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As the common pathological basis of various cardiovascular diseases, the
morbidity and mortality of atherosclerosis (AS) have increased in recent years.
Unfortunately, there are still many problems in the treatment of AS, and the
prevention and treatment of the disease is not ideal. Up to now, the occurrence
and development of AS can roughly include endothelial cell dysfunction, vascular
smooth muscle cell proliferation, inflammation, foam cell production, and
neoangiogenesis. Among them, endothelial dysfunction, as an early event of
AS, plays a particularly important role in promoting the development of AS. In
addition, oxidative stress occurs throughout the causes of endothelial
dysfunction. Some previous studies have shown that flavonoids derived from
herbal medicines are typical secondary metabolites. Due to its structural presence
ofmultiple active hydroxyl groups, it is able to exert antioxidant activity in diseases.
Therefore, in this review, we will search PubMed, Web of Science, Elesvier, Wliey,
Springer for relevant literature, focusing on flavonoids extracted from herbal
medicines, and summarizing how they can prevent endothelial dysfunction by
inhibiting oxidative stress. Meanwhile, in our study, we found that flavonoid
represented by quercetin and naringenin showed superior protective effects
both in vivo and in vitro, suggesting the potential of flavonoid compounds in
the treatment of AS.
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1 Introduction

Cardiovascular disease (CVD) ranks alongside cancer, diabetes, and chronic
respiratory diseases as the four diseases with the highest morbidity and mortality
worldwide (Zhong et al., 2019). More than 17 million people die from CVD every
year, accounting for more than 31% of global deaths (Townsend et al., 2016; Benjamin
et al., 2017). Shockingly, with the acceleration of population aging, the incidence and
mortality of CVD are still increasing, and there are large problems in the existing treatment
methods need to be solved (Yusuf et al., 2004). Among them, atherosclerosis (AS), as the
common pathological basis of CVD, has also received extensive attention in the prevention
and treatment of CVD. AS is a chronic, progressive multifocal arterial disease, which
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mainly causes damage to large and medium-sized arteries.
Unfortunately, although much effort has been invested in AS,
the prevention and therapy of the disease are not particularly ideal
(Falk, 2006; Crea and Libby, 2017). So far, the measures to alleviate
AS have mainly been to reduce hyperlipidemia, slow the disease
process, and mitigate the consequences of AS (Khan et al., 2021).
Smoking, unhealthy diet, obesity, alcohol consumption and other
factors may contribute to the development of AS. However, due to
the complexity of AS, the AS pathogenesis is not well understood,
which greatly reduced the therapeutic effect of AS (Steven et al.,
2019). Based on the evidence from recent years, the occurrence and
development of AS mainly involves a variety of cellular events such
as endothelial cell dysfunction, vascular smooth muscle cell
(VSMC) proliferation, inflammation, foam cell production, and
neovascularization (Shemiakova et al., 2020). Pleasantly surprise,
endothelial dysfunction appears to be reversible with therapeutic
interventions aimed at correcting risk factors for endothelial
dysfunction. At the same time, most of the initiation of AS
development is located in the subendothelial space, and can be
controlled by the endothelium and hormones. The treatment and
improvement of endothelial dysfunction also play a particularly
important role in AS. At present, there are many theories about the
causes of endothelial cell dysfunction. Notably, inflammation,
oxidative stress, autophagy and other events are inseparable
from endothelial cell dysfunction, while oxidative stress is
carried throughout (Li et al., 2022a).

For thousands of years, herbal medicines have been widely used
in the prevention and treatment of diseases. With the development
of medical information technology, flavonoids derived from herbal
medicines have received more and more attention due to their
significant efficacy and high safety (Li et al., 2022b). Flavonoids are
mainly found in vacuoles of plants and are a secondary metabolite
with abundant content. The main function of flavonoids is to protect
plants against pathogens and UV radiation, and to participate in
pollination by being recognized by pollinators (Pandey and Rizvi,
2009). Previous studies have shown that flavonoids have unique
antioxidant activity due to their ability to provide hydrogen atoms or
electrons, which can directly remove reactive oxygen species,
thereby limiting the effects of oxidative stress (Li et al., 2022a).
In addition, a large number of literature studies have shown that
flavonoids derived from herbal medicines also have a significant
effect on AS. Notably, flavonoids derived from herbal medicines also
have been shown to regulate endothelial cell dysfunction during AS
development (Yamagata, 2019). Therefore, based on the above
explanation, we can propose that flavonoids derived from herbal
medicines can inhibit oxidative stress, thereby inhibiting the
occurrence of endothelial dysfunction.

2 Endothelial dysfunction contributes
to the development of AS

Endothelial cells, as a unique type of epithelial cells, are
distributed in a monolayer of blood vessels and constitute the
vascular endothelium that maintains vascular homeostasis
(Krüger-Genge et al., 2019). The vascular endothelium is a
semipermeable barrier between plasma and vascular tissue that
extends along the entire circulatory system. Due to its unique

