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Background: Recent studies highlighted the functional role of protein arginine
methyltransferases (PRMTs) catalyzing the methylation of protein arginine in
malignant progression of various tumors. Stratification the subtypes of
hepatocellular carcinoma (HCC) is fundamental for exploring effective
treatment strategies. Here, we aim to conduct a comprehensive analysis of
PRMTs with bioinformatic tools to identify novel biomarkers for HCC subtypes
classification and prognosis prediction, which may be potential ideal targets for
therapeutic intervention.

Methods: The expression profiling of PRMTs in HCC tissues was evaluated based
on the data of TCGA-LIHC cohort, and further validated in HCC TMA cohort and
HCC cell lines. HCC was systematically classified based on PRMT family related
genes. Subsequently, the differentially expressed genes (DEGs) between
molecular subtypes were identified, and prognostic risk model were
constructed using least absolute shrinkage and selection operator (LASSO) and
Cox regression analysis to evaluate the prognosis, genemutation, clinical features,
immunophenotype, immunotherapeutic effect and antineoplastic drug sensitivity
of HCC.

Results: PRMTs expressionwasmarkedly altered both in HCC tissues andHCCcell
lines. Three molecular subtypes with distinct immunophenotype were generated.
11 PRMT-related genes were enrolled to establish prognostic model, which
presented with high accuracy in predicting the prognosis of two risk groups in
the training, validation, and immunotherapy cohort, respectively. Additionally, the
two risk groups showed significant difference in immunotherapeutic efficacy.
Further, the sensitivity of 72 anticancer drugs was identified using prognostic risk
model.

Conclusion: In summary, our findings stratified HCC into three subtypes based on
the PRMT-related genes. The prognostic model established in this work provide
novel insights into the exploration of related therapeutic approaches in
treating HCC.
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Introduction

Liver cancer is the third leading cause of death resulting from
cancer worldwide, and it is responsible for 8.3% of all cancer deaths
and poses a great health challenge (Sung et al., 2021; Vogel et al.,
2022). Hepatocellular carcinoma (HCC) is a major histologic
subtype of liver neoplasms (Tumen et al., 2022). Recent years,
considerable attention has been paid to exploring novel systemic
treatments for HCC patients, especially immune checkpoint
inhibitors (ICIs) (Rizzo et al., 2022; Viscardi et al., 2022). Clinical
response to ICIs including atezolizumab, nivolumab, and
pembrolizumab have been evaluated in HCC patients (Rizzo
et al., 2021). However, despite the numerous available treatment
strategies, survival rate for HCC patients remains low due to
postoperative recurrence, early distant metastasis, and dismal
immunotherapeutic response (Lin et al., 2017; Forner et al.,
2018). Considering its rising prevalence and worse clinical
outcomes, more predictive biomarkers and therapeutic strategies
for HCC deserve to be explored.

Protein arginine methylation, catalyzed by protein arginine
methyltransferases (PRMTs), is emerging as a critical
posttranslational modification (PTM) in various cell biological
processes, such as epigenetic regulation, DNA damage response and
immune surveillance (Jarrold and Davies, 2019; Dai et al., 2022).
Generally, PRMT family enzymes serve as “writers” of PTM, are
classified into three types according to the specificity of product:
type I PRMTs (PRMT1, PRMT2, PRMT3, PRMT4, PRMT6, and
PRMT8) mainly generate asymmetric arginine demethylation
(aDMA); type II PRMTs including PRMT5 and PRMT9 that
catalyze the formation of symmetric arginine dimethylation
(sDMA). PRMT7, identified as type III PRMTs, catalyzes MMA
only (Al-Hamashi et al., 2020; Wang et al., 2021; Dai et al., 2022).
Recently, aberrant methylation of arginine residues has been implicated
in several malignancies and the ectopic expression of PRMTs has been
demonstrated in multiple types of tumors including HCC (Elakoum
et al., 2014; Hernandez et al., 2017; Zhong et al., 2018; Song et al., 2020;
Lei et al., 2022). Further, genetic or pharmacological targeting of PRMTs
enhances the anti-cancer effects (Wang et al., 2019; Huang et al., 2021;
Janisiak et al., 2021). To gain a holistic insight into the mechanism of
PRMTs and successfully develop the effective inhibitors for HCC
precise treatment, comprehensive analysis of PRMTs in HCC is
urgently needed.

