with the
TCF7+ TEX score. The correlation coefficient between the
terminal TEX score and CuRGscore was 0.62 (p < 0.001;
Figures 5D–G). These results demonstrated that CuRGscore
was tightly related to the terminal, GZMK+, and OXPHOS-
TEX cell phenotypes. To uncover the hub genes in the
terminal, GZMK+, and OXPHOS- TEX cell phenotypes caused
by CuRGs, we further performed Spearman correlation analyses
between the CuRGs and four TEX phenotypes or nine checkpoint
genes (Figure 5H and Supplementary Table S5). We observed a
significant positive correlation between SLC31A1, a copper
importer, and the nine checkpoint genes, PDCD1, CTLA4,
HAVCR2, TIGIT, LAG3, IDO1, SIGLEC7, CD274, PDCD1LG2.
Terminal, GZMK+, and OXPHOS- TEX scores were also
positively associated with SLC31A1. HAVCR2 and terminal
TEX scores had the strongest positive correlation with
SLC31A1 among the nine checkpoint genes and four TEX
scores, respectively (Figures 5I, J). Another copper exporter,
ATP7B, showed a significant negative association with these
TEX markers. HAVCR2 and GZMK+ TEX scores had the
highest negative correlation with ATP7B among the nine
checkpoint genes and four TEX scores, respectively (Figures

5K, L). Similar results also were found in the external
validation cohort (Supplementary Figure S3 and
Supplementary Table S6). Hence, the data indicated that
cuproptosis, especially SLC31A1 and ATP7B as copper ion
importers and exporters, play an important role in the
development of TEX in patients with LUAD.

3.5 Impact of CuRGscores, TEX phenotypes,
and immune checkpoint genes on clinical
outcome in LUAD

We performed a Kaplan-Meier survival analysis to examine the
effect of TEX phenotypes on the OS of patients with LUAD. We
found that the two intermediate phenotypes, GZMK+ and
OXPHOS- TEX subtypes, do not exhibit significantly different
OS between the high- and low-score groups (log-rank test, p >
0.05; Figures 6A, B). The early phenotype, TCF7+ TEX subtype,
showed a favorable prognosis in the high-score group (log-rank test,
p = 0.001; Figure 6C), whereas the terminal TEX phenotype
demonstrated poor prognosis in the high-score group (log-rank
test, p < 0.001; Figure 6D). We further determined whether the
CuRGscores could influence the prognosis of patients with LUAD at
the same TEX phenotype or similar expression level of immune
checkpoint genes. The low-CuRGscore implied a significantly longer
OS than the high-CuRGscore, regardless of the TEX phenotypes
(log-rank test, p < 0.001; Figures 6E, F, H). Notably, low-CuRGscore
indicated a prolonged OS of patients with a high-TCF7+ TEX score
than those with a low-TCF7+ TEX score (Figure 6G). Low-
CuRGscores were also predictive of a good prognosis for the
TEX-related immune checkpoint genes compared with high-
CuRGscores, regardless of the expression of TIGIT (log-rank test,
p < 0.001; Figure 6I). Similar patterns of clinical outcomes were also
found among the four groups divided by CuRGscore and CTLA4,
IDO1, PDCD1, LAG3,HAVCR2, SIGLEC7,CD274, or PDCD1LG2 in
the training cohort (log-rank test, p < 0.001; Figures 6J–P and
Supplementary Figure S4J). We observed similar results in the
external validation cohort (GSE72094), that low-CuRGscores
indicated better prognosis in patients with LUAD, regardless of
the expression level of immune checkpoint genes (log-rank test, p <
0.01; Supplementary Figures S4A–I). These findings further
confirmed that CuRGscore was a reliable biological signature for
predicting the OS of patients with LUAD.

