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Oral GSH supplementation along with antidiabetic treatment was shown to
restore the body stores of GSH significantly and reduce oxidative DNA damage
(8-OHdG) in Indian Type 2 diabetic (T2D) patients over 6 months in our recent
clinical study. Post hoc analysis of the data also suggested that elder patients
benefit from improved HbA1c and fasting insulin. We modeled longitudinal
changes in diabetic individuals using a linear mixed-effects (LME) framework
and obtained i) the distribution of individual trajectories with and without GSH
supplementation and ii) the overall rates of changes in the different study arms.
Serial changes in elder and younger diabetic individuals were also modeled
independently to examine differences in their progression. The average linear
trajectories obtained from the model explain how biochemical parameters in T2D
patients progress over 6 months on GSH supplementation. Model estimates show
improvements in erythrocytic GSH of 108 µM per month and a reduction in 8-
OHdG at a rate of 18.5 ng/μg DNA per month in T2D patients. GSH replenishes
faster in younger people than in the elder. 8-OHdG reduced more rapidly in the
elder (24 ng/μg DNA per month) than in younger (12 ng/μg DNA per month)
individuals. Interestingly, elder individuals show a substantial reduction in HbA1c
(0.1% per month) and increased fasting insulin (0.6 µU/mL per month). Changes in
GSH correlate strongly with changes in HbA1c, 8-OHdG, and fasting insulin in the
elder cohort. The model estimates strongly suggest it improves the rate of
replenishment in erythrocytic GSH stores and reduces oxidative DNA damage.
Elder and younger T2D patients respond differently to GSH supplementation: It
improves the rate of reduction in HbA1c and increases fasting insulin in elder
patients. These model forecasts have clinical implications that aid in personalizing
treatment targets for using oral GSH as adjuvant therapy in diabetes.

KEYWORDS

GSH supplementation, type 2 diabetes, HbA1c, 8-OHdG, elderly diabetic population,
mixed-effects models

OPEN ACCESS

EDITED BY

Takeo Nakanishi,
Takasaki University of Health andWelfare,
Japan

REVIEWED BY

Eugenia Piragine,
University of Pisa, Italy
Dateng Li,
Morgan Stanley, United States

*CORRESPONDENCE

Arjun Kolappurath Madathil,
k.marjun@students.iiserpune.ac.in

†These authors share first authorship

SPECIALTY SECTION

This article was submitted to Drug
Metabolism and Transport,
a section of the journal
Frontiers in Pharmacology

RECEIVED 18 January 2023
ACCEPTED 27 February 2023
PUBLISHED 13 March 2023

CITATION

Madathil AK, Ghaskadbi S, Kalamkar S and
Goel P (2023), Pune GSH
supplementation study: Analyzing
longitudinal changes in type 2 diabetic
patients using linear mixed-
effects models.
Front. Pharmacol. 14:1139673.
doi: 10.3389/fphar.2023.1139673

COPYRIGHT

© 2023 Madathil, Ghaskadbi, Kalamkar
and Goel. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Abbreviations: T2D, Type 2 diabetes; HbA1c, glycated hemoglobin; GSH, reduced glutathione; GSSG,
oxidized glutathione; PP glucose, postprandial glucose; PP insulin, postprandial insulin; 8-OHdG, 8-
hydroxy-2-deoxy guanosine; LME, Linear Mixed-Effects; EA, Elder Adults.

Frontiers in Pharmacology frontiersin.org01

TYPE Original Research
PUBLISHED 13 March 2023
DOI 10.3389/fphar.2023.1139673

https://www.frontiersin.org/articles/10.3389/fphar.2023.1139673/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1139673/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1139673/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1139673/full
https://orcid.org/0000-0001-6418-7239
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2023.1139673&domain=pdf&date_stamp=2023-03-13
mailto:k.marjun@students.iiserpune.ac.in
mailto:k.marjun@students.iiserpune.ac.in
https://doi.org/10.3389/fphar.2023.1139673
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2023.1139673


Introduction

A large number of clinical and experimental studies have
demonstrated the role of oxidative stress in developing type
2 diabetes (T2D) complications (Brownlee, 2005; Volpe et al.,
2018; Burgos-Morón et al., 2019). However, the use of
antioxidants as therapy isn’t recommended in healthcare practice
due to the lack of evidence about their long-term safety and efficacy.
Glutathione (GSH) is a major endogenous antioxidant in all cells
and determines their redox status and is significantly low in T2D
individuals (Townsend et al., 2003). Therefore, replenishing GSH
should be a good strategy to improve systemic redox status.
However, few clinical trials with GSH supplementation have been
conducted in healthy and diabetic individuals. Most of these studies
have concentrated on the effect of GSH supplementation on
replenishing body stores of GSH; few have studied its impact on
reducing oxidative stress, and even fewer on glycemic stress. Results
of these trials (Allen and Bradley, 2011; Sekhar et al., 2011; Ritchie
et al., 2015) have been difficult to interpret due to differences in the
dose and duration of GSH supplementation and the site of outcome
measurements, making the clinical recommendations difficult.

Our recent work (Kalamkar et al., 2022) has provided the most
conclusive evidence regarding the effects of GSH supplementation in
conjunction with antidiabetic treatment. The evidence from this clinical
trial suggested that the long-term GSH supplementation offered
protection from oxidative damage and improved HbA1c and fasting
insulin, especially in elderly T2D patients. We, therefore, believe that
GSH should be used as an adjunct therapy for T2D individuals. In our
data, we observed significant differences in how individuals respond to
GSH intervention. In addition to the factors such as age, diet, physical
activity, dose, and length of GSH intervention, the basal amount of
endogenous GSH is also responsible for this differential response among
individuals. Therefore, we feel that the personalization of GSH
supplementation based on endogenous GSH for T2D individuals
could be an important addition to current clinical practices. To
formulate effective personalized interventions of GSH with
antidiabetic treatment, it is essential to understand the dynamics of
longitudinal biochemical change and the variations between individual
responses toGSH supplementation in detail. This would be largely useful
in evaluating the progress of treatment and understanding the glucose
control targets for diabetic individuals.