In this work, we first analyzed the expression patterns of PRMTs
and screened PRMT-related genes to classify molecular subtypes of
HCC. The molecular tools were constructed by analyzing the
differences among three subtypes and the functional roles of our
prognostic risk model in HCC were further determined. In
summary, our findings provide strong evidence for PRMTs to be
valuable biomarkers and therapeutic targets in HCC.

Results

Expression and mutation status of PRMTs
in HCC

Firstly, we identified the expression patterns of PRMTs in HCC
based on TCGA-LIHC dataset. Among the 9 PRMTs, the

expressions level of PRMT1, PRMT2, PRMT3, PRMT4,
PRMT5 and PRMT7 and PRMT9 in HCC tissues were
frequently overexpressed than those in adjacent normal tissues
(Figure 1A). Further, PRMT1, PRMT2, PRMT3, PRMT4 and
PRMT5 and PRMT6 were significantly correlated with patient’s
poor survival (Figure 1B). Somatic mutations were also found in
PRMT1, PRMT6, PRMT8, and PRMT9 genes (Figure 1C). In terms
of copy number variation (CNV), there was no CNV in PRMT2, and
the main CNV in PRMT1 was copy number gain, while the main
CNV mode in PRMT3, PRMT4, PRMT5, PRMT6, PRMT 7,
PRMT8 and PRMT9 was copy number loss (Figure 1D). Then
the protein expression status of PRMTs in HCC tissues was
identified based on HCC TMA cohort. Results showed that
PRMT1, PRMT3, PRMT5, and PRMT9 were remarkedly
upregulated in HCC tissues compared with matched non-
neoplastic counterparts (Figure 1E). Further, we evaluated the
expression level of 9 PRMT proteins in several HCC cell lines
and an obviously altered expression status of PRMTs in HCC
cell lines were observed (Figure 1F). These data suggest PRMTs
were distinctly differentially expressed in HCC.

Three molecular subtypes of HCC were
stratified according to PRMT related genes

A total of 1,452 genes were identified as PRMT-related genes
through correlation analysis. And 710 genes associated with
prognosis in TCGA-LIHC dataset and 176 prognosis-related
genes in HCCDB18 dataset were selected out via Univariate Cox
regression analysis, respectively. After overlapping the above genes
in two projects, 149 risk genes and 1 protect gene were finally filtered
out for HCC stratification (Figure 2A). Subsequently, the CDF curve
trend and the inflection point of Delta area curve were analyzed, and
we choose 3 as the cluster classification number (Figures 2B, C).
Thereafter, three molecular subtypes of HCC were obtained
(Figure 2D). Compared to C1 and C3 molecular subtypes,
patients in C2 subtype had significantly better prognosis in
TCGA-LIHC dataset and HCCDB18 dataset respectively
(Figure 2E). Significant difference in subgroups distribution and
obvious aggregation in each group were observed through PCA
analysis (Figure 2F). Meanwhile, the enrichment scores of immune-
related genes among three subtypes were prominently different, with
the highest enrichment score in C3 and the lowest enrichment score
in C2 (Figure 2G). The abundance among three HCC subtypes were
significantly different in immune cells quantified by ssGSEA
(Figure 2H). The adaptive and innate immune activity among
three subsets was also evaluated (Figure 2I). Further, the
enrichment degree of 12 immune signatures among the
subgroups were examined and we found that the enrichment
levels of activated dendritic cells (aDCs), antigen presenting cells
(APCs) co-stimulation, check-point, cytokine and cytokine receptor
(CCR), macrophage, MHC class I, Th2 cells, regulatory T-cells
(Treg) in C2 group were significantly downregulated. Whereas,
neutrophils, NK cells and type I/II IFN response in C2 group
were obviously upregulated (Figure 2J). Functionally, GSEA
analysis of C2 subgroup with the best OS results and
C3 subgroup with the worst OS results showed that retinol
metabolism and fatty acid metabolism were remarkably enriched
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FIGURE 1
Expression and mutation status of PRMTs in HCC (A) The expression profiling of 9 PRMTs between HCC tissues and adjacent normal tissues. (B)
PRMTs significantly associated with the prognosis of HCC were displayed in the forest map. (C) The waterfall plot represents somatic mutation status of
9 PRMTs in HCC. (D) The histogram exhibits the CNV pattern of each PRMT family genes. (E) Representative images of IHC staining of PRMTs in HCC TMA
cohorts (left). IHC score of 7 proteins in HCC tissues and adjacent normal tissues were further quantified (right). (F) The protein level of 9 PRMTs in
HCC cell lines and normal liver cell was determined by western blot.
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FIGURE 2
Identification of three PRMT related subtypes of HCC and immune status evaluation (A) The Venn diagram shows the PRMT-related genes with
potential prognostic value that coincide between the TCGA-LIHC project and the HCCDB18 dataset. (B, C) The CDF curve trend and Delta area with k at
2–10. (D) Cluster heat map for consensus matrix with k = 3. (E) The Kaplan-Meier analysis among three molecular subtypes in TCGA-LIHC cohort and
HCCDB18 cohort. (F) The distribution of consensus clusters by PCA. (G) Heat map represents enrichment score distribution of immune genes in
three HCC subtypes. (H) The content of 28 immune cells quantified by ssGSEA in three HCC subtypes. (I) The difference of adaptive immunity and innate
immunity among the three subsets. (J) The enrichment degree of 29 immune signatures in three clusters.
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in this C2 subtype (Supplementary Figure S1A). Signaling pathways
including pathways in cancer, DNA replication, cell cycle and
homologous recombination were mainly enriched in
C3 subgroup (Supplementary Figure S1B).