3.6 CuRGscore is a reliable predictor of
immunotherapeutic responses in patients
with LUAD

Since only 20% of patients with cancer benefit from ICB therapy,
an accurate alternate predictor is vital (Mamdani et al., 2022).
Hence, we first calculated the TIDE score to evaluate the
predictive ability of CuRGscore for immunotherapy in LUAD.
We found that the patients in the high-CuRGscore group had a
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high TIDE score (Figure 7A). Also, these patients had higher
microsatellite instability (MSI) and cancer-associated fibroblast
(CAF) scores (Figures 7B, C), which is suppressive for the
function of immune cells. The external testing cohort exhibited
similar results (Figures 7D–F). Moreover, Spearman correlation
analysis showed a positive correlation between the CuRGscores

and the TIDE scores in both training and external testing cohort
(Figures 7G, H). These findings indicated that patients in the low-
CuRGscore group respond better to ICB therapy than those in the
high-CuRGscore group. We further found a negative correlation
between the CuRGscores and immunophenoscores in the TCGA-
LUAD dataset (Figure 7I). Group-wise comparison also

FIGURE 6
Survival analyses for subgroups of patients stratified by CuRGscores and immune checkpoint genes in the training cohort. (A–D) Survival analysis to
examine the OS of patients with LUAD in four TEX subtypes, including GZMK+ (A), OXPHOS- (B), TCF7+ (C), and terminal TEX phenotypes (D). (E–H)
Prognosis analysis for patients with LUAD patients stratified into four groups by CuRGscore and four TEX subtypes, including GZMK+ (E), OXPHOS- (F),
TCF7+ (G), and terminal TEX phenotypes (H). (I–P) Kaplan-Meier curves analyzed the overall survival of patients with LUAD, stratified into four
groups by CuRGscores and checkpoint genes, such as TIGIT (I), CTLA4 (J), IDO1 (K), LAG3 (L), PDCD1 (M), HAVCR2 (N), SIGLEC7 (O) and CD274 (P).
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FIGURE 7
The role of CURGscore in ICB immunotherapy. (A–C) The distribution of TIDE (A), MSI (B), and CAF (C) scores between patients in the high- and low-
CuRGscore groups in the training cohort. (D–F) The distribution of TIDE (D), MSI (E), andCAF (F) scores between patients in the high- and low-CuRGscore
groups in the testing cohort. (G–I) Spearman correlation analysis for TIDE scores or immunophenoscore with CuRGscore in the training (G), external
testing (H), and TGCA-LUAD (I) cohorts. (J) Difference of immunophenoscore between patients in the high- and low-CuRGscore groups in the
TGCA-LUAD cohort. (K)Distribution of patients with a distinct anti-PD-1 clinical response based on CuRGscores in the GSE78220 dataset. (L)Distribution
of distinct anti-PD-1 clinical response in CuRGscore subgroups in the GSE78220 dataset (chi-square test). (M) Kaplan-Meier plot of overall survival for
patients of CuRGscore subgroups in the IMvigor210 cohort (log-rank test). (N) The difference in the CuRGscores in anti-PD-L1 clinical response
subgroups in the IMvigor210 cohort (Wilcoxon test). (O) The distribution of distinct anti-PD-L1 clinical response in high- and low-CuRGscore subgroups
in the IMvigor210 cohort (chi-square test). PR, Partial Response; PD, Progressive Disease; SD, Stable Disease; and CR, Complete Response.
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demonstrated a higher immunophenoscore in the low-CuRGscore
group (Figure 7J), strengthening the hypothesis that patients of the
low-CuRGscore group respond better to ICB immunotherapy. To
test the predictive potential of the CuRGscores in the clinical setting,
we determined the relationship between the anti-PD-1/PD-L1
immunotherapeutic response and CuRGscore in the

GSE78220 dataset with pre-treatment melanomas undergoing
anti-PD-1 therapy (Hugo et al., 2016). We found that patients
with complete response (CR) and partial response (PR) were
mainly fell into low score area as well as patients with
progressive disease (PD) were mostly in high score area
(Figure 7K). The Chi-square test indicated that 71% of patients