location, endothelial cells can not only undergo metabolic
exchange with plasma and interstitial fluid, but also interact with
cells in the blood vessel wall (Yamaoka-Tojo, 2017). In addition,
changes in blood composition and blood flow also have a great
influence on the function of endothelial cells, among which
mechanical transduction due to shear stress is considered to be
the most important factor (Mitra et al., 2017; Mensah et al., 2020). In
a healthy state, shear stress can directly promote the activation of
endothelial NO synthase (eNOS) in endothelial cells, and also can
activate eNOS by inducing rapid influx of Ca2+ into cells. eNOS
promotes nitric oxide (NO) production by converting L-arginine to
L-citrulline and NO (Förstermann and Munzel, 2006; Xu et al.,
2021). As all we known, NO is an important vasoactive substance
(Figure 1). NO can diffuse into vascular smooth muscle cells
(VSMC), promote vasodilation by stimulating soluble guanyl
cyclase and increasing cyclic guanosine monophosphate (cGMP),
and has an antiproliferative effect on VSMC (Jin and Loscalzo,
2010). In the circulatory system, NO can also inhibit the adhesion
and aggregation of platelets and exert anti-inflammatory properties.
In addition, molecules represented by hydrogen sulfide (H2S),
carbon monoxide, and arachidonic acid metabolites can also
mediate vasodilation by inducing endothelium-derived
hyperpolarization (Shimokawa, 2014). Under physiological
conditions, in addition to vasodilation, endothelial cells can also
mediate vasoconstriction by releasing a variety of vasoconstrictor
molecules such as thromboxane A2 (TXA2), angiotensin (Ang) II
and endothelin (ET) (Ley et al., 2007; Rao et al., 2007). Besides this,
endothelial cells also can regulate platelet activity, coagulation
cascade and fibrinolysis system. However, these functions of
endothelial cells can be disrupted to varying degrees by diseases,
including hyperlipidemia, diabetes, and heart failure (Tuñón et al.,
2007; Tonelli et al., 2016; Giannitsi et al., 2019). Apparently, aging
and genetic changes can also induce endothelial cell dysfunction.

Inflammation, oxidative stress and autophagy are considered as
important cellular events that affect endothelial function. Previous
studies have shown that lipids in endothelial cells can be transported
to autophagic vesicles for lysosome-mediated degradation after ox-
LDL stimulation. At the same time, ER stress is triggered in
endothelial cells and further induces autophagy (Torisu et al.,
2016). In addition, endothelial cells can also regulate autophagic
flux through different transcription factors when shear stress is
changed (Hua et al., 2022). Therefore, autophagy has also been
proposed as an effective tool to alleviate endothelial dysfunction.
Since inflammation is an important factor in inducing endothelial
dysfunction, its role in AS cannot be ignored. When endothelial cells
are activated, interleukin (IL) −8, chemokines, vascular adhesion
molecule-1 (VCAM-1), growth factors and other inflammatory
factors are secreted, attracting monocytes and neutrophils to
adhere to endothelial cells and penetrate the arterial wall to cause
inflammation (Chistiakov et al., 2018). There are many ways to
induce endothelial inflammation. For example, lipopolysaccharide
release from the blood promotes inflammation by increasing the
expression of interferon-induced proteins and tetrapeptide repeats
in endothelial cells (Wang et al., 2020). Insulin can increase Ang-II
expression through the p38 MAPK-cFOS pathway and enhance
inflammation in a paracrine manner (Chandel et al., 2020). In
addition, excessive ROS can also induce endothelial dysfunction
by enhancing inflammatory response (Zeng et al., 2020).
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When endothelial injury occurs in blood vessels, white blood
cells will combine with fibrin tissue to form fibrin network, which
plays a role in the repair of endothelial injury (Ley et al., 2007; Rao
et al., 2007). Unfortunately, when the body suffers from a wide range
of pathological damage, vascular endothelial cells are continuously

damaged and stimulated, and the repair effect is ineffective. Under
these conditions, the endothelial cells undergo a phenotypic shift,
the balance between vasodilator and vasoconstrictor is disrupted,
and the arterial structure is destroyed (Incalza et al., 2018; Kim et al.,
2019). As an early event of AS, endothelial cell dysfunction plays a

FIGURE 1
Shear stress helps endothelial cells maintain homeostasis in a healthy state (Ang II, angiotensin II; eNOS, endothelial NO synthase; ET, endothelin;
TXA2, thromboxane A2; VSMC, vascular smooth muscle cells).

FIGURE 2
Endothelial dysfunction contributes to the development of atherosclerosis (GM-CSF: granulocyte macrophage colony stimulating factor; ICAM-1,
intercellular cell adhesion molecule-1; LDL-C, low-density lipoprotein cholesterol; MCP-1, monocyte chemoattractant protein-1; M-CSF, macrophage
colony stimulating factor; ox-LDL, oxidized low-density lipoprotein; VCAM-1, vascular cell adhesion molecule-1).
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role in the development of AS (Figure 2). After the occurrence of
endothelial cell dysfunction, the vascular barrier function is
weakened, and the low-density lipoprotein cholesterol (LDL-C)
in the blood is more likely to accumulate in the intima and
undergo oxidation reaction, and then produce oxidized low-
density lipoprotein (ox-LDL) (Gao et al., 2017). The injured
endothelial cells will release monocyte chemoattractant protein-1
(MCP-1), intercellular cell adhesion molecule-1 (ICAM-1), vascular
cell adhesion molecule-1 (VCAM-1) and so on to induce monocyte
and macrophages to adhere to the vessel wall (Clapp et al., 2004; Chi
and Melendez, 2007). Subsequently, macrophage colony stimulating
factor (M-CSF) and granulocyte macrophage colony stimulating
factor (GM-CSF) stimulate mononuclear macrophages to
differentiate into macrophages, which will take up ox-LDL to
generate foam cells and further aggravate AS (Trus et al., 2020;
Zhi et al., 2023). As an important component of vascular
composition, VSMC will switch from a contractile to a synthetic
phenotype after endothelial cell injury. Similarly, VSMC also
undergo abnormal proliferation and migration induced by
chemokines and matrix metalloproteinases (MMP), which
destroys the stability of plaques. In the intima, VSMC not only
uptake ox-LDL to generate foam cells, but also secrete extracellular
matrix components to form fibrous caps (Liang et al., 2018; Muqri
et al., 2020).

3 Oxidative stress and endothelial
dysfunction in AS

As mentioned above, factors such as hyperlipidemia, diabetes,
heart failure, aging, and genetics may contribute to the development
of endothelial dysfunction. Among these factors, we can find the
presence of oxidative stress and ox-LDL. At present, many studies
believe that excessive reactive oxygen species (ROS) can induce
oxidative stress on the one hand, and aggravate the oxidative

modification of LDL on the other hand. Subsequently, oxidative
stress interacts with ox-LDL to jointly promote the occurrence of
endothelial dysfunction.