In this work, we have formulated longitudinal mixed-effects models
(Laird andWare, 1982; Brown and Prescott, 2006) to analyze the clinical
data of diabetic individuals. Our mixed-effects (ME) models are
hierarchical models, where the units of analysis are subject-level
predictors (level two) with fixed and random effects. The framework
of LME models also performs ‘shrinkage’ for estimating model
parameters; that is, individual estimates obtained from LME models
are shrunk towards a grand mean of the population level estimate
compared to fitting separate linear models to each subject’s data (Bell
et al., 2019). ME models have a long history of use in health and
medicine since thesemodels treat each patient not only as amember of a
population but as an individual with unique characteristics (Gelman
et al., 2012; Barr et al., 2013; Baldwin et al., 2014; Wang et al., 2019;
Schober and Vetter, 2021). ME models thus allow estimating model
parameters that describe between- and within-subject variability of
individual responses. A two-level LME model provides reliable
estimates in absolute, not just relative, physical units of the variables.

This is beneficial for direct clinical use rather than the effect-size-based
estimates of treatment effects obtained in our earlier work. We
formulated two different LME models, namely, 1) with random
intercepts and fixed slopes and 2) random intercepts and random
slopes for each variable. These models were evaluated using best
likelihood by Akaike’s Information Criteria (AIC) and non-
singularity criteria and selected for optimal performance (Bates D. M.
et al., 2015).

In our earlier study, we pointed out that the response in elder
and younger cohorts was markedly different. We, therefore,
analyzed these data separately with LME models.

Materials and methods

Clinical trial data

This study has been carried out using the data published in our work
(Kalamkar et al., 2022), whichwas collected from the clinical trial entitled
“Effect of glutathione supplementation on glucose homeostasis in
diabetic patients” and registered with the Clinical Trials Registry
-India (CTRI/2018/01/011257). The data set is freely available online
(on the link: https://figshare.com/s/0803267e1d38c054cee6). The
analysis of the clinical trial data was conducted with ethical approvals
from the Institutional Ethical Committee (IEC) of Jehangir Hospital
DevelopmentCenter, Pune (JCDCECN-ECR/352/Inst/NIH/2013), IEC
of IISER Pune (IECHR/Admin/2019/001); and the Institutional
Biosafety Committee (IBC) of SPPU (Bot/27A/15).

The dataset published in the trial comprised 250 known Indian
diabetic individuals recruited between February 2016 and January
2018 who were already on anti-diabetic treatment. The clinical trial
consisted of three groups: A control group comprising healthy, non-
diabetic subjects and two groups of diabetic patients; in one of those,
GSH supplementation (500mg/day for 6 months) was carried out,
namely, the DG group, and the other group without
supplementation, the D group. The only difference between this D
and DG group is the intervention, that is, supplementation with GSH.
More importantly, D and DG are similar in nearly all respects, and
covariate balance at the baseline has already been shown (Kalamkar et al.,
2022).

Measured variables and follow-up visits

Blood samples of each individual were collected at the time of
recruitment and three and 6 months post-GSH supplementation.
The dataset used in this study consists of the amounts of reduced
(GSH) and oxidized (GSSG) glutathione, fasting and postprandial
glucose (FPG and PPG), fasting and postprandial insulin (FPI and
PPI), HbA1c, and 8-hydroxy-deoxy-guanosine (8-OHdG), a marker
of oxidative DNA damage measured from all individuals.

Statistical analysis

Descriptive statistics with the mean and standard deviation (SD)
were used to describe different study groups in terms of metabolic
outcomes at baseline and each subsequent follow-up. Biochemical
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parameters at different visits were compared using two-sample
t-tests. The statistical significance of the comparisons was set at a
p-value less than 0.05.

Formulation of linear mixed-effect models

The formulation of linear mixed-effect (LME) models for each
biochemical variable (GSH, GSSG, HbA1c, 8-OHdG, FPG, FPI,
PPG, and PPI) assumed fixed and random effect parameters at
different levels (Level 1: time, Level 2: individuals) in the study. The
composite form of the model was written by combining the model
equations from these different levels. This form of the model was
further used to study the dependency of each effect at different levels
and their nested structure in one another. The response variable Yij

from subject i on the jth visit was modeled with subject-specific
intercepts (bi0 ) and subject-specific slopes (bi1 ) against treatment
time tij (where tij = 0, 3, 6 months for j = 1, 2, 3 visits respectively).
An indicator variable Ti was assumed to take a value of 0 for the D
group and one for the DG group (control and treatment with GSH
supplementation, respectively). We denote the average intercept of
diabetic individuals when all predictors are 0 by β0 (mean expected
value of the response variable Y). β1 represents the average rate of
change in Y during the treatment for the D group. β1 + β2 represnts
the average rate of change in the DG group. The difference in the
rates of change between D and DG β2 represents the average
treatment effect of GSH supplementation on Y.