FIGURE 8
Chemotherapeutic responses in high- and low-CuRGscore patients with LUAD. (A) Common drug sensitivity and resistance for high- and low-risk
patients with LUAD using pRRophetic analysis in the training and external validation cohorts. (B, C)Drug resistance for receptor tyrosine kinases inhibitor,
MP470 (B), and ALK5 inhibitor, SB52334 (C) in high-risk patients with LUAD. (D, E) Drug sensitivity for ALK F1174L and ALK R1275Q inhibitor,
CH5424802 (D), and CDK1 inhibitor, RO-3306 (E), in high-risk patients with LUAD. (F–H)Chemotherapeutic sensitivity for mitosis inhibitors, such as
vinblastine (F), paclitaxel (G) and docetaxel (H) in high-risk patients with LUAD. (I) Chemotherapeutic sensitivity for protein stability and degradation
(lenalidomide) in high-risk patients with LUAD. (J–L) Chemotherapeutic sensitivity for DNA replication, including vinblastine (J), paclitaxel (K), and
Cisplatin (L) in high-risk patients with LUAD. (M) Drug sensitivity for metabolism regulator, AICAR, in high-risk patients with LUAD.
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in the low-rated CuRGScore group benefited from anti-PD-
1 therapy (CR or PR), compared with the high-rated group
(36%, Figure 7L). Finally, we employed pre-treatment urothelial
cancer samples from a large phase II trial (IMvigor210) with anti-
PD-L1 to evaluate the prognosis of patients. Kaplan-Meier survival
curve revealed that patients in the low-CuRGscore group exhibited a
better OS from the immune therapy than those in the high-
CuRGscore group (Figure 7M). Patients with CR/PR showed a
significantly lower CuRGscore than those with stable Disease
(SD)/PD (Figure 7N). The percentage of patients with CR/PR in
the low-CuRGScore group was about 2.5 times higher than that in
the high-CuRGscore group (Figure 7O). Collectively, these results
indicated that patients in the low-CuRGscore group have a better
chance of benefiting from ICB immunotherapy.

3.7 CuRGscore directs chemotherapeutics
for patients with LUAD

To evaluate the predictive potential of CuRGscore on drug
sensitivity, pRRophetic analysis was performed to estimate the
IC50 of chemotherapeutics with a ridge regression model for high-
and low-CuRGscore patients. We found 129 drugs coexisted in the
training and external testing cohorts, significantly associated with
CuRGscores, including 2 resistant and 127 sensitive drugs
(Figure 8A and Supplementary Table S7). Notably, two receptor
tyrosine kinase inhibitors, MP470 and SB52334 (ALK5 inhibitor),
exhibited drug resistance in patients of the high-CuRGscore group
(Figures 8B, C). While patients in the high-CuRGscore group were
more sensitive to ALK F1174L andALKR1275Q inhibitor, CH5424802
(Figure 8D), indicating that these patients had more ALKmutation. An
ATP-competitive and selective CDK1 inhibitor, RO-3306, had the
highest drug sensitivity and Spearman correlation for patients of the
high-CuRGscore group among all 127 sensitivity drugs in both the
training and testing cohorts (Figure 8E). Vinblastine, paclitaxel, and
docetaxel, disturbing the microtubule cytoskeleton in mitosis, showed
better chemotherapeutic potential for patients in the high-CuRGscore
group (Figures 8F–H). Protein stability and degradation regulator,
lenalidomide, as well as three DNA replication inhibitors,
vinblastine, paclitaxel, and Cisplatin, also revealed better
chemotherapeutic sensitivity in the high-CuRGscore group (Figures
8I–L). Additionally, the metabolism regulator, AICAR, was also more
sensitive in the high-CuRGscore group than in the low-CuRGscore
group (Figure 8M). Together, our results suggested that CuRGscore
could be used for chemotherapeutic evaluation in patients with LUAD.

4 Discussion

Although ICB immunotherapy is a milestone for cancer
treatment, only a minority of patients with cancer could
benefit from it. For example, PD-L1 expresses in at least 50%
of tumor cells in patients with advanced NSCLC, only 45.2% of
these patients benefited from the anti-PD-1 antibody,
pembrolizumab (Garon et al., 2015). The heterogeneity of
TEX was considered an essential determinant of the
immunotherapeutic response of cancer (Liu et al., 2020;
Inflammatory et al., 2021). Hence, developing a virtual

microdissection analytical approach to resolve the
heterogeneity of TEX is eminent. Herein, based on
1012 LUAD transcriptional data from five datasets, we
employed unsupervised hierarchical clustering and PCA
algorithm to construct three CuRGclusters, three geneClusters,
and CuRGscore. These molecular subtypes could distinguish the
phenotypes of TEX and malignant grades of TME to reliably
predict prognosis as well as immunotherapeutic and
chemotherapeutic responses in patients with LUAD.