3.1 Mechanisms of ROS generation

ROS is an endogenous and important mediator involved in
various biological processes of the organism and can serve as a
second messenger in cell signaling. Because ROS can easily acquire
or loss electrons, it is widely involved in redox reactions. However,
when the content of ROS exceeds limitation, it will disrupt the redox
balance in the body, which in turn leads to the occurrence of
oxidative stress, thereby affecting all aspects of physiological
functions (Kattoor et al., 2017). Nowadays, the ROS family
includes many small molecules and ions, such as superoxide,
hydroxyl radicals, hydrogen peroxide and so on. It is well known
that almost all cells in blood vessels can produce ROS, and its
generation mechanism mainly includes NADPH oxidase (NOX),
xanthine oxidase, mitochondrial respiratory chain and NOS
(Figure 3) (Goszcz et al., 2015).

As a membrane-binding enzyme complex, NOX is the only
family of enzymes whose main function is to produce ROS. NOX is
widely present in various vascular cells and is the main source of
ROS by transferring electrons fromNADPH to O2 and generate O2

−.
When the body has hypertension, diabetes or high cholesterol, it is
easy to increase the expression of NOX and thus increase the content
of ROS in the body (Balaban et al., 2005). Existing studies have
shown that the congeners of NOX are expressed in various types of
vascular cells, but the difference in their content cannot be ignored.
For example, NOX2, NOX4, and NOX5 are predominantly
expressed in EC, whereas NOX1 and NOX4 are predominantly
expressed in VSMC. Different NOXs produce different types of
ROS, with NOX1 and NOX2 generating O2

−, NOX4 generating
H2O2, and NOX5 generating O2

− and H2O2 (Dikalov et al., 2008;

FIGURE 3
The generation of ROS.
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Lassègue et al., 2012). At the same time, different NOX have
different effects on AS. For example, downregulation of NOX1,
NOX2, and NOX5 can inhibit AS, while NOX-4 has a
cardioprotective effect (possibly due to the fact that
NOX4 mainly produces H2O2) (Guzik et al., 2008; Takac et al.,
2011; Fulton and Barman, 2016). Xanthine oxidase is another
important enzymatic source of ROS and is mainly present in EC.
Xanthine oxidase can generate O2

− and H2O2 by oxidation of
xanthine and hypoxanthine. In addition, xanthine oxidase can
also elevate LOX-1 and CD-36 in macrophages and VSMCS,
disrupt intracellular lipid metabolism, and increase the risk of AS
(Kattoor et al., 2017).

Mitochondria, as an important organelle within the cells, is an
important source of energy required for cellular activities. Oxygen,
which is required for cell survival, is converted to O2

− in the
mitochondrial respiratory electron transport chain mainly by
electron grant in complexes I, II, and III for energy production and
oxidative phosphorylation (Peng et al., 2019; Peoples et al., 2019). This
process is recognized as themain way to generate ROS. Normally, ROS
generated by this process can be removed by various oxidoreductases
to maintain homeostasis. Under pathological conditions, the
disruption of this balance will lead to excessive accumulation of
ROS and further induce ROS leakage (Peoples et al., 2019).

NOS has three distinct isoforms, namely, neuronal NOS (nNOS),
inducible NOS (iNOS) and endothelial NOS (eNOS). Among them,
eNOS ismost closely associatedwithAS. Notably, although eNOS could
produce NO in the presence of tetrahydrobiopterin (BH4) to scour
oxygen radicals and thus exert anti-atherosclerosis effect, it has been
shown in previous studies that overexpression of eNOS may also
promote the development of AS. The possible mechanism lies in the
decoupling of eNOS caused by excessive BH4 depletion (Ozaki et al.,
2002; Hossain et al., 2012). This hypothesis has been confirmed by a
recent study. It was shown that when BH4 was scarce, eNOS uncouples
to generate O2

− and combines with NO to generate peroxynitrite
(ONOO−). ONOO− is a potent oxidant that induces the occurrence
of oxidative stress damage (Li et al., 2015). nNOS can exert a synergistic
effect with eNOS in anti-atherosclerosis by regulating vascular tone
(Capettini et al., 2011). However, iNOS can not only induce excessive
production of NO, but also compete with eNOS to bind BH4, promote
the generation of ONOO−, and aggravate the occurrence and
development of AS (Gunnett et al., 2005).

3.2 ROS promotes ox-LDL production and
aggravates endothelial dysfunction

It was shown that excessive ROS-induced oxidative stress can
directly affect intracellular biomacromolecules to cause damage.
ROS and its oxidation products can act as signal transduction
molecules to activate related pathways, damage endothelial cells,
and promote the development of AS.

As one of the oxidation products, ox-LDL is thought to play amajor
role in lipid metabolic disorders. LDL-related modifications include
oxidation, deacetylation, glycosylation and aggregation, among which
the oxidation of LDL is closely related to AS (Nègre-Salvayre et al.,
2017). ROS can oxidise a variety of polyunsaturated lipids in blood
vessels, and the by-products formed can react with apolipoprotein B-
100 and damage its function. Subsequently, modified ApoB-100 retards

