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Background: Immunotherapy has been a key option for the treatment of many
types of cancer. A positive response to immunotherapy is heavily dependent on
tumor microenvironment (TME) interaction. However, in pancreatic
adenocarcinoma (PAAD), the association between TME mode of action and
immune cell infiltration and immunotherapy, clinical outcome remained
unknown.

Methods:We systematically evaluated 29 TME genes in PAAD signature. Molecular
subtypes of distinct TME signatures in PAAD were characterized by consensus
clustering. After this, we comprehensively analyzed their clinical features,
prognosis, and immunotherapy/chemotherapy response using correlation
analysis, Kaplan-Meier curves analysis, ssGSEA analysis. 12 programmed cell
death (PCD) patterns were acquired from previous study. Differentially
expressed genes (DEGs) were acquired based on differential analysis. Key
genes affecting overall survival (OS) of PAAD were screened by COX regression
analysis and used to develop a RiskScore evaluation model. Finally, we assessed
the value of RiskScore in predicting prognosis and treatment response in PAAD.

Results: We identified 3 patterns of TME-associated molecular subtypes (C1, C2,
C3), and observed that clinicopathological characteristics, prognosis, pathway
features and immune features, immunotherapy/chemosensitivity of patients were
correlated with the TME related subtypes. C1 subtype was more sensitive to the
four chemotherapeutic drugs. PCD patterns weremore likely to occur at C2 or C3.
At the same time, we also detected 6 key genes that could affect the prognosis of
PAAD, and 5 genes expressions were closely associated tomethylation level. Low-
risk patients with high immunocompetence had favorable prognostic results and
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high immunotherapy benefit. Patients in the high-risk groupweremore sensitive to
chemotherapeutic drugs. RiskScore related to TMEwas an independent prognostic
factor for PAAD.

Conclusion: Collectively, we identified a prognostic signature of TME in PAAD
patients, which could help elucidate the specific mechanism of action of TME in
tumors and help to explore more effective immunotherapy strategies.

KEYWORDS

PAAD, tumor microenvironment, immunotherapy, methylation, molecular subtypes,
prognosis, programmed cell death, drug resistance

1 Introduction

Pancreatic adenocarcinoma (PAAD), which is a malignant
tumor developed from follicular cells and pancreatic duct
epithelial cells, is also the most frequent malignancy in the
digestive system (Bengtsson et al., 2020). PAAD patients are
often diagnosed at locally advanced or metastatic stage due to a
lack of early clinical symptoms at early stage, therefore missing
the option of surgical treatment (Skelton et al., 2017). Although
breakthroughs have been made in targeted molecular therapy,
and immunotherapy, comprehensive therapy, PAAD prognosis
is still unsatisfactory, showing an average survival for 5 years of
lower than 5% due to late diagnosis, drug resistance, and
recurrence, postoperative metastasis (Siegel et al., 2019).
Moreover, Blockade of immune checkpoints by anti-CTLA-
4 and/or anti-PD-1/anti-PD-L1 agents leads to T cell
activation and provides an effective approach for tumor
immunotherapy (Schizas et al., 2020). However, despite
demonstrating robust results in certain malignancies, most
phase I and II clinical trials have failed to show any clinical
efficacy in PAAD (Bear et al., 2020; Carpenter et al., 2021). With
the rapid development of biotechnology, some tumor molecular
markers are increasingly playing an active role in the field of
cancer treatment. Developing personalized precision medicine
based on these biomarkers may help prolong survival time of
cancer patients. Therefore, identifying prognostic biomarker to
accurately estimate the survival outcome of those with PAAD has
become an urgent task.

With the in-depth study of immunology, more and more
evidences have shown that in the tumor microenvironment
(TME), various immune cells play key roles in the occurrence
and development of tumors (Hinshaw and Shevde, 2019).
Interaction of tumor cells with tumor-infiltrating immune cells,
immune response and cell transformation in TME may inhibit
tumor development or promote its occurrence and also
significantly affect the treatment response and clinical prognosis
of patients (Xiao and Yu, 2021). At present, some studies have found
that immune cells can be used as reliable and stable prognostic
indicators for tumor patients. For example, Zuo and colleagues et al.
demonstrated that high immune cell infiltration is inversely
associated with the prognosis of glioblastoma multiforme, and
uveal melanoma, low-grade glioma (Zuo et al., 2020). The above
findings suggested that immune cell infiltration affect the prognosis
of different cancers differently. However, there are few studies on the
immune infiltration of TME in PAAD, and the specific molecular
mechanism is still unclear. Systematic and in-depth research on

TME of PAAD is expected to provide new insights for clinical
treatment.

For a variety of tumors, immunotherapy is an emerging
treatment modality and multiple clinical trials have demonstrated
its efficacy in cancer treatment (Wang et al., 2019), (Chalabi et al.,
2020), (Sheih et al., 2020). For example, CD8 T cells may be the
predictive marker of immunotherapy response (St Paul and Ohashi,
2020). Accumulating evidence indicates that TME is a major
contributor to tumor aggressive behavior and affects tumor
patient response to immunotherapy (Bader et al., 2020).
Immunotherapy provides more options for cancer treatment.
However, recent clinical trials have shown that patients with
PAAD are less likely to benefit from immunotherapy and some
would experience some adverse events such as lymphopenia (Xie
et al., 2020), (O’Reilly et al., 2019). Hence, clarifying the specific
mechanism of action of TME in PAAD to divide patients with
different characteristics into different molecular subtypes and
predict their immunotherapy effects is expected to be a
promising strategy.

In this study, applying sequencing data from the PAAD project
in the ICGC and TCGA databases, we identified 3 molecular
subtypes in PAAD according to the TME-related genes and
systematically analyzed the prognosis of TME in different states,
chemotherapy, and immunotherapy response. Next, we screened
characteristic genes related to PAAD prognosis using differentially
expressed genes (DEGs) in the three molecular subtypes, and
constructed a RiskScore that could predict immunotherapy effect
and prognostic outcome of PAAD. The current results offered novel
understanding for the development of feasible immunotherapy
for PAAD.