Prognostic risk model construction and
validation based on PRMT related genes

Next, we conducted differential expression analysis between
HCC C1 and C3 subtypes, C1 and C2 subtypes, and C2 and
C3 subtypes respectively (Supplementary Figures S2A–C). A total
of 45 overlapped genes (PRMT; survival-related genes) were

obtained among DEGs in three HCC molecular subtypes
(Supplementary Figure S2D). The Univariate Cox regression
identified 25 genes that were closely related to disease outcome
of HCC patients (Supplementary Figure S3A) and then LASSO
regression analysis was performed to penalize the linear model and
reduce the complexity of the regression model (Supplementary
Figures S3B, C). After simplifying the model using Multivariate
Cox regression analysis, 11 PRMT-related genes were finally filtered
out for prognostic risk model establishment: Risk score = 0.314 ×
ECT2 + 0.528 × KIF20A + 0.538 × CENPA-0.327 × TOP2A-0.805 ×
CCNB2-0.195 × PKM-0.28 × AURKB + 0.424×CDC20 + 0.131 ×
G6PD-0.059 × SLC22A1-0.069 × ADH4 (Supplementary
Figure S3D).

FIGURE 3
Prognostic riskmodel construction and validation (A) Kaplan-Meier curve (left) displays theOS of HCC patients predicted by prognostic riskmodel in
TCGA-LIHC training cohort. The predictive performancewas determined by ROC curve (right). (B–D) Kaplan-Meier curve (left) represents theOS of HCC
patients validated in HCCDB18, GSE14520, and GSE76427 cohort respectively. The predictive ability was determined by ROC curve (right). (E) The
distribution of risk score among the threemolecular subtypes. (F) The expression of PRMTs among threemolecular subtypes. (G) The level of PRMTs
in the high- and low-risk groups.
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To investigate the clinical significance of our risk model, HCC
patients were divided into high- and low-risk groups based on the
best cutoff value. Remarkable prognostic difference was observed
between two groups and the clinical outcome of patients with high-
risk score was obviously worse than those in low-risk categories. The
area under the receiver operating characteristic (ROC) curve was
0.81 (95% CI 0.75–0.87) in predicting 1-year OS in training samples.
For validating group, the maximum AUC was 0.81 (95% CI
0.72–0.91) for 3-year OS in HCCDB18 cohort, 0.7 (95% CI
0.60–0.80) for 5-year OS prediction in GSE14520, and 0.74 (95%
CI 0.6–0.88) for 3-year OS in GSE76427 cohort (Figures 3A–D).
Meanwhile, risk score displayed significant differences among three
molecular subtypes: C2 with the best survival outcome had the
lowest risk score, while C3 with the worst survival outcome had the
highest risk score (Figure 3E). More importantly, the expression
level of PRMTs in C3 subtypes was notably elevated than that in
C1 and C2 (Figure 3F). Likewise, compared to low-risk category, the
expression intensity of PRMTs in high-risk category was also
significantly stronger (Figure 3G).