LDL removal and prolongs the exposure of lipids and apoB-100 to ROS
attack, which further enhances LDL oxidation (Negre-Salvayre et al.,
2008; Rabbani et al., 2010; Nègre-Salvayre et al., 2017). When
endothelial cells are exposed to oxidative stress for a long time, their
structure and function are continuously damaged, which also leads to
the continuous oxidation of LDL to form ox-LDL (Stocker and Keaney,
2004). However, after numerous studies on the oxidationmechanism of
LDL, it has been found that ox-LDL is heterogeneous, and different
concentrations of ox-LDL also have a dual effect on vascular cells. For
example, low concentrations of ox-LDL can induce cell migration and
proliferation, and create a pro-inflammatory environment for AS, while
high concentrations of ox-LDL can promote apoptosis (Dandapat et al.,
2007; Cinq-Frais et al., 2013; Camaré et al., 2015). Excessive ROS can
cause endothelial cell apoptosis through several major pathways. Firstly,
ROS can not only activate nuclear factor kappa-B (NF-κB) through
redox factor-1 (Ref-1), but also directly activate NF-κB. Subsequently,
activated NF-κB translocates into the nucleus where it binds to the
apoptosis-related gene c-Myc, promoting gene transcription and
inducing apoptosis. The p38 pathway and c-Jun N-terminal kinase
pathways are also strongly associated with ROS-induced apoptosis
(Haghi Aminjan et al., 2019; Zhang L. et al., 2022). Notably,
excessive ROS causes lipid peroxidation, damages the inner
mitochondrial membrane, and ultimately induces both endogenous
and exogenous endothelial cell apoptosis (Sinha et al., 2013). In
addition, the generated ox-LDL disrupts the structure of actin
filaments upon contact with endothelial cells, causing disruption of
the cytoskeleton, which in turn alters endothelial cell permeability. The
increased permeability of endothelial cells makes it easier for lipids to
pass through the cells, further aggravating the development of AS
(Chouinard et al., 2008; Zhang et al., 2022).

Ox-LDL can enter endothelial cells through a variety of cell-
surface expressed scavenger receptors, the most typical of which are
LOX-1 and CD36 (Nègre-Salvayre et al., 2017). LOX-1 is the main
receptor for ox-LDL uptake by endothelial cells. The combination of
LOX-1 and ox-LDL can enhance the expression of NOX, promote
the generation of O2

−, and aggravate the oxidative stress response in
cells (Lu et al., 2011; Yoshimoto et al., 2011). At the same time, the
oxLDL/LOX-1/ROS axis is activated, which promotes the
production of various inflammatory cytokines, chemokines,
adhesion molecules, and ultimately leads to the recruitment and
adhesion of monocytes to the activated endothelium (Kamei and
Carman, 2010; Lubrano and Balzan, 2016). As a multifunctional
receptor, CD36 recognizes oxidized phospholipids and other ligands
in addition to ox-LDL. When ox-LDL binds to CD36, MAPK, NF-
κB and Toll-like receptors (TLR) are activated, which enhance the
local response (Park et al., 2013).

4 Natural flavonoids derived from
herbal medicines are potential anti-AS
agents by inhibiting oxidative stress in
endothelial cells

Flavonoids are a class of secondary metabolites widely found in
plants and fungi. Their characteristic structure mainly contains
15 carbon atoms. Flavonoids can be subdivided according to
their structure into anthocyanins, flavonoids, flavanones,
flavonols, anthoxanthins, and isoflavonoids. Because flavonoids
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have hydroxyl groups in their structure, they can play an antioxidant
role both in vivo and in vitro. In this review, we searched the relevant
literature on flavonoids inhibiting oxidative stress to treat
endothelial dysfunction in AS, and selected some important
compounds to elaborate.

Quercetin is a natural polyhydroxy flavonoid found in a variety
of plants such as Bupleurum chinense DC, Bupleurum
scorzonerifolium Willd (Apiaceae), mulberry leaves, Crataegus
pinnatifida Bunge, and C. pinnatifida var. Major N. E. Br. It is a
plant secondary metabolite with antioxidant activity (Zhi et al.,
2023). In the past decades, quercetin has been widely used in clinical
practice for various diseases due to its superior activity, including
cancer, arthritis, neurodegenerative diseases and cardiovascular
diseases (Wang et al., 2022). There are numerous studies on
quercetin in the treatment of AS. In vivo and in vitro studies
have shown that quercetin exerts multiple effects on various
processes of AS development, including foam cell formation,
lipid metabolism, monocyte migration, and endothelial cell
dysfunction. Firstly, intragastric administration of quercetin
ameliorated arterial lipid deposition in high-fat diet fed ApoE
mice. In ox-LDL-induced human umbilical vein endothelial cells
(HUVECs), quercetin reduced intracellular ROS and increased
mitochondrial membrane potential. At the same time, apoptosis
and senescence induced by ox-LDL were also alleviated, lipid droplet
deposition was reduced, and cell morphology was improved. By
exploring the underlying mechanism, p53 and mTOR signaling
pathways were found to be involved in the pharmacological
mechanism of quercetin (Jiang et al., 2020).

Naringenin, a flavonoid extracted from the pericarp of Citrus
reticulata Blanco, is a trihydroxy flavanone. It can be found in past
reports that naringenin exerts antioxidant activity directly through
free radical scavenging activity, and has the ability to induce
endogenous antioxidant system (Hernández-Aquino and Muriel,
2018). The comparison of the antioxidant capacity of naringenin
with that of quercetin has been controversial in some studies. It was
reported that naringenin equivalent antioxidant activity was
1.53 mmol/L, a small value compared to the 4.7 mmol/L of
quercetin (Rice-Evans et al., 1996). However, in the study of
Cavia-Saiz et al., the antioxidant capacity of naringenin was
worse than that of quercetin (Cavia-Saiz et al., 2010). Therefore,
further studies are needed to compare the antioxidant capacity of
naringenin with other flavonoids. However, it was no doubt about
the role of naringenin in protecting endothelial dysfunction in AS. In
previous experiments, naringenin was found to inhibit AS by
ameliorating dyslipidemia, and subsequently it was found to
protect mitochondrial membrane potential to ameliorate ischemic
damage (Mulvihill et al., 2010; Testai et al., 2017). Therefore, in the
study of Li et al., it was hypothesized that naringenin could
ameliorate endothelial injury through a mitochondria-dependent
pathway. After homocysteine-induced HUVECs injury, naringenin
could inhibit the generation of ROS in mitochondria and cytoplasm,
restore mitochondrial membrane potential, but there was no
significant difference in Ca2+ concentration. RNA-seq
transcriptome analysis and experimental validation showed that
naringenin significantly restored the expression of Sirt1, AMPKα
and eNOS. In addition, knockdown of Sirt1 and AMPKα by siRNA
almost abolished this protective effect (Li et al., 2021). In vivo,
endothelial injury was defined as plasma homocysteine levels higher

than 15 μmol/L. Naringenin could significantly inhibit the damage
of arterial wall and protect endothelial function after treatment, and
its mechanism was consistent with the results in vitro (Li et al.,
2021). Therefore, we can conclude that naringenin ameliorates
homocysteine-induced endothelial injury through the AMPKα/
Sirt1 pathway.