2 Materials and methods

2.1 Dataset download and preprocessing

Gene chip expression profiles and corresponding clinical
information for PACA-AU and PACA-CA sequencing projects
were downloaded from the International Cancer Genome
Consortium (ICGC, https://dcc.icgc.org/), respectively. In
addition, the RNA-Seq data (TPM (transcripts per million)) and
corresponding clinical information of the TCGA-PAAD cohort
were acquired from The Cancer Genome Atlas (TCGA, https://
portal.gdc.cancer.gov/) using the TCGA GDC application
programming interface (API). The PACA-AU cohort served as
the training set, and the PACA-CA and TCAG-PAAD cohorts
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served as the validation set. PACA-AU cohort were processed as
follows: (Bengtsson et al., 2020): Removing samples that did not
have clinical follow-up; (Skelton et al., 2017); Ensembl IDs were
converted to a Gene symbol; (Siegel et al., 2019); Median expressions
of multiple Gene Symbols was adopted. After screening, 267 PAAD
samples were retained for subsequent analysis. RNA-Seq data in
PACA-CA and TCGA-PAADwere processed as follows: (Bengtsson
et al., 2020): PAAD samples without clinical information was
removed; (Skelton et al., 2017); Ensembl IDs were converted to a
Gene symbol; (Siegel et al., 2019); Expressions with multiple Gene
Symbols adopted the middle value. After screening, 215 and
176 PAAD samples remained in the PACA-CA and TCGA-
PAAD cohorts, respectively.

2.2 Evaluation of TME gene expression in
PAAD

Based on previous studies, 29 TME gene sets representing major
tumor functions and immune, stromal, and other cellular functions
were downloaded from the Bagaev et al. study (Bagaev et al., 2021).
Based on the expression data of 29 TME gene sets, Single-sample
GSEA (ssGSEA) analysis was conducted on tumor samples in the
PCA-AU cohort using the R package GSVA (Hanzelmann et al.,
2013) to obtain the TME gene signature score. Subsequently, tumor
samples and TME genes in the PACA-AU cohort were calculated for
the signature correlation between scores. Finally, combined with the
survival information of tumor samples from the PACA-AU cohort,
we conducted univariate COX regression analysis to develop a TME
gene signature affecting the prognosis of PAAD.

2.3 Identification of TME-associated
molecular subtypes in PAAD

Based on the above 29 TME gene signature score, consistent
clustering was conducted using R package ConsensusClusterPlus
(Wilkerson and Hayes, 2010) in the PACA-AU cohort. In this
process, 500 bootstraps were performed, with the “km” algorithm
and “1-Pearson correlation” as the metric distance and each
bootstrap processing 80% of the training set patients. Cluster
number was from 2 to 10. The optimal classification was defined
through consistency matrix calculation, and consistency cumulative
distribution function was applied for obtaining PAAD molecular
subtypes based on sample TME.

2.4 Association between PAAD molecular
patterns with the clinical characteristics and
prognosis

Clinical significance of the PAAD molecular subtypes was
identified by consensus clustering, and we analyzed associations
between molecular subtypes, clinical features (TNM Stage, Stage,
Grade, Age, and Gender) and survival outcomes. The survminer
(https://cran.r-project.org/web/packages/survminer/index.
html) in R package survival (https://cran.r-project.org/web/
packages/survival/index.html) was used for Kaplan-Meier

survival analysis to assess differences in OS among different
molecular subtypes.

2.5 Pathway characteristics between
molecular subtypes

Gene Set Enrichment Analysis (GSEA) was conducted using the
KEGG gene set (c2. cp.kegg.v7.4), with FDR <0.05 as a threshold to
determine significantly enriched pathways (Subramanian et al.,
2005).

2.6 Clinical significance of molecular
subtypes and drug sensitivity analysis

T-cell–inflamedGEP is a predictor of response to pembrolizumab in
cancer patients (Ayers et al., 2017). We calculated T-cell-Inflamed GEP
score for each patient in different subtypes to predict pembrolizumab
response in PAAD patients. Considering that IFN-γ is a critical cytokine
in immune regulation and anti-cancer immunity, and that Th1 activates
anti-tumor response of the body by biasing the secretion of IFN-γ, we
also analyzed the Th1/IFNγ gene signature. Th1/IFNγ gene signaturewas
from the study of Danilova et al. (Danilova et al., 2019), and the Th1/
IFNγ score in each subtype sample was calculated using ssGSEAmethod.
Next, we assessed differences in cytolytic activity and expression of
CTLA4, LAG3, BTLA, HAVCR2, and TIGIT among different molecular
subtypes. Finally, the half-inhibitory concentration (IC50) values of
traditional chemotherapeutic agents applying the R package
pRRophetic (Geeleher et al., 2014).

2.7 Programmed cell death (PCD) analysis

Twelve PCD patterns were acquired from previous (Zou et al.,
2022). Altogether, 580 apoptosis genes, 52 pyroptosis genes,
87 ferroptosis genes, 367 autophagy genes, 14 cuproptosis genes,
9 parthanatos genes, 15 entotic cell death genes, 101 necroptosis
genes, 8 netotic cell death genes, 7 alkaliptosis genes, 220 lysosome-
dependent cell death genes, and 5 oxeiptosis genes were collected.
Based on the expression data of above gene sets, ssGSEA analysis
was conducted on PAAD tumor samples using the R package GSVA.

2.8 Identification and functional enrichment
analysis of DEGs

We calculatedDEGs between C1 vs. Other, C2 vs. Other, andC3 vs.
Other using the R package limma (|log2FC| > 1 and FDR <0.05)
(Ritchie et al., 2015). Based on these DEGs, the R package clusterProfiler
was used for GO and KEGG enrichment analysis. (Yu et al., 2012).