Correlation analysis of prognostic riskmodel
with mutation and clinicopathological
features

Subsequently, the tumor mutation burden (TMB) distribution
analysis was performed and no significant difference was found
between two risk groups (Figure 4A). However, the combination of
TMB and prognostic risk grouping system could significantly distinguish
the clinical outcome (Figure 4B). Moreover, different mutation rates of
genes were observed between the high-risk and low-risk categories, with
the mutation rate of TP53 up to 53% in the high-risk category and 20%
in the low-risk category. SPEG, FCGBP, EPHA4, SETD2 and other genes
showed a higher mutation rate in the high-risk category than that in the
low-risk category (Figure 4C). Further, the clinical value of the
prognostic risk model was evaluated in TCGA-LIHC cohort and
result showed that higher risk scores was positively associated with
advanced clinical T stage, TNM stage and grade, but not M stage
(Figure 4D).Moreover, high PRMT expression was also closely corelated
with advanced TNM stage in HCC (Figure 4E).

FIGURE 4
Correlation analysis of prognostic risk model withmutation and clinicopathological features. (A) TMB status in high- and low-risk categories. (B) The
prognostic risk model combined with TMB to predict the prognosis of HCC. (C)Gene mutation rates in high- and low-risk categories. (D, E) Comparison
of risk score and PRMT expression level among patients with different clinicopathological features.
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Effect of prognostic risk model on immune
infiltration and drug response

Then GSEA was performed to investigate biological pathways
which closely related to highly risk in HCC patients. We found that
majority pathways related to tumorigenesis were highly enriched in
high-risk samples, including PI3K_AKT_MTOR SIGNALING,
MTORC1_SIGNALING, E2F_TARGETS and G2M_
CHECKPOINT (Figure 5A). Further correlation analysis showed
a remarkable correlation between the risk score and cell cycle, as well
as DNA damage repair (DDR), nucleotide excision repair and base
excision repair (Figure 5B). HCC subgroup with high-risk score
exhibiting lower stromal score and ESTIMATE score (Figure 5C).

Meanwhile, ssGSEA revealed that the content of activated CD4+

T-cell in the high-risk category significantly increased, while the
enrichment of activated CD8+ T-cell, effector memory CD8+ T-cell,
gamma delta T-cell, eosinophil, CD56 bright natural killer cell, mast
cell and type I T helper cell greatly decreased (Figure 5D). No
significant difference was observed in adaptive and innate immune
between high- and low-risk categories (Figure 5E). Additionally,
higher levels of B cell, mast cell, neutrophils, NK cell, and type I/II
IFN response were detected in the low-risk category, whereas
macrophages and MHC class I at higher levels in the high-risk
category (Figure 5F).

Subsequently, TIDE was used to predict risk score-based clinical
immunotherapy responses. Significantly higher score of TIDE and

FIGURE 5
Effect of prognostic risk model on immune infiltration. (A) Enrichment heatmap of biological pathways in high- and low-risk categories. (B)
Correlation analysis between risk score and biological process. (C) Stromal score, immune score, and ESTIMATE score in high-risk and low-risk
categories. (D) The enrichment scores of 28 immune cells in high- and low-risk groups. (E) The adaptive and innate immune status in two risk groups. (F)
The enrichment scores of 29 immune signature in high- and low-risk categories.
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T-cell exclusion, while lower score of T-cell dysfunction were found
in high-risk categories, indicating that the high-risk category
presented less sensitivity to immunotherapy (Figure 6A).
Likewise, the 11 genes in prognostic risk model were associated
with T-cell dysfunction, ICB response and immune-suppressive cell
types (Figure 6B). Meanwhile, 72 chemotherapeutic or targeted
drugs that showed differential sensitivity between high- and low-
risk categories were determined using pRRophetic, of which 64 were
highly sensitive in high-risk categories and 8 were highly sensitive in
low-risk categories (Figure 6C).