We considered two candidate models of biochemical variables,
namely, 1) random intercept and random slope (RIRS) model and 2)
random intercept and fixed slope (RIFS) model for explaining the
measured longitudinal data. We formulated RIRS models for the
outcome variable Yij as Yij = bi0 + bi1 × tij + ϵij with subject-
specific random slopes and intercepts bi0 and bi1 defined by bi0 = β0
+ bi0 and bi1 = β1 + β2 ×Ti + bi1 where bi0 , and bi1 were assumed to be
distributed asN (0; σ02) andN (0, σ12), with covariance σ01, respectively.
In the RIRSmodel, fixed effects are β0, β1, β2 and random effects are bi0,
bi1. The residual errors were assumed to be normally distributed with a
variance of σe2 . The composite form of the RIRS model for Yij is given
by, Yij = β0 + bi0 + (β1 + β2 × Ti + bi1) × tij + ϵij.

RIFS models for outcome variable Yij were formulated with
random intercepts and fixed slopes at subject level (level 2) defined
by intercept, bi0 = β0 + bi0 and slope; bi1 = β1 + β2 × Ti. The random
intercepts bi0 in the model were assumed to be distributed as bi0 ~ N
(0; σ02). The composite forms of the RIFS model for Yij is given by
Yij = β0 + bi0 + (β1 + β2 × Ti) × tij + ϵij.

The design matrices for model equations and covariance
matrices are described in further detail in Supplementary
Sections S1.1, S1.2.

Model parameters and fitting

The formulated models have been tested and fitted using the lme4
package in R (Bates D. et al., 2015); these calculations were confirmed
using thefitlme package inMatlab and themimosa package (Titz, 2020)
for mixed effects models. Other packages, ggplot2, and tidyverse in R,
were used for analysis and plots. RIFS and RIRS models were fitted for
GSH, GSSG, 8-OHdG,HbA1c, FPG, FPI, PPG, and PPI. A suitable RIFS

or RIRSmodel was selected for each response variable using the best AIC
and non-singularity criteria (Bates D. M. et al., 2015).

RIFS models were fitted for five parameters, β0, β1, β2, σ0, σe and
RIRSmodels were fittedwith seven parameters, β0, β1, β2, σ0, σ1, σ01, σe.
The fitted estimates for β and b, the vectors of fixed effect parameters,
random effect parameters, respectively, are given by the Best Linear
Unbiased Estimator (BLUE) of β̂, and Best Linear Unbiased Predictor
(BLUP) of b̂, (Refer to Supplementary Section S1.3 for further details).
The components of b̂, bi0, and bi1, random effects represent person-
specific intercepts (in both RIFS and RIRS) at the baseline and person-
specific differences in the rate of change in the slopes (in RIRS only),
respectively.

The statistical significance of the results of the LME estimates was
determined as p < 0.05. We have followed the uncorrected p-value to
interpret the results through. To ensure completeness, we have
performed corrections for multiple comparisons using the Bonferroni
method. We applied these corrections for the estimates from LME
models for each variable and across all results in both main and
supplementary analyses. Those results, which continued to be
statistically significant even after the corrections, were marked with a
“#” in the corresponding tables. The reader should take this into
consideration when evaluating the statistical findings.

Analysis of elder and younger patients

The variation in response to GSH supplementation with age was
studied as follows: The data was divided into 1) a subgroup of elder
adults (EA) above 55 years and 2) the subgroup of younger adults
(YA) below 55 years.

Themodel for EA is given byYij = β0 + bi0 + (β1 + β2 ×Ti) × tij +
ϵij. The treatment variable Ti takes the value of 0 for EA in the D
group and one for the EA in the DG group. The model was
formulated similarly for YA as well.

Analysing the age effects on outcomes

We studied the effects of the age of individuals on the outcome
variables Y with different LME models by incorporating 1)
continuous variable for the age of individuals at the recruitment
and 2) categorical variable for elder and younger age groups. These
model formulations are described in Supplementary Section S1.4.

The models considered in this analysis are the following:

(i) Model 1: The original RIRS model in the study without age
variables

(ii) Model 2: RIRS model with a treatment-time interaction term,
and three-way interaction term with age, treatment indicator,
and time at the patient level (Level 2)

(iii) Model 3: RIRS model with a three-way interaction term with
age, treatment indicator, and time at the patient level (Level 2)

(iv) Model 4: RIRS model with age groups as a categorical variable
for pooling EA and YA at the patient level (Level 2)

These models were fitted for all eight variables, and their
performances were compared using AIC and BIC estimates after
the likelihood ratio test.
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The structure of the data from the D and DG
groups

A sample structure of the data from the clinical trial is given in
Supplementary Table S1. This data format was prepared for analysis
using the lme4 package. The dataset consisted of eight different
measured variables of 201 individuals (100 in D, 101 in DG) who
completed both the follow-up visits (3 and 6 months post-GSH
supplementation). The Group IDs are encoded as 0 for D and one
for DG.

Estimating correlations between
longitudinal changes in different variables

The correlation between individual-specific slopes of variables
obtained from RIRS models was estimated using the Pearson
correlation coefficient (Pearson, 1895). Correlation diagrams were
obtained between all variables using the slopes for RIRS models
fitted with 1) the whole data sets and 2) the unpooled data sets from
elder individuals and younger individuals. The size of the circle in
each cell of the correlation diagram represents the extent of
correlation between compared variables. The blue color
represents a positive correlation, and the brown represents a
negative correlation.

Making predictions for virtual individuals

The fitted model estimates were utilized to predict responses in
virtual individuals with diabetes. We considered three new virtual
individuals (V1, V2, and V3) and assumed arbitrary but reasonable
baseline measurements of GSH, 8-OHdG, and HbA1c. We thus
predicted trajectories in these subjects over 6 months. The scheme
used for this purpose is described in Supplementary Section S1.5.
The steps in this scheme perform the following:

(i) The baseline values assumed for virtual subjects are shrunk
towards the average intercept estimated by our LMEmodel, and
the individual specific random effects are obtained.