2.9 Construction of PAAD prognostic risk
assessment model

Univariate COX regression analysis on DEGs was performed
in The R package for filtering genes showing greater impact on
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prognosis (p < 0.01). The R package glmnet (Simon et al., 2011)
conducted to perform LASSO COX regression analysis, genes
with strong correlation were removed after the selection of the
best penalty parameter lambda using 10-fold cross-validation.
Finally, using stepwise multivariate regression analysis, based on
the Akaike Information Criterion (Portet, 2020), the DEGs with
the smallest AIC value were selected as the key genes that affected
the prognosis of PAAD, and a clinical prognosis prediction
model was constructed. The formula is as follows:

RiskScore � ∑ βipExp i

where i referred to the gene expression level, β was the
corresponding gene Cox regression coefficient. Model
performance was validated in the training set PACA-AU cohort
and validation set cohorts PACA-CA, TCGA-PAAD cohorts.

2.10 Relationship between RiskScore
grouping and TME and analysis of pathway
characteristics

We performed GSEA enrichment analysis using the R package
GSVA, and pathways with FDR <0.05 were considered as
significantly enriched pathways. Next, the immune and stromal
scores of PAAD patients were calculated with the ESTIMATE
algorithm (Yoshihara et al., 2013) and we then determined the
abundance of immune cell infiltration in 22 of each PAAD patient
using the CIBERSORT algorithm (Chen et al., 2018). Finally, the
relationship between RiskScore and cancer-related pathway activity
score was studied.

2.11 Risk score group immunotherapy/
chemotherapy difference analysis

Finally, differences in the effects of immunotherapy and
chemotherapy between different Risk score groups were
studied. We downloaded the TIDE scores of PAAD patient
samples in the PACA-AU cohort from the TIDE (http://tide.
dfci.harvard.edu/) database. A higher the TIDE prediction was
positively correlated with a greater likelihood of immune escape,
which indicate that the patients would be less likely to acquire
immunotherapy benefit. Meanwhile, we downloaded the
expression dataset IMvigor210 (http://research-pub.gene.com/
IMvigor210CoreBiologies/) of 348 urothelial carcinoma
patients treated with immunotherapy to verify the predictive
significance of RiskScore.

2.12 Statistical analysis

R software (4.0.2, https://www.r-project.org/) was used for
statistical analysis. Rms package was used to build nomogram.
The student’s t test was used to compare the two groups.
Kruskal–Wallis test was used to compare the divergence
between multiple groups. P< 0.05 considered as Statistical
significance.

3 Result

3.1 The association between 29 TME gene
signatures and clinical characteristics in
PAAD patients

The work flow was showed in Supplementary Figure S1. Based
on 29 TME gene signatures, the TME gene signature score of the
PACA-AU cohort samples were calculated using the ssGSEA
enrichment analysis method. We found that most of the 29 TME
gene signature scores were positively correlated with each other
(Figure 1A). Next, the correlation of clinicopathological
characteristics (gender, stage, age, TNM stage, Grade) and
29 TME gene signature scores of tumor patients were analyzed.
Age was found to be positively correlated with most of the TME gene
signature scores (Figure 1B). In addition, we also found that TNM
Stage and Grade were positively correlated with EMT and with CAF-
related TME signature (Figure 1B). Meanwhile, we also compared
the differences in TME gene signature scores among the different
pathological feature groups, and found that Co-activation
molecules, Treg and Th2 traffic, and B cell scores were elevated
in the N1+N2+N3 stage patients. M1 signature, Co-activation
molecules, Matrix remodeling, and Antitumor cytokines were
elevated in Stage III + IV patients. Matrix, Protumor cytokines,
EMT signature, Tumor proliferation rate, and Angiogenesis were
elevated in G3+G4 grade patients (Figure 1C). Finally, univariate
COX regression analysis showed that Tumor proliferation rate (p <
0.001, HR = 1.330, 95%CI = 1.130–1.580), Granulocyte traffic (p =
0.009, HR = 1.250, 95%CI = 1.060–1.480), T cells (p = 0.024, HR =
0.834, 95%CI = 0.712–0.977), B cells (p = 0.012, HR = 0.797, 95%
CI = 0.668–0.952) and Treg and Th2 traffic (p < 0.001, HR = 0.745,
95%CI = 0.635–0.875) and other TME gene signature scores were
significantly associated with OS in PAAD patients (Figure 1D).

3.2 Identification of 3 molecular subtypes in
PAAD

To classify TME subtypes in PAAD, we assessed the TME status
of 267 PAAD patients in the PACA-AU cohort using 29 TME gene
signature scores. Here, consistent clustering based on the TME gene
signature score was used to classify patients with PAAD. Cumulative
distribution function (CDF) determined the optimal cluster number
was k = 3. Therefore, we obtained three molecular subtypes in
PAAD, Cluster 1 (C1), Cluster 2 (C2) and Cluster 3 (C3)
(Supplementary Figures S2A–C). The heatmap showed that the
C1 subtype had significantly higher CAF, tumor-promoting gene
signatures, and EMT and Tumor proliferation rate scores than the
other two molecular subtypes, and the C3 subtype was significantly
enriched for some immune-related signatures (Figure 2A). PCA
analysis indicated that PAAD patients constituted molecular
subtypes according to TME characteristics (Figure 2B).
Furthermore, we found that except for Th2 signature and
antitumor cytokines, the remaining 27 TME gene signature
scores were significantly different among the three molecular
subtypes (Figure 2C). In addition, we quantified the intensity of
oncogenic signaling pathways using the expression of pathway target
gene signatures. The results showed that signaling pathways such as
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EGFR, Hypoxia, MAPK, PI3K, VEGF were activated in the
C1 subtype, and that NFκB, Trail signaling pathways were
activated in the C3 subtype. (Figures 2D,E). Patients showed a

better prognosis if with subtype C3, while that of those with
subtype C1 was poorer, as shown by the results of survival
analysis (Figure 2F). Moreover, the tumor mutation load was

FIGURE 1
The association between 29 TME gene signatures and clinical characteristics in PAAD patients (A) correlation between TME of tumor samples in the
PACA-AU cohort (B) correlation between TME and clinicopathological characteristics in the PACA-AU cohort (C) difference analysis in TME between
different clinicopathological characteristics (D) forest map of univariate cox analysis results of TME signature.
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higher in C1 and C2 than that in C3 (Figure 2G) In general, based on
the TME gene signature scores, the three molecular subtypes showed
different immune activities, and the different TME status may
influence the prognosis of PAAD patients.