Carthamus tinctorius L. has been used as a traditional medicinal
plant for thousands years. According to Kaibao Materia Medica, the
dried flowers of C. tinctorius L. can promote blood circulation and
relieve pain. So far, C. tinctorius L. has been developed as Danhong
injection, safflower injection and other preparations for the
treatment of coronary heart disease and angina pectoris.
Hydroxysafflor yellow A is an important active component of C.
tinctorius L., and it is also the most abundant component of
safflower yellow, an indicator component of C. tinctorius L (Xue
et al., 2021). In recent years, hydroxysafflor yellow A has been shown
to protect endothelial cells by inhibiting inflammation and
apoptosis. First, Ji et al. found that hydroxysafflor yellow A could
increase the ratio of Bcl-2/Bax at the mRNA and protein levels and
reduce mitochondrial-dependent apoptosis in hypoxia-induced
HUVECs (Ji et al., 2009). This phenomenon was further
illustrated in the experiments of Xie et al., which showed that
hydroxysafflor yellow A could regulate cell survival and
proliferation by promoting AKT and inhibiting PTEN expression.
Meanwhile, hydroxysafflor yellow A reduced ROS generation and
restored intracellular redox balance by increasing intracellular
superoxide dismutase (SOD) in H2O2-induced HUVECs (Xie
et al., 2020). In addition, in ox-LDL-induced HUVECs,
hydroxysafflor yellow A could upregulate VDAC2 or inhibit
apoptosis through AMPK signaling, in which VDAC2 could
exert an anti-apoptotic effect by interfering with Bak-mediated
apoptosis (Ye et al., 2017; Zhang H. et al., 2022).

Genistein is a natural isoflavone first obtained from Genista
tinctoria L. It is mainly derived from Euchresta japonica Hook. f. ex
Regel, Sophora japonica L. and so on. Currently, methanol, ethanol,
acetonitrile and other organic solvents are used to extract genistein.
Meanwhile, the chemical synthesis of genistein is simple and feasible
(Spagnuolo et al., 2015). The structure of genistein is similar to that
of endogenous estrogen, so it can bind to estrogen receptors and
exert estrogen-like effects after being absorbed by the body. In
addition, as a typical flavonoid, it is connected with multiple
hydroxyl groups on the phenyl ring, which makes it have
excellent antioxidant effects and can be applied to the treatment
of cardiovascular diseases, diabetes, depression and other diseases
(Borrás et al., 2006; Jafari et al., 2022). In endothelial dysfunction,
genistein can effectively inhibit ROS and malondialdehyde (MDA)
in cells, and restore the four oxidoreductases activities including
superoxide dismutase (SOD), catalase (CAT), glutathione (GSH)
and glutathione peroxidase (GPx). In this way, the redox balance of
endothelial cells is maintained (Zhang et al., 2017). Further
exploration revealed that the antioxidant activity of genistein was
closely related to MR-34a/sirtuin-1/foxo3a. Genistein can
downregulate the expression of MiR-34a in ox-LDL-induced
HUVES, thereby promoting the expression of sirtuin-1. In
addition, sirtuin-1 is known to exert antioxidant activity by
activating fxo3a in previous studies. However, after genistein
treatment, the expression of fxo3a was significantly increased
(Zhang et al., 2017).
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Baicalein, also known as 5, 6, 7-trihydroxyflavone, is a well-
recognized natural flavonoid with antioxidant and anti-
inflammatory activities. Baicalein is the most abundant
component in the root of Scutellaria baicalensis (S. baicalensis)
Georgi, a traditional Chinese medicine (also known as Huangqin in
Chinese) (Huang et al., 2005). In a previous study, it was shown that
baicalein inhibited IL-1β-induced ICAM-1 expression in HUVECs,
suggesting that baicalein could protect endothelial cell function
(Kimura et al., 1997). In a recent study, ox-LDL was used to
induce apoptosis in HUVECs and baicalein was preincubated
before induction. It was showed that baicalein effectively
inhibited the generation of intracellular ROS and the release of
cytochrome C from mitochondria, and increased mitochondrial
membrane potential. The expression of pro-apoptotic protein
BAX was downregulated, while the expression of anti-apoptotic
protein Bcl-2 was upregulated. In addition, the bioavailability of NO
was also improved (Chan et al., 2016). Subsequently, it was also
shown that baicalein pretreatment could inhibit the binding ability
of ox-LDL by reducing the expression of LOX-1, thereby inhibiting
the generation of ROS. In addition, baicalein inhibited the protein
expression of NADPH oxidase and increased the phosphorylation
level of AMPK, thereby inhibiting the activation of protein kinase C
(PKC)-α and PKC-β (Tsai et al., 2016).