(ii) Using the LME model estimates of the average intercept,
random effect of the intercept, and the rate of changes in the
slopes, we obtained the average linear trajectory for each virtual
individual in the presence and absence of GSH
supplementation.

Results

Observational summary of longitudinal
changes in the D and DG groups

Group-wise statistics (mean and standard deviation) of the
measured variables (GSH, GSSG, 8-OHdG, HbA1c, FPG, FPI,
PPG, and PPI) for both D and DG in each of the three visits are
described in Kalamkar et al. (2022); these are summarized here for
completeness in Table 1.

GSH and GSSG were significantly increased, and 8-OHdG and
HbA1c significantly decreased (p < 0.001) within 3 months in DG
and continued to be so at 6 months as well. FPI of DG increased
significantly within 6 months (p < 0.001). FPG, PPG, and PPI didn’t
show significant changes. GSH in the third visit was also significantly
increased in D, but not as much compared to the corresponding
change in DG.

LME estimates of the rates of change for the
whole population

We fit RIRS and RIFS models for GSH, GSSG, 8-OHdG, HbA1c,
FPG, PPG, FPI, and PPI (as described in Model parameters and
fitting). These subject-wise trajectories obtained from RIRS models
are shown in Figure 1. Individual trajectories are distributed around
the group-wise average trajectory. Group-wise average intercepts are
determined by β0; these are equal for both D and DG. The average
slopes in D and DG are β1 and β1 + β2, respectively. This β2 denotes
the difference between the average slopes in the two groups, that is,
the treatment effect of GSH supplementation on outcomes. These
estimates (β0; β1, and β2) are detailed in Table 2. Estimated random
effects, that is, within-individual and between-individual variations,
are described in Supplementary Tables S2, S3.

We find that β2 is significant for GSH, GSSG, and 8-OHdG
(Table 2). Among the glycemic variables, β2 is significant only for
FPI, and PPI but not for HbA1c, FPG, and PPG.

The mean erythrocytic GSH is estimated as 492 µM in
individuals with diabetes. It increased slightly, at an average rate
of 0.04 µM per month from the baseline during the study period in
D. In DG, GSH increased at an average rate of 107.7 µM per month.
Therefore GSH supplementation significantly improved GSH by
about 22 percent (107.7 µM, p < 0.001) per month relative to
baseline. Mean GSSG is estimated as 221 µM. In D and DG,
GSSG increased at average rates of 4.7 and 17.7 µM per month,
respectively, from the baseline (Figure 1). Thus GSSG rates are
significantly improved (p < 0.001) by about six percent per month of
the baseline (13.02 µM, p < 0.001). 8-OHdG is estimated to be
442 ng/μg DNA in diabetic individuals. It decreased in D and DG at
average rates of 2.8 and 21.3 ng/μg DNA per month, respectively.
Thus the effect of GSH supplementation significantly reduced 8-
OHdG by four percent per month of the baseline (18.5 ng/μg DNA,
p < 0.001).

HbA1c, FPG, and PPG changed at similar rates in D and DG
(Figure 1), suggesting that the effect was negligible (p > 0.05). FPI
and PPI are found to be affected significantly. Mean FPI is estimated
as 13.4 µU/mL. FPI decreased at an average rate of 0.3 µU/mL per
month in D. GSH supplementation significantly improved FPI at a
rate of 0.2 µU/mL in DG. The average PPI is estimated as 48.8 µU/
mL in individuals with diabetes. It decreased at average rates of
0.8 and 4.9 µU/mL per month in D and DG, respectively (Figure 1).
GSH supplementation significantly enhanced FPI by four percent
(0.5 µU/mL, p < 0.001) and reduced PPI rates by eight percent
(4.1 µU/mL, p < 0.001) of the baseline per month.

Results obtained from RIFS models are shown in Supplementary
Figure S1 and Supplementary Table S3. The parameter estimates of
β2 from RIFS models are also found to be significant for GSH, GSSG,

Frontiers in Pharmacology frontiersin.org04

Madathil et al. 10.3389/fphar.2023.1139673

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1139673


8-OHdG, FPI, and PPI, leading to similar conclusions about the
effects of GSH supplementation as in RIRS models.

We note that these results largely coincide with the results from
previous work (Kalamkar et al., 2022). However, FPI and PPI, which
were earlier reported not to be affected by GSH supplementation, are
found to have a significant effect through the LME model-based
analysis.

Independent LME model estimates for ages
above and below 55 years

Diabetes is an age-onset disease; an early diagnosis leads to an
increased chance for complications to set in relatively early. We have
earlier demonstrated that the effectiveness of GSH supplementation
differed between the younger and elder populations using an age
cutoff of 55 years, which was the median age of the study population
(Kalamkar et al., 2022). We fit a separate LME for each of these two
age groups. Model estimates obtained by fitting LME models
independently for EA and YA are detailed in Supplementary
Table S4.

GSH supplementation significantly affected GSH, 8-OHdG,
HbA1c, FPI, and PPI in EA, and GSH, GSSG, 8-OHdG, and PPI
in YA (β2 in Table 3, p < 0.001).

GSH
Mean erythrocytic GSH in EA (488 µM) is estimated to be less

than YA (497 µM). In YA of D, it decreased at an average rate of
6.9 µM per month, whereas in DG, GSH increased at an average rate
of 104 µM per month (Supplementary Figure S2). In EA of D and
DG, GSH increased at average rates of 6.5 and 111 µM per month,
respectively (Figure 2). This clearly indicates that GSH
supplementation resulted in a significant improvement in GSH
by about 21 percent per month of their baseline in YA (111 μM,
p < 0.001) and 22 percent per month in EA (105 μM, p < 0.001) with
diabetes.