3.3 Clinicopathological characteristics of the
three PAAD molecular subtypes

In the PACA-AU cohort, we statistically analyzed the
clinicopathological characteristics of Grade, Age, M stage,
Gender, stage, T stage, N stage in patients of three subtypes to
investigate the differences in clinicopathological characteristics of
patients of different subtypes. The results showed that patients of
C1 subtype had a higher clinical grading (Figures 3A, B).

3.4 Differences in biological pathways
among molecular subtypes

According to the results of GSEA enrichment analysis, the
C1 subtype in the PACA-AU cohort is mainly enriched in KEGG
DNA replication, KEGG p53 signaling pathway, KEGG nucleotide
excision repair, KEGG cell cycle-related pathways and EMT-related
pathways such as KEGG focal adhesion and KEGG ECM receptor
interaction (Supplementary Figure S3A). C2 Subtype are mainly
enriched in KEGG retinol metabolism, KEGG metabolism of
xenobiotics by cytochrome p450, KEGG glutathione metabolism,
and other metabolism-related pathways (Supplementary Figure
S3B). C3 Subtype are mainly enriched in KEGG cytokine KEGG
complement and coagulation cascades, cytokine receptor interaction,

KEGG primary immunodeficiency, KEGG antigen processing and
presentation, KEGG chemokine signaling pathway in immune-related
pathways (Supplementary Figure S3C). Meanwhile, the results of
ssGSEA enrichment analysis showed that C1 Subtype were
significantly enriched in hallmark PI3K/Akt/mTOR signaling,
hallmark glycolysis, hallmark E2F targets, hallmark DNA repair,
hallmark MYC targets v1, hallmark unfolded protein response,
hallmark mitotic spindle hallmark G2M checkpoint, hallmark
MYC targets v2, and other cell cycle related pathways, the
C3 isoform is mainly enriched in hallmark allograft rejection,
hallmark interferon alpha response, hallmark interferon gamma
response, hallmark IL2/STAT5 signaling, hallmark IL6/JAK/
STAT3 signaling, hallmark inflammatory response, and other
immune-related pathways (Supplementary Figure S3D).

3.5 Immunotherapy/chemotherapy drug
sensitivity/PCD analysis among molecular
subtypes

Though evaluating the T-cell–inflamed GEP score of patients
with the 3 molecular subtypes in the PACA-AU cohort, we found
that patients with the C3 subtype had a higher T-cell–inflamed GEP
score (Figure 4A). The Th1/IFNγ gene signature ssGSEA score of the
sample was calculated by the ssGSEA method, and the results show
that the C3 subtype has a higher Th1/IFNγ gene signature ssGSEA
score (Figure 4B). These results also implied that C3 subtype may be
more sensitive to immunotherapy. In addition, cytolytic activeness
as well as CTLA4, LAG3, BTLA, HAVCR2 and TIGIT were
significantly higher in C3 subtypes than in C1 and C2 subtypes.
(Figures 4C, D). Next, to determine the sensitivity of different

FIGURE 2
Analysis of TME differences in samples of 3 molecular subtypes divided by consistency clustering (A) heatmap of TME signature distribution in three
molecular subtypes in the PACA-AU cohort (B) distribution of samples for PCA analysis of molecular subtypes (C) boxplots of TME signature score
differences among threemolecular subtypes in the PACA-AU cohort (D) Relative signaling pathway activity scores in tumor cells measured fromRNA-seq
by PROGENy (E) boxplots showing differences of relative signaling pathway activity scores in tumor cells measured from RNA-seq by PROGENy (F)
Kaplan-Meier survival curves of three TME molecular subtypes (G) the difference of tumor mutation load among three molecular subtypes. *p < 0.05;
**p < 0.01; ***p < 0.001; ****p < 0.0001; ns: no significance.
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subtypes of patients to chemotherapy, we assessed IC50 values for
chemotherapeutics in patients in the PACA-AU cohort. It was found
that the C1 subtype was more sensitive to the four chemotherapeutic
agents Dasatinib, Gemcitabine, Cisplatin, and Erlotinib, while the
C3 subtype was more sensitive to 5-Fluorouracil (Figure 4E).
Combined with the results of TME analysis, C3 patients have
higher TME activity and may be more adapted to
immunotherapy, while C1 subtype patients have lower TME
activity and were not sensitive to immunotherapy response. The
ssGSEA analysis of 12 PCD patterns indicated that 8 PCD patterns
had obviously differences among 3 subtypes, and in general, C2 or
C3 subtype had higher ssGSEA scores (Figure 4F).

3.6 Internal validation and external
exploration of TME molecular subtypes

Patients in the PACA-AU dataset were randomized into a
training cohort (n = 215) and a test cohort (n = 52). We
incorporated the TME score into the Artificial Neural Networks
(ANN) model and validated it on the validation set to determine the
TME clustering, where the hidden neural nodes of our ANN model
were set to 5. The accuracy for the artificial neural network model in
internal validation was 0.904, and that of the ANN model in the
entire PACA-AU cohort was 0.981. In the external validation
dataset, we obtained TME classification results using the SVM

FIGURE 3
Clinicopathological characteristics of molecular subtype samples (A) clinicopathological characteristics of molecular subtypes in the PACA-AU
cohort (Chi-square test) (B) clinicopathological characteristics of molecular subtypes in the PACA-AU cohort; The lower part is the proportion, and the
upper part is the statistical significance of distribution difference between pairs (chi-square test).
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FIGURE 4
Immunotherapy/chemotherapy drug sensitivity analysis among molecular subtypes (A) T cell inflamed GEP score between different molecular
subtypes (B) Th1/IFNγ gene signature ssGSEA score between different molecular subtypes (C) cytolytic activity between different molecular subtypes (D)
Differential expression of immune checkpoint genes among different molecular subtypes (E) The boxplots of the estimated IC50 for dasatinib,
gemcitabine, cisplatin, erlotinib and 5-Fluorouracil in PACA-AU (F) the ssGSEA score differences of 12 programmed cell death patterns among
3 molecular subtypes. *p < 0.05; ***p < 0.001; ****p < 0.0001; ns: no significance.
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model and observed that the predicted TME clusters in the TCGA-
PAAD and PACA-CA cohorts were consistent with the predicted
survival differences in the PACA-AU dataset (Figures 5A, B).
Furthermore, we also explored the landscape of infiltrating cells
in the TME. Higher CAF scores were observed in C1 patients in
different validation datasets. In addition, a higher immune
infiltration can be observed in C3 patients. These findings in the
validation dataset indicated that the pattern of enrichment of
infiltrating cells was similar to the PACA-AU dataset
(Figures 5C–F).