Luteolin is a common flavonoid, which is usually found in the
form of glycosylated in celery, green pepper, Perilla frutescens (L.)
Britt., and Matricaria recutita L. Luteolin possesses the antioxidant
properties, as well as anti-inflammatory ability. Therefore, it also has
a good advantage in the treatment of AS (Prasher et al., 2022). Up to
now, the antioxidant activity of luteolin has been fully confirmed. It
can exert efficacy in all stages of AS, such as VSMC migration and
proliferation, cell adhesion molecule secretion and endothelial cell
dysfunction (Luo et al., 2017). When endothelial cells are
dysfunctional, luteolin can inhibit the generation of intracellular
ROS, while the phosphorylation of p38MAPK and nuclear
translocation of NF-kB induced by ox-LDL are reversed. At the
same time, the mRNA levels of ICAM-1, VCAM-1, selectin, MMP-
1, MMP-2, and MMP-9 are also downregulated by luteolin (Yi et al.,
2012). In another study, this conclusion was further developed. In
other words, luteolin inhibited TNF-α-induced transcriptional
activities of NF-κB and p38 as well as ERK1/2 phosphorylation,
while it also exerted its inhibitory effect on Nox4 expression.
Ultimately, luteolin restored the redox balance in endothelial
cells, that is, the contents of GSH and SOD were restored and
LDH was decreased (Xia et al., 2014).

Erigeron breviscapus (Vant.) Hand.-Mazz is a traditional natural
medicine used to treat heart and brain ischemic diseases. The
modern pharmacological studies have shown that the main active
substance is scutellarin. Scutellarin, also known as 4′, 5, 6-
trihydroxyflavone-7-glucuronde, is a member of the natural
flavonoid family. Previous studies have found that scutellarin not
only prevents cerebral ischemia by inhibiting inflammatory
response, but also improves liver damage by inhibiting oxidative
stress (Yuan et al., 2016). In addition, scutellarin also plays a role in
endothelial dysfunction through its antioxidant effect in AS.
Scutellarin scavenged excess ROS and increased the
bioavailability of NO in HAECs induced by either angiotensin II
or H2O2. The contents of oxidoreductases, including SOD, GPx,
CAT and Nox, could be restored to varying degrees after treatment

with scutellarin. Subsequently, the mechanism of scutellarin against
endothelial cell injury and apoptosis was further studied, and the
results showed that the protective effect of scutellarin was closely
related to Hippo-FOXO3A and PI3K/AKT signaling pathways.
After treating with scutellarin, the mRNA levels of mammalian
sterile-20-like kinases 1 (Mst1), Yes-associated protein (YAP) and
FOXO3A were significantly downregulated, as well as the protein
levels of p-Mst1, p-YAP and nuclear translocation of FOXO3A. At
the same time, PI3K/AKT signaling pathway was activated, and its
downstream apoptosis-related Bax and Bcl-2 proteins were also
changed (Mo et al., 2018; Fu et al., 2019). We can draw the same
conclusion in vivo that scutellarin can alleviate lipid metabolism
disorder and maintain redox balance in AS rats through Hippo-
FoxO3A and PI3K/AKT signaling pathways (Fu et al., 2019). The
specific indicators are referred to Table 1.

Acacetin, also known as 5, 7-dihydroxy-4′-methoxy flavone, is a
monomethoxy flavonoid widely found in medicinal plants such as
Robinia pseudoacacia L., Dendranthema morifolium (Ramat.)Tzvel.,
and Saussurea involucrata (Kar. et Kir.) Sch.-Bip. In nature, acacetin
mostly exists in the form of free or glycosides, and has
pharmacological activities on cancer, obesity, diabetes, etc (Wu
et al., 2022). In recent years, acacetin has been found to have a
protective effect on endothelial dysfunction in AS, which has
attracted extensive attention from the scientific community. In
vivo study believed that acacetin significantly accelerated lipid
metabolism in AS mice and reduced the levels of inflammatory
factors in plasma (Han et al., 2020). In vitro experiment confirmed
that acacetin could protect mitochondrial function, reverse
mitochondrial depolarization, and inhibit the excessive
production of ROS and MDA in HUVECs induced by high
glucose. On the other hand, the mitoBcl-2/mitoBax ratio in
mitochondria was increased after acacetin administration. This
protective effect was closely related to the SIRT1-mediated
activation of Sirt3/AMPK signaling, and the protein expression of
SOD, Bcl-2 and PGC-1α was increased during this process (Han
et al., 2020). In addition, the study has shown that acacetin may
restore the antioxidant function of endothelial cells by promoting
the phosphorylation of Nrf2, the degradation of Keap1 and the
expression of methionine sulfite reductase (Wu et al., 2021).

Eupatilin is a flavonoid mainly found in Artemisia princeps
Pampanini, and also known as 2- (3, 4-dimethoxyphenyl) −5, 7-
dihydroxy-6-methoxy-ychromen-4-one. Artemisia princeps
Pampanini has been widely used as a medicinal plant in Asia
over the last thousands of years. In modern times, due to the
rapid development of modern pharmacology, eupatilin has been
found to have a wider range of pharmacological activities (Lim et al.,
2021). For example, eupatilin has therapeutic potential in diseases
such as oncology, allergy, and inflammation (Park, 2014; Jeong et al.,
2015). In AS, eupatilin has been shown to inhibit the proliferation
and migration of human aortic smooth muscle cells. The oxidative
stress as well as inflammatory responses occurring in endothelial
cells could also be inhibited by eupatilin. In addition, Yu et al. has
been confirmed that eupatilin could effectively reduce the ROS
content in TNF-α-induced HUVECs, inhibit the expression of
VCAM-1 and ICAM-1, and thus reduce the adhesion ability of
U937 cells to endothelial cells. The mechanism by which eupatilin
exerted its therapeutic effect was closely related to MAPK-NF-ĸB.
The phosphorylation of NF-kB p65 and MAPK was significantly

Frontiers in Pharmacology frontiersin.org07

Li et al. 10.3389/fphar.2023.1141180

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1141180


TABLE 1 Natural flavonoids derived from herbal medicines are potential anti-AS agents by inhibiting oxidative stress in endothelial cells.