GSSG
Interestingly, the effect on GSSG was significant in YA (p < 0.01)

but not in EA. The mean GSSG in EA (231 µM) was estimated to be
higher than YA (209 µM). When YA of D and DG were examined,
GSSG increased at average rates of 1.9 and 18.4 µM per month,
respectively (Supplementary Figure S2). It increased at average rates
of 7.6 and 17.1 µM per month in EA of D and DG, respectively
(Figure 2). This shows that GSH supplementation enhanced GSSG
significantly per month by eight percent of the baseline (17.5 µM, p <
0.001) per month only in YA.

8-OHdG
The average 8-OHdG estimate is higher in EA (445 ng/μg DNA)

than in YA (438 ng/μg DNA). In EA of both D and DG, 8-OHdG
decreased at average rates of 3.3 and 27 ng/μg DNA per month
during the study period (Figure 2). Similarly, it decreased at average
rates of 2.1 and 14.16 ng/μg DNA per month in the YA of D and DG
groups (Supplementary Figure S2). Thus, we find that GSH
supplementation significantly reduced 8-OHdG from the baseline
by 12.06 ng/μg DNA per month (3%) in YA and 23.7 ng/μg DNA
per month (5%) in EA. These results suggest that oral GSH
administration rapidly offers better protection from oxidative
DNA damage in EA compared to YA.

HbA1c
GSH supplementation was earlier reported to affect the

HbA1c in the elder cohort significantly (Kalamkar et al.,
2022). We examined LME estimates of both YA and EA to
quantitate the effect on HbA1c. The average HbA1c is estimated
at 8.3% and 8.4% in YA and EA, respectively. In EA of D, HbA1c
decreased at an average rate of 0.02% per month, while in DG, it
decreased at an average rate of 0.12% per month (Figure 2),
suggesting that GSH supplementation improved HbA1c rates
significantly by about 0.1% per month in EA. Estimated HbA1c
rates are not significantly different between YA of D and DG
(Supplementary Figure S2).

TABLE 1 0−, 3− and 6−month changes of subjects in D and DG groups. Group-wise means and standard deviations (SD) of blood concentrations of GSH, GSSG, 8-
OHdG, HbA1c, FPG, FPI, PPG, and PPI are shown for D and DG groups at different visits. The significance of change is determined for the second (3 months from the
first visit) and third visits (6 months from the first visit) relative to the first visit using two-sample t-tests. The significance levels used are pp < 0.05, ppp < 0.01, and
pppp < 0.001. Abbreviations of the variables used here are: HbA1c—glycated hemoglobin, GSH—reduced glutathione, GSSG—oxidized glutathione, PP
glucose—postprandial glucose, PP insulin—postprandial insulin, and 8-OHdG–8-hydroxy-2-deoxy guanosine.

Variable Mean (SD) in the D group Mean (SD) in the DG group

Baseline visit Second visit Third visit Baseline visit Second visit Third visit

GSH (μM) 395 (225) 428 (263) 484 (255)ppp 465 (352) 1,129 (668)ppp 1,021 (518)ppp

GSSG (μM) 249 (150) 236 (157) 262 (137) 163 (104) 333 (214)ppp 286 (204)ppp

8-OHdG (ng/μg DNA) 422 (124) 404 (124) 443 (110) 471 (83) 387 (112)ppp 313 (135)ppp

HbA1c (%) 8.4 (1.9) 7.9 (1.7)pp 8.2 (1.8) 8.5 (1.9) 7.7 (1.5)ppp 7.9 (1.5)ppp

FPG (mg/dL) 160 (61) 143 (47)p 151 (58)p 153 (59) 141 (47) 150 (59)

FPI (μU/mL) 14.2 (10.4) 12.7 (6.8) 12.1 (7.7) 12.6 (8.06) 14.6 (13.8) 13.9 (10.5)ppp

PPG (mg/dL) 233.6 (84.1) 216.9 (70.9) 220.3 (83.6) 221.9 (77) 211 (80.4) 218 (83.2)

PPI (μU/mL) 43.4 (26.9) 47.03 (33.3) 40.5 (29.9) 48.3 (47.7) 49.5 (39.6) 52.3 (43.8)
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FIGURE 1
Average treatment effects of GSH supplementation on biochemical changes estimated using LMEModels. The fitted results of RIRSmodels for GSH,
GSSG, 8-OHdG, HbA1c, FPG, FPI, PPG, and PPI (RIFS model fits are shown in Supplementary Figure S1) in D group and DG groups (figure panels marked
with titles D and DG) are overlaid here with the longitudinal data from 201 individuals (100 D subjects in blue circles, 101 DG subjects in red circles) at
different visits. Solid blue and red lines depict the fitted subject-specific mean trajectories in the D group and the DG group, respectively. The black
dotted and solid lines represent the group-wise means for D and DG, respectively. Interquartile ranges of the data for D and DG groups are shown with
vertical interval plots (25th-75th quartiles) at each visit. The average treatment effects of GSH supplementation (β2) are denoted on top of each panel
corresponding to the DG group. The estimated β2 was significant on the rate of changes in GSH (β2 = 107.7 µM per month), GSSG (β2 = 13.02 µM per
month), 8-OHdG (β2 = −18.5 ng/μg DNA per month), FPI (β2 = 0.5 µU/mL per month) and PPI (β2 = −4.1 µU/mL per month) levels. The significance levels
of parameter estimate are given by pp < 0.05, ppp < 0.01, and pppp < 0.001. Abbreviations of the variables used here are HbA1c—glycated hemoglobin,
GSH—reduced glutathione, GSSG—oxidized glutathione, PP glucose—postprandial glucose, PP insulin—postprandial insulin, and 8-OHdG—8-hydroxy-
2-deoxy guanosine.
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Fasting Insulin
Our earlier work (Kalamkar et al., 2022) found that oral GSH