Evaluation the prognostic risk model on
clinical immunotherapeutic response

Four independent clinical cohorts containing gene expression
profiles and immunotherapeutic sensitivity profiles were used to

estimate our prognostic risk model in drug response. As
Kaplan–Meier curves in Figures 7A, D, G, J, patients with high-
risk score have inferior survival outcome than those patients with
low-risk score. In addition, we further evaluated the predictive
accuracy of this risk model. Results displayed that the AUC was
0.64 for 1.5-year OS (95% CI 0.57–0.71) in IMvigor210 cohort
(Figure 7B), 0.79 for 0.5-year OS (95%CI 0.61–0.96) in
GSE135222 cohort (Figure 7E), 0.91 for 1-year OS (95%CI
0.79–1.03) in GSE78220 cohort (Figure 7H), and 0.88 for 2.5-
year OS (95%CI 0.77–0.99) in GSE91061 cohort (Figure 7K),
supporting a good predictive performance of this risk model.
Intriguingly, the proportion of HCC patients with complete
response (CR) and partial response (PR) to immunotherapy in
the low-risk category was remarkable elevated than those in the
high-risk category as determined in IMvigor210 cohort (Figure 7C).
Notably, the high-risk group developed into stable diseases (SD) and
progressive diseases (PD) after receiving immunotherapy in

FIGURE 6
Effect of the prognostic risk model on immune response and drug sensitivity. (A)Comparison of TIDE score, T-cell dysfunction and T-cell exclusion
scores in high- and low-risk group. (B) The correlation between 11 PRMT-related risk genes and T-cell dysfunction, ICB response and phenotypes in
genetic screens and immune suppressive cell types. (C) Sensitivity of 72 chemotherapeutic drugs in high-risk and low-risk categories.
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FIGURE 7
Evaluation prognostic risk model on survival prediction and immunotherapy response. Clinical outcomes and immunotherapy response between
high- and low risk groups were determined by Kaplan-Meier analysis, ROC curve and immunotherapy response distribution analysis in IMvigor210 cohort
(A–C), GSE135222 cohort (D–F), GSE78220 cohort (G–I) and GSE91061 cohort (J–L), respectively.
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FIGURE 8
Construction of decision tree and nomogram combined with risk score and clinical pathologic features. (A)Decision tree was constructed based on
risk score and TNM stage. (B) The distribution of different risk categories in each branch. (C) Clinical outcomes of patients in two risk groups were
estimated in each branch. (D) Differences of overall survival rate in three branches were evaluated by Kaplan-Meier analysis. (E, F) Univariate and
Multivariate Cox regression analysis was conducted to determine the independent risk factor of HCC. (G)Nomogram integrated with risk score and
TNM stage. (H)Calibration diagram for nomogram predicted OS and observed OS in 1, 3, 5-year. (I) The reliability of the risk model was evaluated by DCA
curves of nomogram.
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GSE135222 cohort (Figure 7F). In GSE78220 cohort, the high-risk
category of the cohort only produced PD for immunotherapy, while
the probability of low-risk category samples producing CR and PR
for immunotherapy was 18% and 45%, respectively (Figure 7I).
Similarly, the response rate of the low-risk category to
immunotherapy was greatly improved compared with the high-
risk category in GSE91061 cohort (Figure 7L). These findings
suggests that risk score could significantly distinguish the survival
rate at different time points in each immunotherapy cohort.