Multiple signatures of TEX have been identified from
cancers, including NSCLC (Guo et al., 2018). In our study,
identified CuRGs-related clusters and CuRGsores could
significantly distinguish these TEX signatures. Furthermore,
four gene signatures of TEX phenotype, terminal, GZMK+,
OXPHOS- and TCF7+ TEX subtypes, were identified from
pan-cancer single-cell sequencing data (Zheng et al., 2021).
As progenitors of TEX, the TCF7+ phenotype had stem cell-
like capacity, and they differentiated into intermediate
phenotype with a loss of TCF1. Studies have shown that the
terminal phenotype cannot be functionally reinvigorated
through ICB therapy (Beltra et al., 2020). Compared with
other molecular subtypes, CuRGcluster C, geneCluster B, and
high-CuRGscore group with poor prognoses had a higher
fraction in terminal TEX, GZMK+ TEX, and OXPHOS- TEX.
Especially, the TEX terminal phenotype was remarkably related
to the CuRGscore (R = 0.62 and p < 0.001). These demonstrated
that CuRGscore was a good signature to direct TEX phenotype
and predict prognosis in LUAD.

Dysfunction in IFN, TNF, IL2, IL6, and glycolysis signaling
pathways, as well as high expression of immunosuppressive
receptors such as PDCD1, CTLA4, HAVCR2, TIGIT, LAG3,
and SIGLEC7, are classic characteristics of TEX (Blank et al.,
2019; Saleh et al., 2020). Our study found that CuRGcluster C,
geneCluster B, and high-CuRGscore groups represented TEX
characteristics with poor prognosis. TEX is also regulated by a
network of transcription factors and multiple inflammatory
factors (Collins and Henderson, 2014; Fang et al., 2022). For
example, high expression levels of EOMES could accelerate the
exhaustion of anti-tumor CD8+ T cells (Li et al., 2018). We found
that EOMES was also highly expressed in geneCluster B and high-
CuRGscore groups with a short OS. Moreover, inflammatory
factors, L1RN, IL10, CCL18, TGFB1, IL1B, and CCL2, were
enhanced in CuRGcluster C, geneCluster B, and high-
CuRGscore groups compared with the other groups.
Interestingly, copper importer SLC31A1 was significantly and
positively associated with TEX phenotypes and checkpoint genes,
while copper exporters, ATP7A and ATP7B, were negatively
correlated with TEX phenotypes and checkpoint genes.
Recently, two pieces of research also demonstrated that
SLC31A1-dependent copper absorption increases the
malignancy grade of pancreatic and breast cancers (Yu et al.,
2019; Li et al., 2022). We also observed that three anti-
cuproptosis genes (CDKN2A, GLS and MTF1) were positively
associated with TEX characteristics. Additionally, seven pro-
cuproptosis genes (DLAT, DLD, FDX1, LIAS, LIPT1, PDHA1,
and PDHB) were also positively associated with TEX
characteristics. These results were more significant in the
external validation dataset, which reconfirmed the conclusion
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that cuproptosis was involved in the development of TEX
of LUAD.

Besides TEX, other immunosuppressive characteristics are also
essential to determine the degree of malignancy of TME, which
influences immuno- and chemotherapeutic responses. Studies have
shown that Treg, MDSC, and TAM extensively infiltrate advanced
NSCLC (Liang et al., 2022). In this study, CuRGcluster C,
geneCluster B, and high-CuRGscore subtypes were significantly
enriched in infiltrating Treg, MDSC, and TAM. Moreover,
CuRGscore was significantly related to the TIDE score and
immunophenoscore, as well as can predict immunotherapeutic
responses and drug sensitivity. Our study showed that two
receptor tyrosine kinase inhibitors, MP470 (c-Kit, PDGFα,
Flt3 inhibitor) and SB52334 (ALK5 inhibitor), showed drug
resistance in patients with high CuRGscore. Although the
inhibitors have not been used in clinic, they are promising
antitumor drugs (Mahadevan et al., 2007; Qi et al., 2009).
Vinblastine (Velban), paclitaxel (Taxol), docetaxel (Taxotere) and
cisplatin (Platinol AQ) as clinical antitumor agents, are more
sensitive in high CuRGscore group, which further indicates that
CuRGscore can guide the use of drugs. Collectively, these results
indicate that cuproptosis is involved in the development of
immunosuppressive and malignant TME in patients with LUAD.

5 Conclusion

Our study demonstrated the extensive regulatory mechanisms of
cuproptosis on TEX. Our results indicate that CuRGs-related
molecular subtypes and scores could distinguish the phenotypes
of TEX to reliably predict prognosis and direct more effective
immunotherapeutic and chemotherapeutic strategies for patients
with LUAD.
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