supplementation significantly changed FPI in elder patients. We
quantitated the effect on FPI using LME model estimates
(Supplementary Table S4). The average FPI is estimated to be
12.9 µU/mL in YA and 14 µU/mL in EA. In both EA and YA of
D, FPI decreased at rates of 0.4 µU/mL and 0.1 µU/mL per month,
respectively (Figure 2). The estimated rates were similar between the
YA of the D and DG, indicating that the effect on FPI is negligible
(p > 0.05). On the other hand, in EA of DG, FPI increased at a rate of
0.2 µU/mL per month, suggesting that GSH supplementation
improved FPI rates significantly by 0.6 µU/mL per month. FPI
increased by 4.3% of the baseline per month in EA and
negligibly in YA.

Postprandial Insulin
Using LME models to fit the data, PPI was found to decrease in

both YA and EA. The average PPI in YA and EA is estimated to be
46 and 51 µU/mL, respectively. In YA of D, PPI increased at a rate of
0.1 µU/mL per month, whereas in DG, it decreased at a rate of
4.7 µU/mL per month. PPI decreased at average rates of 1.6 µU/mL
and 5.2 µU/mL per month in EA of D and DG, respectively.

Fasting and Postprandial Glucose
The average FPG estimated in YA and EA are 156 and 150 mg/

dL, respectively. In both YA and EA, the GSH supplementation
effect wasn’t found to be significant. In both EAs of D and DG, FPG
decreased at average rates of 1.7 and 0.9 mg/dL per month,
respectively. Similarly, in YAs of D and DG, it decreased at
average rates of 1.3 and 0.8 mg/dL per month, respectively. PPG
estimated in YA and EA at the time of recruitment is 227 and
223 mg/dL, respectively. GSH supplementation decreased PPG by
2.5 mg/dL per month in EAs and increased PPG by 3.5 mg/dL per
month in YA.

For exploratory purposes, we also analyzed the effects of the age
using new candidate models as incorporated with age as a model
variable (Model 2, Model 3, and Model four in Supplementary
Section S1.4) for GSH, GSSG, 8-OHdG, HbA1c, FPG, FPI, PPG, and
PPI. Results obtained by fitting with these models are shown in
Supplementary Tables S5A–C. When we compared model fits from
all four models using AIC and BIC estimates, our original RIRS
model (Model 1) was found to be the better-fit model for all variables
(Supplementary Table S5D).

Changes in GSH correlate strongly with
changes in HbA1c and 8-OHdG in EA

We estimated pairwise correlations between subject-specific
slopes of GSH, GSSG, 8-OHdG, HbA1c, FPG, FPI, PPG, and PPI
obtained from RIRS models. These correlation diagrams for the full
population (pooled data) are shown in Figure 3A. Changes in GSH
are found to be strongly correlated positively with GSSG (r > 0.6)
and FPI (r > 0.9). Changes in GSH correlated negatively with 8-
OHdG and PPI (r < −0.6). The other correlations are found to be
relatively weaker.

Correlation plots for EAs alone are shown in Figure 3B. GSH
slopes are strongly negatively correlated with 8-OHdG slopes
(r = −0.71) and HbA1c slopes at moderate levels (r = −0.43).
GSH slopes are strongly negatively correlated with PPI slopes
(r = −0.74, Figure 3B); however, they are strongly positively
correlated with FPI (r = 0.75).

In YAs (Supplementary Figure S3), GSH slopes are negatively
correlated at moderate levels with 8-OHdG (r = −0.43) and PPI
(r = −0.57) slopes. The correlation between GSH slopes and HbA1c
slopes is negligibly small.

Taken together, the strengths of the correlations between the
changes in GSH and outcome variables are evidently different
between EAs and YAs.

We next use LME model estimates to help quantify the overall
rates of changes that can be expected of individuals.

Predicted trajectories for virtual diabetic
individuals

Next, we describe the sample predictions obtained for three
virtual individuals (V1, V2, and V3) using RIFS models. Baseline
values assumed for these virtual individuals are given in Table 3.

The trajectories of GSH, 8-OHdG, and HbA1c obtained if they
were with or without GSH supplementation are shown in Figure 4.

TABLE 2 Fixed-effects parameter values obtained by fitting LMEmodels of RIRS
form for GSH, GSSG, 8-OHdG, HbA1c, FPG, FPI, PPG, and PPI variables are
presented here with standard error associated with the estimates. Random-
effects parameter values are given in Supplementary Table S2. The fitted
results from the corresponding RIFS model are shown in Supplementary Table
S3. Average treatment effects (β2) of GSH supplementation were observed to
be significant on the rate of changes (slopes) for GSH, GSSG, 8-OHdG, FPI, and
PPI levels. Statistical significance levels of parameter estimates are given by
pp < 0.05, ppp < 0.01, and pppp < 0.001. Abbreviations of the variables used here
are the same as in Table 1.