Establishing decision tree and nomogram
integrated with prognostic risk score and
clinicopathological characteristics

To further optimize risk stratification system, individuals with
full-scale annotations including risk score, gender, age, TNM stage,
and clinical grade were enrolled to establish a survival decision tree
and three branches were finally generated (Figure 8A). The samples
in B1 and B2 branches mainly distributed in low-risk group, while
the samples in B3 branch were in high-risk category (Figure 8B).
Meanwhile, the clinical outcome of HCC patients classified into
branch1 (B1) was better than that in branch3 (B3) (Figures 8C, D).
Moreover, risk score and M stage were identified as independent
prognostic factor (HR = 5.9, 95% CI = 3.5–10, p < 0.001) through
Univariate and multivariate analysis (Figures 8E, F). Then, risk score
and TNM stage were integrated into nomogram to quantify risk
prediction efficiency, and risk score was the main determinant for
predicting OS (Figure 8G). The calibration curve demonstrated an
accurate goodness of fit between the predicted OS in nomogram and
the observed OS (Figure 8H). Meanwhile, the DCA (Decision curve)
showed that nomogram and risk score exhibited better prediction
ability for OS compared with other factors (Figure 8I).

Discussion

Nowadays, integrated analysis of epigenetic regulators in HCC
has propelled us to recapitulate the vital events in
hepatocarcinogenesis. Construction of a genome-scale prognostic
risk model for HCC stratification is critical for clinical treatment
decision. PRMTs that regulate epigenetic modification, have
emerged as key factors in cancer progression, with potential
value to be biomarkers for tumor classification, prognosis and
drug targeting (Kunadis et al., 2021). Therefore, we conducted
the current work to obtain a detailed classification of HCC based
on PRMT-related molecules and establish tools for HCC prognosis
and therapeutic efficacy evaluation. To the best of our knowledge,
this is the first study to use PRMT family-related genes in cancer
classification.

To identify the role of PRMTs underlying hepatocarcinogenesis,
we stratified HCC patients into three subtypes after analyzing the
expression status of PRMTs and screening the PRMT-related genes
with potential prognostic value in TCGA-LIHC cohort. The clinical
outcomes among these patients were significantly different. Further,
we identified 11 PRMT-related prognostic signatures including
ECT2, KIF20A, CENPA, TOP2A, CCNB2, PKM, AURKB,
CDC20, G6PD, SLC22A1, and ADH4 and constructed a

prognostic risk model with high predictive performance. These
observations imply a key regulatory role of PRMTs in HCC.
Interestingly, several reports have reported that PRMTs can
modulate HCC tumorigenesis. For instance, PRMT2 methylates
histone H3R8 to accelerate tumorigenesis of HCC (Hu et al.,
2020). PRMT3 promotes HCC growth by enhancing arginine
methylation of LDHA (Lei et al., 2022). And PRMT4 participates
in regulating glucose metabolism in HCC (Zhong et al., 2018). These
studies provide strong evidence for PRMTs as promising prognostic
biomarker and therapeutic target of HCC.

As a typical inflammation-driven cancer, immune escape is a
characteristic that should be highlighted in the occurrence and
deterioration of HCC (Fu et al., 2019). In clinical, only a
proportion of patients could benefit from immunotherapy, due to
high immunotype heterogeneity of HCC (Dodson et al., 2020).
Therefore, identifying reliable predictors of immunotherapy
response will greatly benefit HCC clinical treatment. Here, we
evaluated the immunophenotype and found that the infiltrated
immune cells were distinctly different among three HCC
subtypes. C3 group, with the worst prognosis among three
subtypes, had high degree of adaptive immunity. Thus, we
speculated that immune escape might occurred in
C3 subgroup. Meanwhile, both the drug sensitivity and
immunotherapeutic response were obviously different in two risk
categories. Our findings suggested that stratification of HCC might
help to understand the immunological characteristics in different
subtypes and assistant clinical decision.