Components Plant source Structure Experimental model Effective
dose

Effect and mechanism Ref

Quercetin Bupleurum chinense DC, Bupleurum
scorzonerifolium Willd (Apiaceae), mulberry
leaves, Crataegus pinnatifida Bunge, Crataegus
pinnatifida var. Major N. E. Br

Ox-LDL-induced HUVECs 0.3, 1, 3 μM MMP↑ Jiang et al.
(2020)

ROS↓, lipid droplet deposition↓, p53↓, mTOR↓

High-fat diet fed ApoE mice 20 mg/kg/d Arterial lipid deposition↓

Naringenin Citrus reticulata Blanco Homocysteine-induced
HUVECs

200 μM MMP↑, the mRNA of AMPKα and Sirt1↑, the
protein of AMPKα, Sirt1 and eNOS↑

Li et al.
(2021)

ROS↓, cytoplasmic cytochrome c↓

High-methionine induced
SD rat

100 mg/kg/d SOD↑, NO↑, AMPKα↑, Sirt1↑, eNOS↑

Homocysteine↓, MDA↓

Hydroxysafflor yellow A Carthamus tinctorius L Hypoxia-induced HUVECs 1, 10, 100 μM Bcl-2/Bax↑, eNOS↑ p53↓ Ji et al.
(2009)

Ox-LDL-induced HUVECs 50 μM SOD↑, NO↑, NOX4↑, AMPKα↑, p-AMPKα↑ Zhang et al.
(2022b)

ROS↓

Ox-LDL-induced HUVECs 1, 5, 25 μM NO↑, VDAC2↑ Ye et al.
(2017)

SOD↓

H2O2-induced HUVECs 4 and 8 μg/mL GSH/GSSG↑, SOD↑, Bcl-2↑, AKT↑ Xie et al.
(2020)

ROS↓, Bax↓, PTEN↓

Genistein Euchresta japonica Hook. f. ex Regel, Sophora
japonica L. and so on

Ox-LDL-induced HUVECs 10, 100,
1,000 nM

SOD↑, CAT↑, GSH↑, GPx↑, sirtuin-1↑, foxo3a↑ Zhang et al.
(2017)

MiR-34a↓

Baicalein Scutellaria baicalensis (S. baicalensis) Georgi Ox-LDL-induced HUVECs 2.5–20 μM NO↑, cytochrome C in mitochondria↑,
mitochondrial membrane potential↑, Bcl-2↑

Chan et al.
(2016)

ROS↓, BAX↓
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TABLE 1 (Continued) Natural flavonoids derived from herbal medicines are potential anti-AS agents by inhibiting oxidative stress in endothelial cells.

Components Plant source Structure Experimental model Effective
dose

Effect and mechanism Ref

Ox-LDL-induced HUVECs 2.5 μM p-MAPK↑ Tsai et al.
(2016)

LOX-1↓, NADPH↓, p-PKC-α↓, p-PKC-β↓,
p47phox↓, Rac-1↓

Luteolin Celery, green pepper, Perilla frutescens (L.) Britt.,
and Matricaria recutita L

Ox-LDL-induced EA.hy926 40 μM p-p38MAPK↑, nuclear translocation of NF-kB↑ Yi et al.
(2012)

ROS↓, ICAM-1↓, VCAM-1↓, selectin↓, MMP-1↓,
MMP-2↓, MMP-9↓

TNF-α-induced HUVECs 6.25, 12.5,
25 μM

GSH↑, SOD↑, Bcl-2↑ Xia et al.
(2014)

ROS↓, LDH↓, NF-κB↓, p38↓, p-ERK1/2↓, ICAM-
1↓, VCAM-1↓, Nox4↓

Scutellarin Erigeron breviscapus (Vant.) Hand.-Mazz H2O2-induced HUVECs 12.5, 50,
200 μM

SOD1↑, NO↑, SOD↑, GPx↑, CAT↑ Mo et al.
(2018)

MDA↓, Ca2+↓, Nox4↓

Angiotensin II -induced
HUVECs

50, 100,
200 μM

SOD↑, CAT↑, Bcl-2↑, PI3K↑, p-AKT↑ Fu et al.
(2019)

MDA↓, ROS↓, Caspase-3↓, FAS↓, BAX↓, Bim↓,
p-Mst1↓, p-YAP↓, p-FOXO3A↓

HFD-induced rat 6.25 and
25 mg/kg/d

HDL↑, IL-1α↑, SOD↑, CAT↑, Bcl-2↑, PI3K↑,
p-AKT↑

TG↓, TC↓, LDL↓, VCAM-1↓, ICAM-1↓, IL-6↓,
TNF-α↓, MDA↓, Caspase-3↓, Fas↓, Bim↓, Bax↓,
p-Mst1↓, p-YAP↓, p-FOXO3A↓, FOXO3A↓

Acacetin Robinia pseudoacacia L., Dendranthema
morifolium (Ramat.)Tzvel., and Saussurea
involucrata (Kar. et Kir.) Sch.-Bip

High glucose-induced
HUVECs

0.3, 1, 3 μM MMP↑, SOD↑, mitoBcl-2/mitoBax↑, Sirt3↑,
pAMPK↑, PGC-1α↑

Han et al.
(2020)

ROS↓, MDA↓

Streptozotocin-induced
diabetic ApoE−/− mice

20 mg/kg/d SOD1↑, SOD2↑, Sirt1↑, PGC-1α↑, Sirt3↑,
pAMPK↑, Bcl2↑

TG↓, TC↓, LDL↓, lipoprotein A↓, lipoprotein
B↓, Bax↓

Ox-LDL-induced EA.hy926 3 μM Bcl-2↑, MsrA↑, Nrf2↑, HO-1↑, CAT↑ Wu et al.
(2021)

ROS↓, Bax↓, caspase-3↓, Keap1↓
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TABLE 1 (Continued) Natural flavonoids derived from herbal medicines are potential anti-AS agents by inhibiting oxidative stress in endothelial cells.