Variable Fixed effect parameters

β0 (SE) β1 (SE) β2 (SE)

GSH (μM) 492.2 (27.4)ppp# 0.04 (8.6) 107.8 (10.3)ppp#

GSSG (μM) 221 (11.3)ppp# 4.9 (3.1) 12.7 (3.8)ppp#

8-OHdG (ng/μg DNA) 442 (7.5)ppp# −2.8 (2.6) −18.5 (2.9)ppp #

HbA1c (%) 8.4 (0.1)ppp # −0.06 (0.03) −0.05 (0.04)

FPG (mg/dL) 152.9 (3.9)ppp# −1.33 (1.09) 0.4 (1.3)

FPI (μU/mL) 13.4 (0.66)ppp# −0.3 (0.14)p 0.5 (0.2)pp

PPG (mg/dL) 224.4 (5.4)ppp# −1.6 (1.6) 0.3 (1.9)

PPI (μU/mL) 48.8 (2.3)ppp# −0.7 (0.6) −4.4 (0.7)ppp#

TABLE 3 Baseline assumptions for virtual individuals. The concentrations of
GSH, 8-OHdG, and HbA1c assumed at the baseline for virtual individuals (V1,
V2, and V3) to make predictions using RIFS models are shown in the table.

Subject ID GSH (μM) 8-OHdG (ng/μg DNA) HbA1c (%)

V1 200 500 10

V2 500 400 8

V3 800 300 6
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FIGURE 2
Average treatment effects of GSH supplementation in elder diabetics. The fitted results of RIRS models for GSH, GSSG, 8-OHdG, HbA1c, FPG, FPI,
PPG, and PPI variables (RIFSmodel fits are shown in Supplementary Figure S4) of elder adults (EA) are shown on different panels here with the longitudinal
data (blue circles for D individuals and red circles for DG individuals) at different visits. The data from 107 elder adults (52 from D and 55 from DG) are
overlaid with group-wise mean trajectories for D and DG groups represented by black dotted lines and solid lines, respectively. Interquartile data
ranges for individuals (from D and DG) are shown with vertical interval plots (25th-75th quartiles) at each visit. The average treatment effects of GSH
supplementation (β2) on the rate of changes (slope) denoted on top of corresponding panels which are significant on GSH (β2 = 104 µM per month), 8-
OHdG (β2 = −23.7 ng/μg DNA per month), HbA1c (β2 = −0.1% per month), FPI (β2 = 0.6 µU/mL per month), and PPI (β2 = −3.6 µU/mL per month) in elder
adults. The significance of these parameter estimates and abbreviations of the variables are the same as in Figure 1.

FIGURE 3
Correlation diagram between subject-specific changes (A) for the whole population and (B) for EAs. The correlation diagrams obtained between
subject-specific random slopes from fitted RIRS models for different biochemical measures (GSH, GSSG, 8-OHdG, HbA1c, FPG, FPI, PPG, and PPI) are
shown here. The strength and direction of correlation between subject-specific slopes are reflected in both color and size of the circular markers. The
scales of Pearson’s correlation coefficient have been classified as low (r < 0.4), moderate (r < 0.6), strong (r > 0.6), or very strong (r > 0.8). Blue
indicates a strong positive correlation, and red indicates a strong negative correlation. Abbreviations of the variables are the same as in Figure 1.
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RIFS models predicted the GSH of V1 close to 429 µM by the end of
6 months, whereas, on GSH supplementation, V1 ended up at
1,079 µM. Similar predictions were made for 8-OHdG and
HbA1c for all these individuals (Figure 4).

This can also be modified to estimate 1) the average time
required for a recruited individual to reach a particular level of a
biochemical parameter given the baseline value and 2) the expected
change in the level of a particular biochemical parameter with time.

Finding a patient’s potential trajectory has direct clinical and
academic uses. This method, therefore, can be used on newly added
subjects to predict different outcomes during 6 months, with or
without GSH supplementation.

Discussion

Our earlier study demonstrated population-level changes in
GSH, GSSG, HbA1c, 8-OHdG, FPG, FPI, PPG, and PPI; these
changes were further studied for younger and elder subgroups of
the patients. The response in individual patients is, unsurprisingly,
considerably varied; however, analyzing individual responses was
beyond the scope of that study. In the present study, we are focused
on explaining individual-level responses to GSH supplementation
over the full study period of 6 months. We addressed this through a
linear mixed-effects model framework. The major results of this
study are to characterize the variability in the inter-individual
biochemical response, in particular, determined by the age group
of an individual. To the best of our knowledge, this is the first inter-
individual analysis of the effects of GSH supplementation in patients
with diabetes.

The response to GSH supplementation was analyzed in the
earlier work (Kalamkar et al., 2022) by comparing 6-month changes
in D and DG groups through population-level Cohen’s-d-based
estimates. GSH supplementation was found to significantly affect
GSH, GSSG, and 8-OHdG levels (at moderate levels of Cohen’s d >
0.6) and not for HbA1c, FPG, FPI, and PPG variables. The LME
model framework helped analyze biochemical responses
longitudinally and obtain more refined estimates that account for
inter-individual and within-individual variations at two levels of
hierarchy. We note that LME models describe linear trajectories
over a 6-month duration. The estimates show that D and DG
average trajectories lie between the 25th and 75th percentiles of
the data at all visits; that is, these models are a good description of
the data.

Model estimates were consistent with the effect size estimates in
the earlier study (Kalamkar et al., 2022) for GSH, GSSG, 8-OHdG,
HbA1c, FPG, FPI, and PPG variables but not for PPI. LME estimates
determined that the GSH supplementation markedly enhanced the
rate of replenishments in erythrocytic GSH stores by about 22%,
GSSG stores by about 6%, and reduced oxidative DNA damage by
about 4% of the baseline month in diabetic patients. Importantly,
these estimates are in the actual (not relative) physical units and are,
therefore, directly interpretable for use in clinical applications.