Despite great advances for immunotherapy in cancers, the
majority of patients relapse or fail to response to immunotherapy
due to insufficient immune response against tumors or suppressive
tumor microenvironment (TME) (Falcomatà et al., 2023). PRMTs
have been elucidated as key factor in tumor immunosurveillance of
TME (Dai et al., 2022; Fedoriw et al., 2022). Here, the molecular tool
constructed in our study had excellent predictive ability in
immunotherapy efficacy and drug sensitivity of HCC.
Furthermore, the PRMT-related key genes included in our risk
model have been demonstrated involved in tumor immune
response regulation. For instance, G6PD was clarified
participating in cytotoxic T lymphocytes (CTLs) activation and
immune escape in epithelioid mesothelioma (Lu et al., 2022).
KIF20A was closely associated with immune infiltration in clear
cell renal cell carcinoma (ccRCC) (Ren et al., 2020). CCNB2 and
AURKB were negatively correlated with B cells, macrophages,
myeloid dendritic cells and CD4+T-cell infiltration in lung
adenocarcinoma (Xu et al., 2022). CDC20 was confirmed to be
involved in the infiltration of cancer-related fibroblasts and
myelogenous suppressor cells (Wu et al., 2021). CENPA, TOP2A,
and PKM2 were evidenced to regulate immune cell activation in
TME (Xu et al., 2021b; Chen et al., 2021; Wang et al., 2022). Notably,
ECT2 and ADH4 have been deciphered in promoting
M2 macrophages polarization and regulating B cell infiltration in
HCC (Xu et al., 2021a; Zhang et al., 2023). Our findings are in line
with these studies and supports for detailed mechanistic studies on
PRMT-related targets and their associated immune regulation
in HCC.

Our study has several limitations. First, the current work was
mainly performed by bioinformatic analysis, the predictive results of
our risk model might be insufficient. Second, we only confirmed the
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expression status of PRMTs in HCC TMA cohort and cell lines,
further validations with large clinical cohort and rigorous
experiments are needed in the following work.

In conclusion, HCC could be divided into three subtypes based
on PRMT-related genes. The prognostic risk model constructed in
this context provide effective guidance for evaluating HCC patient’s
prognosis, drug sensitivity, and immunotherapeutic response. The
findings of our systems-level analysis may be desirable for
understanding the molecular mechanism underlying HCC, and
open new avenues for development of effective treatment strategies.

Materials and methods

Expression datasets

The expression profile, clinical information, and single
nucleotide variation (SNV) data were downloaded from the
TCGA-LIHC project as the training set for this study.
GSE14520 and GSE76427 datasets obtained from the Gene
Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.
gov/geo/) and HCCDB dataset retrieved from The Integrative
Molecular Database of Hepatocellular Carcinoma (HCCDB)
database (http://lifeome.net/database/hccdb/home.html) were
used as validation sets.

Screening of PRMT family related genes to
conduct consensus clustering

PRMT-related genes were identified using Pearson correlation
analysis in TCGA-LIHC dataset and HCCDB18 dataset. The genes
that meet the condition of R > 0.7 and p < 0.05 were thought to be
PRMT related genes. Overlapping PRMT related genes between
TCGA-LIHC dataset and HCCDB18 dataset was taken into
consensus clustering analysis to classify the molecular subtypes of
HCC. “ConsensusclusterPlus” package was used for consensus
clustering analysis and the output results included consensus
matrix, cumulative distribution function (CDF) and CDF Delta
area curves. The rationality of classification was confirmed by
principal component analysis (PCA).

Differential expression analysis between
molecular subtypes and construction of
prognostic grouping system

The differentially expressed genes (DEGs) between molecular
subtypes were analyzed by “LIMMA” package, and the DEGs were
overlapped by Venn diagram. The shared DEGs was input to the
“survival” package for univariate cox regression analysis. The
overfitting genes were excluded by least absolute shrinkage and
selection operator (LASSO) penalty regression analysis. Then,
multivariate cox regression model was used to reduce data size.
Based on the regression coefficient obtained by LASSO regression
analysis, a suitable prognostic grouping system: Risk score = Σ [coef
(I) * Exp (I)] was formed.

Mutation analysis

“maftools” package was used to analyze the mutation data
retrieved from TCGA. The mutation status in samples was
determined and the genes with the lowest mutation
frequency >3 were selected. Fisher’s exact test was used to
identify the high frequency mutation genes in different
subgroups, with p < 0.05 as the cutoff value, and the results was
visualized as a waterfall map.