Components Plant source Structure Experimental model Effective
dose

Effect and mechanism Ref

Eupatilin Artemisia princeps Pampanini TNF-α-induced HUVECs 6.25, 12.5,
25 μM

ROS↓, VCAM-1↓, ICAM-1↓, NF-kB p65↓,
p-MAPK↓

Yu et al.
(2015)

Apigenin Clinopodium chinense (Benth.) O. Kuntze High glucose-induced
HUVECs

3, 30 μM NO↑, p-Akt↑, Bcl-2↑ Qin et al.
(2016)

ROS↓, caspase-3↓, Bax↓, p-PKCβII↓, p-p65↓

Nobiletin Citrus depressa (shiikuwasa), Citrus sinensis
(oranges), and Citrus limon (lemons)

Ox-LDL-induced HUVECs 10–50 μM ROS↓, MDA↓, TF↓, NF-κB↓ Cirillo et al.
(2017)

Oligomeric
proanthocyanidins

Crataegus oxyacantha berries Ox-LDL and C-reactive
protein-induced HUVECs

100 μg/mL NO↑, MMP↑ Jamuna et al.
(2022)

ROS↓, IL-6↓, MCP-1↓, IL-1β↓, LOX-1↓, eNOS↓

Oolonghomobisflavan A Leaves of Camellia sinensis LDL 0.5, 1, 2 μM Cholesterol ester hydroperoxides↓, thiobarbituric
acid reactive substances↓

Sukhbold
et al. (2017)

Tricetin Cereal crops and the pollen of members of the
Myrtaceae family

Ox-LDL-induced HUVECs 5, 10 μM ROS↓, MCP-1↓, IL-1β↓, ICAM-1↓, VCAM-1↓,
LOX-1↓, Egr-1↓, ERK1/2↓

Cai et al.
(2020)
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inhibited by eupatilin. Taken together, it was suggested that
eupatilin could protect endothelial cell function through ROS/
MAPK-NF-ĸB (Yu et al., 2015).

From the foregoing, it is known that the preceding flavonoid
compounds can protect the cells from oxidative stress damage by
restoring the antioxidant capacity of endothelial cells. However,
glabridin extracted from the root of Glycyrrhiza glabra (licorice)
could attenuate the oxidative stress injury to endothelial cells by
inhibiting the oxidative sensitivity of LDL. Incubation of LDL with
CuSO4 or 2,2’ -azobis (2-amidino-propane) dihydrochloride
resulted in varying degrees of oxidation of LDL. However, the
degree of LDL oxidation was significantly reduced after glabridin
treatment, and glabridin inhibited the formation of lipid peroxides
and cholesterol linoleic acid hydroperoxides (CLOOH) (Belinky
et al., 1998). This protective effect of glabridin provides a novel form
of protection for flavonoids. The protective effects of other flavonoid
compounds on endothelial cells are shown in Table 1.

5 Conclusion and problems

In this review, we summarized the pathogenesis of endothelial
dysfunction in AS, and then selected representative flavonoids with
anti-oxidative stress effects for relevant elaboration. After
summarizing, we have found that flavonoids from natural herbal
medicines not only inhibit oxidative stress, but also have anti-
inflammatory and anti-adhesion effects in the treatment of
endothelial dysfunction. This result is consistent with the multi-
level andmulti-target advantages of traditional Chinese medicine. In
modern clinical practice, it has been demonstrated that flavonoids
can be used to reduce the incidence of AS. First of all,
epidemiological investigations have shown that increasing the
intake of flavonoids in daily diet can effectively reduce the risk of
AS (Lagiou et al., 2006; Mursu et al., 2007). Subsequently, more and
more evidence has shown that the intake anthocyanins, tea (the
main components are flavan-3-ols), etc., can directly reduce the
occurrence of AS (Jennings et al., 2012; Ivey et al., 2013). However,
after in-depth understanding, flavonoids from natural herbal
medicines also have certain limitations and problems that need
to be solved urgently. Firstly, most of the models used in the existing
studies are in vitro models. Flavonoids have been shown to exert
protective effects on endothelial cells in experiments, but it is not
clear whether this protective effect will change with the
transformation of drug structure due to complex changes after
drug entry into the body. Secondly, although some researchers
have confirmed the protective effect of flavonoids on AS from in
vivo and in vitro experiments, there is no relevant clinical data to
support. At the same time, the toxicity and safety of drugs are also
essential before the development of drugs. In the case of quercetin,
after long-term addition of quercetin to the diet of F344/N rats, there
was no obvious toxic damage in the rats at the beginning, but their
weight gain was slow and they showed kidney carcinogenic activity
in males after 2 years (Dunnick and Hailey, 1992). The oncogenic
activity of quercetin remains controversial. However, it is generally
believed that quercetin is safe when used under the intended
conditions, and caution should be taken when taking quercetin
in high doses or for a long time. Therefore, the safety and toxicity of
flavonoids should be considered before they are used in clinicalTA
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practice, and more work needs to be done. Finally, because the
flavonoid compounds have more phenolic hydroxyl groups in their
structure, it makes their structure unstable. Therefore, it is necessary
to consider how to solve the problem of drug stability before
developing flavonoid compounds into drugs. Looking at the
existing flavonoid drug development, it can be found that the
research on the treatment of endothelial dysfunction in AS is still
relatively basic, and has not yet considered what kind of preparation
the flavonoid is made into, or how it is administered. The
development of flavonoids into modern formulations such as
nanoparticles may change the instability of the compounds,
which can also become the future development direction of
flavonoids for the treatment of endothelial dysfunction. In
summary, flavonoid compounds hold great promise in the
treatment of endothelial dysfunction in AS, but further
exploration is needed.
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