We had identified an older subgroup separate from a younger
diabetic population that benefits better from GSH supplementation
through a post hoc subgroup analysis in our earlier study. That study
wasn’t designed to evaluate this analysis explicitly, and as such, it
was a weaker form of evidence. LMEmodels provided a more formal
way of comparing their differential responses; that is, two
independent models described the responses in each of these two

FIGURE 4
Model predictions for virtual individuals. Average trajectories of the concentration of GSH, 8-OHdG, and HbA1c predicted using RIFS models in
virtual individuals (V1, V2, and V3) if they were to be followed up with GSH supplementation (red) and without GSH supplementation (blue) are shown for
6 months are depicted here. The baseline values assumed and the values predicted after 6 months are alsomarked for V1, V2, and V3. Abbreviations of the
variables are the same as in Figure 1.
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age classes. GSH supplementation improved the rates of 8-OHdG
and HbA1c reduction in elder diabetic individuals more than in
younger diabetic cohorts. LME models estimated the effect to be
significant for FPI in elder patients, which supported our claims of a
beneficial elder cohort. Model estimates for GSSG suggested a
significant effect of GSH supplementation in younger patients (by
17 µM per month) but not in elder ones. In contrast to the earlier
results, PPI model estimates were found to be significant in both
elder and younger cohorts. Thus, ourmodel-based analysis describes
the extent to which diabetic patients above 55 can be expected to
benefit from GSH supplementation.

LME model estimates further allow for examining the strength
of the association between covariates. The results of the correlation
analysis (in Figure 3; Supplementary Figure S3) show to what extent
GSH intervention improves erythrocytic GSH stores and reduces
DNA damage. Estimates from the elder and younger individuals also
revealed that GSH changes were correlated strongly with changes in
HbA1c and 8-OHdG in elder adults.

Finally, we have formulated a scheme (in Supplementary Section
S1.5) that makes individual-specific predictions for newly recruited
subjects with diabetes, given a baseline measurement by using the
LME model estimates of the fixed-effects and random-effects
parameters. In particular, this scheme can be utilized to make
predictions of what changes might be expected in the
biochemical levels. Alternatively, the average time required for a
recruited patient to reach a particular range of biochemical
parameters in diabetic subjects can be estimated. The fitted LME
model estimates can be used to identify the extent of each subject’s
response, whether they are in a better or worse condition than the
average population response (Inzucchi et al., 2012; Kirkman et al.,
2012). These schemes are of direct clinical and academic use to
predict prospective trajectories, which can be a powerful addition to
the clinician’s toolbox.

Strengths of this study include that it is based on the data
available from diabetic individuals on a well-conducted, randomized
control trial, which is one of the most extensive GSH
supplementation studies so far. Using LME models, we evaluated
the individual trajectories and associated variations within
individuals and between individuals, which has not been done
before in GSH intervention studies.

It is particularly important to keep in mind that our
understanding of the results is based on the uncorrected p values.
The practice of correcting for multiple comparisons has been a topic
of debate among statisticians for several years now. Various
opinions were found in the literature in opposition regarding the
conditions under which a correction for multiple testing should be
applied. We note that several highly cited reports over the years
(Poole, 1991; Perneger, 1998; Cabin andMitchell, 2000) recommend
dismissing the usage of corrections with multiple comparisons. It
was shown that when trying to reduce the rate of false positives
(Type I error) for null associations, often leads to an increase in the
rate of false negatives (Type II error) for those that are not null
(Rothman, 1990). Also, these comparisons were often complained of
being unnecessarily conservative, which makes this approach
frequently fails to identify actual differences. However, for the
interest of all readers, we have also incorporated significance
levels after corrections for each comparison. Those readers who
prefer statistically corrected results should follow the corresponding

tables to determine which findings still retain significance and which
did not after correction for multiple comparisons.

We had earlier identified the differential effects of GSH
supplementation in elder and younger subgroups (Kalamkar et al.,
2022). This study analyzed the longitudinal responses of GSH
supplementation observed in these subgroups of diabetic individuals
rigorously with a framework of the LME models. The subgroup of
subjects above the median age of 55 is consistent with previous studies
that show an increased risk of diabetes-related complications in
individuals around this age. Several organizations have already
developed guidelines specific to, or including, older adults on their
annual Standards of Medical Care in Diabetes (American Diabetes
Association, 2012). These reports also discuss the severity of diabetes
complications in elders and the lack of high-level evidence on the
effectiveness of different medications in diabetics (Leung et al., 2018).
We think the onset of diabetes and complications should be addressed
differently for elder and younger diabetic individuals, and treatments
need to be planned separately from each other. The two independent
LME models formulated for analyzing the longitudinal trajectories of
elder and younger adults provided estimates of the treatment effect of
GSH supplementation on each endpoint separately. This helps in
identifying their extent of recovery and examining whether
individuals are in a better or worse condition than the average
profile in these subgroups on GSH supplementation for direct
clinical use. We recommend planning large-scale clinical trials to
examine these insights about GSH supplementation, especially in
elder diabetic individuals. This could help in establishing novel
benchmarks for caring for elder patients with diabetes. We have also
analyzed different possible models to study the effect of the age of
individuals on GSH supplementation. This will form the basis and
motivate a number of future studies to examine many of the finer
nuances of the effect of age on supplementation.

Some limitations of this study also need to be considered.
Although antidiabetic treatments were not changed during the
period of the study, patients did use different types of
medication. We have not analyzed the combinatorial complexity
of treatments further due to a lack of sufficient statistical power. It is
possible that future work may uncover if GSH supplementation is
particularly more effective with certain treatments than others. The
results presented here can be the basis for future GSH intervention
studies that advance precision diabetes research.
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