3.7 Differential expression analysis between
molecular subtypes

To identify DEGs in the three PAAD molecular subtypes, we
performed differential expression analysis for C1 vs. Other, C2 vs.
Other and C3 vs. Other, respectively. Finally, 195 DEGs were
identified in the C1 subtype, containing 53 upregulated genes
and 142 downregulated genes (Figure 6A). 21 DEGs were
identified in the C2 subtype, including 9 upregulated genes and
12 downregulated genes (Figure 6B). 339 DEGs were identified in
the C3 subtype, including 307 upregulated genes and
32 downregulated genes (Figure 6C). GO and KEGG enrichment
analysis on upregulated genes in C1, C2, and C3 subtypes showed
that upregulated genes in C1 subtype were mainly enriched in the
pathways related to cell matrix, and that the upregulated genes in the
C2 subtype were significantly enriched to some metabolism-related
pathways, moreover, upregulated genes in the C3 subtype were
significantly enriched to some immune-related pathways
(Figure 6D). The Pathway Interaction Database analysis showed
that upregulated genes in C1 were enriched in HNF3A pathway,
MYC repress pathway and ERA genomic pathway (Supplementary
Figure S4A), upregulated gene in C3 were enriched in some
inflammatory factor-related pathways (Supplementary Figure
S4B). Wiki Pathways analysis indicated that upregulated genes in
subtypes also enriched in some tumor related pathways, immune
related pathways (Supplementary Figures S4C–E). Finally,
400 DEGs among the three molecular subtypes were screened.

3.8 Establishment and validation of clinical
prognosis model

To construct a clinical prediction model for PAAD, prognosis-
related genes were screened from 400 DEGs. Model construction
was performed using the PACA-AU cohort, and univariate COX
regression analysis identified 110 genes from 400 DEGs with a high
impact on OS in PAAD patients (p < 0.01), including 33 risk genes
and 77 protective genes. LASSO COX regression analysis was
conducted using these 110 genes, and the model was constructed
by selecting the appropriate penalty parameter lambda with 10-fold
cross-validation. We found that the model was optimal when
lambda = 0959 with 11 genes including MUC16, KRT6C,
KANK4, COL7A1, KRT13, GJB6, DKK1, CAPN9, LOX, SFRP4,
UCP2(Figures 7A, B). Finally, multivariate COX regression analysis
was further performed on these 11 genes, and the optimal model was
selected based on the minimum AIC value with 6 genes (UCP2,

DKK1, MUC16, KRT6C, CAPN9, SFRP4) as the PAAD prognostic
gene. A risk assessment model was constructed, with HR of UCP2,
CAPN9 and SFRP4 of less than 1 as protective factors and that of
DKK1, MUC16, KRT6C greater than 1 as risk factors (Figure 7C).
The RiskScore of each patient was calculated according to the
following formula: RiskScore = 0.171 * UCP2 + 0.152 * DKK1 +
0.127 * MUC16 + 0.102 * KRT6C—0.079 * CAPN9—0.156 * SFRP4.

Subsequently, the RiskScore of tumor samples in the PACA-AU
cohort was calculated and patients were divided into high-risk
groups (n = 114) and low-risk groups (n = 153) with a threshold
of 0. We found that PAAD patients had decreased survival time and
increased mortality as their RiskScore increased. Meanwhile, the
expression levels of protective factors such as UCP2, CAPN9, and
SFRP4 in the low-risk group were significantly higher than those in
the high-risk group, and the expression levels of risk factors such as
DKK1, MUC16, and KRT6C in the high-risk group were
significantly higher than those in the low-risk group (Figure 7D).
Subsequently, we plotted the survival curves between high- and low-
risk groups, and found that patients in the high-risk group had a
poorer prognosis in contrast to those in the low-risk group with a
better prognosis (Figure 7E). Prediction efficiency for the RiskScore
was assessed by ROC analysis, showing an AUC value of 0.79, 0.78,
and 0.73 at 1-, 2-, and 3-year (s), respectively (Figure 7F). To further
validate the predictive accuracy of the clinical prognostic model, we
performed validation in external independent validation sets PACA-
CA and TCGA-PAAD. The results were consistent with the PACA-
AU cohort, because poor prognosis in the high-risk group and better
prognosis in the low-risk group were observed. The ROC analysis of
the PACA-CA cohort showed that the AUC values were 0.7, 0.64,
and 0.72 at 1-, 2-, and 3-year(s), respectively, and the ROC analysis
of the TCGA-PAAD cohort showed that at 1-, 2- year and 3-year
AUC value was 0.64, 0.73, and 0.69, respectively (Figures 7G–J).
These results suggested that our PAAD clinical prognostic model
based on DEGs among different molecular subtypes had a high
predictive accuracy. Furthermore, we found 5 of 6 model genes
expressions were closely associated with methylation level of those
genes (Figure 8).