Pathway enrichment analysis

According to gene set enrichment analysis (GSEA) database
(Subramanian et al., 2005), single sample GSEA (ssGSEA) was
adopted to determine the enrichment score of the pathway in
the file.

Analysis of immune cell infiltration and
immune response

Immune cell infiltration was evaluated by ssGSEA,
CIBERSORT (Newman et al., 2015) and ESTIMATE
(Yoshihara et al., 2013). The immune abundance of each
sample was quantified using ssGSEA and the relative
proportions of each immune cell type were shown as
enrichment scores. Based on the gene expression in TCGA-
LIHC cohort, ESTIMATE deduced the proportion of stromal
cells and immune cells in the form of stromal score and immune
score. Immune response status was evaluated using Tumor
Immune Dysfunction and Exclusion (TIDE) (Jiang et al., 2018).

The prognostic grouping system was
verified in immunotherapy cohorts

Four datasets including IMvigor210, GSE91061, GSE78220, and
GSE135222 were enrolled for immunotherapy analysis. Prognostic
grouping system was applied to calculate risk sore and evaluate HCC
patients’ overall survival (OS) rate. receiver operating characteristic
(ROC) analysis was employed to examine the area under the curve
(AUC) of prognostic risk model.

Construction of decision tree and
nomogram

Classification tree algorithm was employed to construct a
decision tree with root nodes, internal leaf nodes and branches
based on all the clinical information provided by TCGA and
prognostic grouping system. Univariate and multivariate Cox
regression analysis were utilized to determine the independent
prognostic variables for HCC. Risk score and AJCC TNM stage
were fitted to establish a nomogram based on the R package of
“rms”, and decision curve analysis (DCA) was carried out by “DCA”
package.
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Tissue microarray (TMA) cohort

The TMA cohort including 80 paired HCC tissues and adjacent
non-tumor tissues was established in our laboratory. This research
was approved by the ethics committee of the First Affiliated Hospital
of Zhengzhou University.

Cell lines and cell culture

Three HCC cell lines including HepG2, Hep3B andHuh7 as well
as the normal-type hepatocyte L02 cell line were purchased from the
Shanghai Cell Bank of the Chinese Academy of Sciences (Shanghai,
China). Cells were cultured in an atmosphere of 5%CO2 at 37°C, and
maintained in DMEM or RPMI 1640 medium (Gibco)
supplemented with 10% fetal bovine serum (Gibco).

Immunohistochemistry (IHC)

The expression status of PRMTs in tumor and adjacent normal
tissues was determined by IHC staining on HCC tissue microarray
(TMA) as previously described. Two pathologists counted cells
containing brown granules independently. The total score (range
from 0 to 15) was calculated by multiplying two scores for the
staining intensity (3, strong; 2, moderate; 1, mild; and 0, none) and
percentage of positive cells (5, >80%; 4, 80%–61%; 3, 60%–41%; 2,
40%–21%; 1, <20%). Antibodies used in this study are listed in
Supplementary Table S1.

Western blotting

Cells were lysed and total proteins were extracted with RIPA buffer
(Solarbio, China). Protein concentration was detected using the BCA
protein Quantification Kit (Beyotime, China), and 20 µg protein
samples were subjected to SDS–PAGE. Subsequently, proteins were
transferred to a PVDF membrane, blocked with 5% non-fat milk, and
incubated with primary antibodies at 4°C overnight. After incubating
with corresponding secondary antibodies for 1 h at temperature, the
membranes were visualized by LumiGLO enhanced chemiluminescent
(ECL) or the Odyssey Infrared Imaging System (LI-COR Bioscience,
Lincoln, NE). Detailed information on antibodies is provided in
Supplementary Table S1.

Statistical analysis

All statistical analysis in this study was completed by R program.
The variables difference between two groups was quantified by
Wilcoxon rank-sum test and Student’s t-test. Kaplan-Meier
analysis was performed using “survminer” package, and the ROC
analysis was conducted by the “timeROC” package. Univariate and
multivariate cox regression were conducted in the “survival”

package. p < 0.05 was designated as the statistically significant
threshold.
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