3.9 RiskScore performance on different
clinicopathological characteristics and
different molecular subtypes

To examine the relationship between RiskScore and
clinicopathological characteristics of PAAD, we analyzed the
differences in RiskScore between different TNM grades and Stage
clinical grades in the PACA-AU dataset. RiskScore of patients
increased with clinical grade, and interestingly, and patients with
C1 subtype were significantly higher than C2 and C3 subtypes
(Figure 9A). Notably, those in the high-risk group had a higher
clinical grade and a higher proportion of patients with the
C1 molecular subtype (Figure 9B). Meanwhile, the result was
further verified by the Sankey diagram (Figure 9C). Finally,
survival analysis in different clinicopathological characteristics
subgroups revealed that patients with low RiskScore had higher
survival rates in different clinical subgroups (Figure 9D). These
results further demonstrated that the clinical prognostic model of
PAAD constructed in this study was a reliable predictor.
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FIGURE 5
Internal validation and external exploration of tme clusters (A) Kaplan-Meier survival analysis between three different molecular subtypes in the
TCGA-PAAD cohort (B) Kaplan-Meier survival analysis between three different molecular subtypes in the PACA-CA cohort (C) Distribution of TME
signature among threemolecular isoforms in the TCGA-PAAD cohort (D)Distribution of TME signature among threemolecular subtypes in the PACA-CA
cohort (E) Boxplot of differences in TME signature among the three molecular subtypes in the TCGA-PAAD cohort (F) Boxplot of differences in TME
signature among the three molecular subtypes in the PACA-CA cohort. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns: no significance.

FIGURE 6
Identification of DEGs betweenmolecular subtypes (A) volcano plot of DEGs in C1 vs. other in the PACA-AU cohort (B) volcano plot of DEGs in C2 vs.
other in the PACA-AU cohort (C) volcano plot of DEGs in C3 vs. other in the PACA-AU cohort (D) functional enrichment analysis of upregulated DEGs in
C1, C2 and C3 groups in the PACA-AU cohort.
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FIGURE 7
Establishment and validation of clinical prognostic model (A) LASSO coefficients of 11 genes in the PACA-AU cohort (B) determination of optimal
lambda value using partial likelihood deviance of variables (C) Forest plot of multi-factor COX regression analysis (D) Sample distribution plot, survival
status scatter plot, and 6-gene heatmap in the PACA-AU cohort (E) Kaplan-Meier survival analysis of high - and low-risk patients in the PACA-AU cohort
(F) ROC curve of PACA-AU cohort (G) Kaplan-Meier survival analysis of high—and low-risk patients in the TCGA-PAAD cohort (H) ROC curve of
TCGA-PAAD cohort (I) Kaplan-Meier survival analysis of high- and low-risk patients in the PACA-CA cohort (J) ROC curve of PACA-CA cohort.
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3.10 Immune infiltration/pathway
characteristics between two groups

To explore the differences in biological pathways in the high-
and low-risk groups, GSEA enrichment analysis was performed. We
found that the high-risk group was significantly enriched in cell
cycle-related signaling pathways such as KEGG_P53_SIGNALING_
PATHWAY and KEGG_CELL_CYCLE (FDR <0.05) (Figure 10A).
ESTIMATE analysis showed that the low-risk group had higher
StromalScore, ImmuneScore, and ESTIMATEScore (Figure 10B). In
addition, we also used the CIBERSORT algorithm to calculate the
abundance of 22 types of immune cells in patients in the two risk
groups. It was observed that the infiltration levels of T_cells_
CD8 and T_cells_CD4_memory_resting in the low-risk group
were significantly higher than those in the high-risk group
(Figure 10C). Analysis on RiskScore with the level of 22 types of
immune cell infiltration showed that the RiskScore was positively
correlated with Neutrophils abundance and negatively correlated
with CD8+ T cell, CD4+ menory resting T cell abundance
(Figure 10D). A significant positive correlation was found
between RiskScore and gene signatures related to Angiogenesis
and Fibroblasts and EMT (Figure 10E). Finally, RiskScore was
found to be significantly positively correlated with EGFR,
Hypoxia, MAPK, PI3K, and TNFa and VEGF pathways
(Figure 10F).

3.11 Differences in immunotherapy/
chemotherapy/PCD patterns between
riskscore groups

Next, the efficacy of RiskScore as a biomarker in predicting
immunotherapy and chemotherapy response of PAAD patients was
further validated. First, we evaluated the T-cell-inflamed GEP score
and Th1/IFNγ gene signature ssGSEA score in the high-risk and
low-risk groups, and the results showed that the T-cell-inflamed
GEP score, not Th1/IFNγ gene signature score, was higher in the
low-risk group (Figures 11A, B). Meanwhile, cytolytic activity,
CTLA4 and BTLA were higher in the low-risk group (Figures
11C, D). We also found that MDSC, Exclusion and TIED scores
were lower in the low-risk group, indicating that patients in the low-
risk group may be more sensitive to immunotherapy (Figure 11E).
Further, we analyzed the correlation between RiskScore and T-cell-
inflamed GEP score, Th1/IFNγ gene signature score, immune
checkpoint expression, and TIDE. It was clearly observed that
RiskScore was significantly positively correlated with MDSC,
Exclusion, and TIDE but negatively correlated with T cell
inflamed GEP score, Cytolytic activity and the expression of
immune checkpoint gene (Figure 11F).

Furthermore, to test the ability of our model in predicting
patients’ benefit from immunotherapy, we applied the model to
the immunotherapy cohort (IMvigor210 cohort). In the

FIGURE 8
The correlation analysis between hub genes expressions and methylation level.
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FIGURE 9
Association of riskscore with clinicopathological characteristics and molecular subtypes (A) Differences in riskscore between different
clinicopathological groupings and between TME molecular subtypes in the PACA-AU cohort (B) clinicopathological information in the high and low risk
group of the PACA-AU cohort; The lower part is the proportion, and the upper part is the statistical significance of the distribution difference between the
two pairs (C) Sankey diagram of subtype distributions in groups with different RiskScore (D) Kaplan-Meier survival analysis between different
clinicopathological groups in the PACA-AU cohort with high and low RiskScore.
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FIGURE 10
RiskScore performance on different clinicopathological characteristics and different molecular subtypes (A) A GSEA algorithm was performed with
all KEGG gene sets in different RiskScore groups (B) ESTIMATE analysis between high- and low-risk groups in the PACA-AU cohort (C) abundance of
22 types of immune cell infiltration (D) correlation analysis of 22 immune cell components with RiskScore (E) correlation between riskscore and TME gene
signatures ssGSEA score (F) Correlation between RiskScore and pathway activity scores. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns: no
significance.
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IMvigor210 cohort, anti-PD-L1 treatment of patients with
progressive disease (PD) and stable disease (SD) had a
significantly higher RiskScore than the complete remission (CR)
and partial remission (PR) groups (Figure 11G). We also found a
higher proportion of CR/PR patients in the low-risk group
(Figure 11H). In addition, patients in the high-risk group had a
significantly shorter survival time than those in the low-risk group
(Figure 11I). In Stage I + II stage patients, the survival time of
patients in the high-risk group was also significantly shorter than
that in the low-risk group, while the difference was not significant in
Stage III + IV (Figures 11J, K). These findings suggested that
RiskScore can be used to predict immunotherapy response in

PAAD patients, and importantly, RiskScore is a reliable predictor
in the prognosis prediction of early PAAD patients. Finally, in the
PACA-AU cohort, we observed that patients in the high-risk group
were more sensitive to Dasatinib, Gemcitabine, Cisplatin, Erlotinib
(Figure 11L). Then, Pearson correlation analysis was conducted
between RiskScore and sensitivity of chemotherapy drugs, and it was
observed that RiskScore was significantly correlated with sensitivity
of 11 drugs, and significantly negatively correlated with Entinostat,
GSK2606414, VE821, LCL161, AZD6738, Sapitinib, Nelarabine,
Entospletinib, AZD7762. RiskScore was positively correlated with
TAF1_5496 and Vincristine. (Figure 11M). These results
demonstrated that RiskScore was potentially a reliable biomarker

FIGURE 11
Differences in immunotherapy/chemotherapy between riskscore groups (A) differences in T cell inflamed GEP scores between high and low risk
groups (B) differences in Th1/IFNγ gene signature ssGSEA score between high- and low-risk groups (C) differences in cytolytic activity between high- and
low-risk groups (D) differences in immune checkpoint expression between high- and low-risk groups (E)Differences in TIDE between high- and low-risk
groups (F) Correlation analysis of RiskScore with T cell inflamed GEP score, Th1/IFNγ gene signature ssGSEA score, Cytolytic activity, immune
checkpoint gene expression and TIDE (G) RiskScore differences among samples in the IMvigor210 cohort (H) Distribution of immunotherapy response
between high- and low-risk groups in the IMvigor210 cohort (I) Kaplan-Meier survival analysis between high and low risk groups in the IMvigor210 cohort
(J) Kaplan-Meier survival analysis between high- and low-risk groups for early Stage I + II patients in the IMvigor210 cohort (K) Kaplan-Meier survival
analysis between high- and low-risk groups for early Stage III + IV patients in the IMvigor210 cohort (L) The box plots of the estimated IC50 for docetaxel,
vinorelbine, paclitaxel and cisplatin in PACA-AU (M) Relationship between RiskScore and drug sensitivity. *p < 0.05; **p < 0.01; ***p < 0.001; ****p <
0.0001; ns: no significance.
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for predicting PAAD patients’ response to immunotherapy and
chemotherapy.

In addition, 5 of 12 PCD patterns had increased ssGSEA score in
low group in comparison to high group (Figure 12A). Further, we
analyzed the correlation between RiskScore, 6 model genes and
12 PCD patterns, and there were different degrees of correlation
with each other (Figure 12B).

3.12 Construction of nomogram

Univariate and multivariate cox regression analysis showed that
RiskScore, N stage and Age were independent prognostic factors
(Figures 13A, B). Nomogram combining RiskScore and clinical
features was used to predict the probability of 1-, 2- and 3-years
OS in PAAD patients (Figure 13C). Moreover, calibration plots
indicated that in comparison with an ideal model, the nomogram
had a similar performance (Figure 13D). The results of DCA also
indicated that our nomogram had high potential for clinical utility
(Figure 13E). Moreover, nomogram had higher AUC in 1-, 2- and 3-
year (Figure 13F).

4 Discussion

Immunotherapy as a new and promising cancer treatment
modality kills tumor cells by enhancing antitumor response of
tumor patients (Yang, 2015). Excitingly, immunotherapy that
enhances immune cell—mediated tumor killing by inhibiting
immune checkpoints has been shown to be a promising
treatment for melanoma and colorectal cancer. However, patients
with some solid tumors, including PAAD, could hardly benefit from
immunotherapy (McCormick et al., 2016). Tumor
microenvironment has been well known to play a critical role in
clinical outcomes and treatment response of cancer by affecting
immune cell infiltration, tumor progression, and drug antitumor
effects (Xiao and Yu, 2021). Although the importance of TME in
cancer is well established, PAAD lacks comprehensive analysis of

transcriptomic data based on the combination of tumor and TME.
Therefore, mining TME signature and clinical treatment response
for PAAD patients is crucial for elucidating its pathogenic
mechanism and developing new therapeutic strategies.

In this study, PAAD samples were described as three different
TME molecular subtypes (C1, C2, C3) using consistent clustering
based on ssGSEA scores of 29-TME signature in the PACA-AU
cohort. Among them, the signature of CAF and tumor-promoting
association in C1 subtype showed a higher score. CAF is the most
abundant cell in stromal cells in TME and it regulates the biological
properties of cancer cells and other stromal cells through
coordinating crosstalk within TME and releasing multiple
regulatory factors (Chen et al., 2021a). The extracellular matrix
reconstituted by CAFs could act as a physical barrier to support
tumor cell infiltration and inhibit antitumor leukocyte infiltration,
resulting in immune escape, cancer progression, and
immunotherapy resistance (Kaur et al., 2019). Furthermore, by
impairing drug delivery and immune signaling pathways, CAF
may confer actual therapeutic resistance (Kalluri, 2016).
Interestingly, a previous study showed that high CAF leads to
poor prognosis in cancer patients (Pelon et al., 2020). Survival
analysis in the current study showed that patients with
C1 molecular subtype had higher CAF signature and
clinicopathological stage, and that those with C1 molecular
subtype had the worst prognosis. This was also in accordance
with previous studies. Similarly, patients with high clinical grade
was significantly more in the C1 molecular subtype, which was less
sensitive to immunotherapy. We speculated that this may be due to
immunotherapy resistance resulted from high CAF infiltration.

From the three molecular subtypes, we screened UCP2, DKK1,
MUC16, KRT6C, CAPN9, SFRP4 and other genes related to PAAD
prognosis and constructed a clinical prognosis model. UCP2 was
found to function crucially in pancreatic ductal adenocarcinoma
(PDAC), and that UCP2 silencing reduces glutaminolysis and
nicotinamide adenine dinucleotide phosphate (NADPH)
production in P DAC cell lines, ultimately affecting tumor
growth (Raho et al., 2020). In breast cancer metastasis, DKK1 is
a serum marker that promotes breast cancer bone metastasis by

FIGURE 12
The association between programmed cell death patterns and RiskScore. (A) The ssGSEA score differences of 12 programmed cell death patterns
between high- and low-group. (B) The correlation analysis between 12 programmed cell death patterns and RiskScore. *p < 0.05; **p < 0.01; ****p <
0.0001; ns: no significance.
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regulating the WNT signaling pathway (Zhuang et al., 2017).
Moreover, MUC16 is associated with PDAC malignant
progression, and that truncated O-glycans containing

MUC16 activate FAK signaling through specific interactions with
α4 and β1 integrin complexes on cancer cell membranes,
contributing to PDAC malignancy progress (Rajesh et al., 2022).

FIGURE 13
Establishment of nomogram. (A,B) Univariate and multivariate cox regression analysis of RiskScore and clinical features. (C) A nomogram was
developed using riskScore and clinical features. (D) calibration plots of standard curve and actual forecast curve. (E) decision curve analysis. (F) AUC
analysis of riskscore, nomogram, clinical features.
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The study found that for high-grade serous ovarian cancer
(HGSOC), CAPN9 may be a therapeutic target. By binding to
the 3′-untranslated region (UTR) of CAPN9, tumor suppressor
miR-585-3p inhibits the expression of CAPN9 to suppress the
growth and migration of HGSOC (Lu et al., 2021). High-
expressed SFRP4, which correlates with a poor prognosis of
gastric cancer, can activate the Wnt pathway to promote tumor
progression and predict a poor survival of patients suffering from
gastric cancer (Li et al., 2021). However, KRT6C is less studied in
cancer, and its specific mechanism is still unclear. In this study, our
clinical prediction model composed of 6 signature genes showed
excellent predictive performance. Combined with published studies,
most of the PAAD prognostic signature genes we identified are
associated with tumor malignant progression. We speculated that
the six genes may be new therapeutic targets for PAAD, but its
molecular mechanism in PAAD should be further explored in order
to understand its role in tumor progression and treatment.

In this study, patients were divided by the RiskScore, and those
with a low risk survived longer. This was also verified in the external
validation sets TCGA-PAAD and PACA-CA. Notably, PAAD
patients with poor prognosis C1 subtype or higher subtype were
assigned to the high-risk group, which might be explained by
different TME states in PAAD. The infiltration level of
Macrophages_M0 and Macrophages_M2 was higher in the high-
risk group, while that of T_cells_CD8 and Monocytes was higher in
the low-risk group. CD8 + T cells are the main killer of tumor cells,
and factors such as C AF accumulated in TME can lead to depletion
of CD8 + T cells, which in turn cause immune escape of tumor cells
(Raskov et al., 2021). Chen and colleagues found that polarization of
monocyte-derived macrophages into M2 macrophages could be
induced by both CAFs and cancer cells, thereby promoting HCC
cells’ malignant features (Chen et al., 2021b). In contrast,
M2 macrophages stimulate tumor growth by promoting tumor
immunosuppression (Pan et al., 2020). This was supported by
our current findings, and we hypothesized that higher levels of
CAF may deplete CD8+ T cells and induce Macrophages_M0 in
high-risk patients to M2 polarization, eventually leading to immune
evasion and the development of high-grade tumors. Furthermore, in
the IMvigor210 cohort of patients receiving anti - PD-L1 therapy,
RiskScore could predict PAAD patients’ response to ICB therapy.
These findings suggest that the RiskScore can assess the prognostic
status and immunotherapy response of PAAD patients based on
their TME status, and was therefore an efficient and accurate
biomarker that could be expected to provide important insights
for guiding clinical practice.

Collectively, we have identified molecular subtypes of TME
signatures and constructed a predictive model of PAAD clinical
prognosis based on transcriptomic and clinical data from public
databases of PAAD. Patients with high- and low-RiskScore
showed different immune infiltration and survival rates.
Functionally, RiskScore has excellent ability to predict the
response to immunotherapy and chemotherapeutic drug
sensitivity in PAAD patients. The model has good prognostic
accuracy and could promote individualized prognostic
management and individualized therapeutic intervention.
Combined with clinical characteristics and risk characteristics,
the prediction performance of PAAD was further improved. And
it is worthy of further in vitro and in vivo studies. However, there

were still some deficiencies in this study. Firstly, we lack detailed
treatment data of PAAD—related immunotherapy cohorts. The
RiskScore was validated in the IMvigor210 cohort
(immunotherapy cohort for urothelial carcinoma) for the
immunotherapy of PAAD patients. Secondly, this study used
only research data in public databases for bioinformatics analysis,
and basic or clinical experiments were need to validate the actual
clinical utility of RiskScore in evaluating PAAD. Therefore,
follow-up multi-center large-scale clinical trials are needed to
verify the actual clinical value of RiskScore in assessing the
prognosis and immunotherapy response of PAAD.

5 Conclusion

We developed TME signatures and constructed a predictive
model of PAAD clinical prognosis based on transcriptomic and
clinical data from public databases of PAAD. Different PAAD
molecular subtypes and RiskScore patients showed different
prognosis, pathological characteristics, immune characteristics
and immunotherapy response. RiskScore was an efficient and
accurate biomarker that could be expected to provide important
insights for clinical practice guidance.
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