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Purpose: Atherosclerosis is one of themost important pathological foundations of
cardiovascular and cerebrovascular diseases with high morbidity and mortality.
Studies have shown that macrophages play important roles in lipid accumulation
in the vascular wall and thrombosis formation in atherosclerotic plaques. This
study aimed to explore the effect of frog skin antimicrobial peptides (AMPs)
temporin-1CEa and its analogs on ox-LDL induced macrophage-derived foam
cells.

Methods:CCK-8, ORO staining, and intracellular cholesterol measurements were
used to study cellular activity, lipid droplet formation and cholesterol levels,
respectively. ELISA, real-time quantitative PCR, Western blotting and flow
cytometry analysis were used to study the expression of inflammatory factors,
mRNA and proteins associated with ox-LDL uptake and cholesterol efflux in
macrophage-derived foam cells, respectively. Furthermore, the effects of AMPs
on inflammation signaling pathways were studied.

Results: Frog skin AMPs could significantly increase the cell viability of the ox-LDL-
induced foaming macrophages and decrease the formation of intracellular lipid
droplets and the levels of total cholesterol and cholesterol ester (CE). Frog skin
AMPs inhibited foaming formation by reducing the protein expression of CD36,
which regulates ox-LDL uptake but had no effect on the expression of efflux
proteins ATP binding cassette subfamily A/G member 1 (ABCA1/ABCG1). Then,
decreased mRNA expression of NF-κB and protein expression of p-NF-κB p65,
p-IκB, p-JNK, p-ERK, p-p38 and the release of TNF-α and IL-6 occurred after
exposure to the three frog skin AMPs.

Conclusion: Frog skin peptide temporin-1CEa and its analogs can improve the ox-
LDL induced formation of macrophage-derived foam cells, in addition, inhibit
inflammatory cytokine release through inhibiting the NF-κB and MAPK signaling
pathways, thereby inhibiting inflammatory responses in atherosclerosis.
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Introduction

Atherosclerosis (AS) is an important risk factor for heart disease,
hypertension, and myocardial infarction, and is the main
pathological basis of cardiovascular and cerebrovascular diseases
(Chen et al., 2020). AS is a complex metabolic disease characterized
by the dysfunction of lipid metabolism and chronic inflammation in
the intimal space of the vessel (Guo Z. et al., 2022). With the
continuous development of anti-atherosclerosis drugs research,
cardiovascular protective drugs, antiplatelet drugs, vasoactive
drugs and cyclooxygenase inhibitors have been widely used in
clinical (Yoshida, 2003). The lipid-regulating drugs for AS, such
as HMG-CoA reductase inhibitors, anti-lipid oxidants, and
angiotensin-converting enzyme inhibitors, have gradually become
the main anti-atherosclerosis drugs (Kahraman et al., 2018).

Antimicrobial peptides (AMPs) are an essential component of
the innate immune system. These peptides are encoded by specific
genes, which can produce small molecular peptides with
biological activity (Zharkova et al., 2019). In recent years, with
the increasing research on the anti-inflammatory mechanisms of
AMPs, a variety of evidence has suggested that inflammation
plays a key role in the pathogenesis of AS, and it is proposed that
AMPs play an important role in the treatment of AS
inflammation (Kougias et al., 2005). Studies have shown that
the antibacterial peptide LL-37 is expressed in human
macrophages, and its mRNA expression level increases in AS
lesions compared with normal blood vessels (Durr et al., 2006;
Edfeldt et al., 2006). PR-39 and LL-37 are both members of the
antimicrobial peptide family, and PR-39 has a cardioprotective
effect (Bao et al., 2001). In our study, the frog skin peptide
temporin-1CEa is isolated and purified from the skin secretion
of Rana chensinensis. To increase the cationicity of temporin-
1CEa, LK2(6) was developed by replacing L-Asp3 and L-Gly16

with L-Lys. Based on LK2(6), LK2(6)A(L) was designed with an
L-Leu substitution for L-Ala8 on the hydrophobic surface to
increase hydrophobicity. LK2(6) and LK2(6)A(L) exhibited
increased net positive charges from +4 to +6, and LK2(6)A(L)
had similar hydrophobicity to temporin-1CEa. Previous studies
have shown that temporin-1CEa and its analogs exhibit broad-
spectrum antimicrobial and antitumor activity. Improve the LPS-
stimulated inflammatory environment of mouse macrophages
through MyD88-dependent signaling pathways and analogs
have a more obvious anti-inflammatory effect compared with
temporin-1CEa (Yang et al., 2013; Shang et al., 2014; Shang et al.,
2016; Wang et al., 2016; Dong et al., 2017; Wang et al., 2017).
Monocyte-derived macrophages play a pivotal role in the lipid
metabolism, inflammatory response, and foam cell formation in
AS (Vazquez et al., 2020). Macrophages can form foam cells by
phagocytosis of endogenous ox-LDL, which initiates early lesion
formation in AS (Liu et al., 2022). Ox-LDL can induce
macrophages to release inflammatory factors. The
macrophage-mediated inflammatory response causes the
accumulation of lipids and inflammatory factors, leading to
vascular endothelial cell damage in the arterial wall and
changes in vascular permeability (Penalver et al., 2020).

Based on this research background, in this study, THP-1 derived
human macrophages and murine macrophages RAW264.7 cells
were cultured in vitro, and ox-LDL was added to establish a

macrophage-derived foam cells model. After treatment with the
natural AMPs temporin-1CEa, which isolated and purified from the
secretions of Chinses brown frog skin and its analogs LK2(6) and
LK2(6)A(L), the levels of intracellular lipid droplet, cholesterol, and
the release of inflammatory factors were analyzed. Furthermore, the
effects of frog skin AMPs on lipid metabolism-related genes, protein
expression, NF-κB and MAPK signaling pathway activation in foam
cells were studied. The findings of the study will provide a theoretical
basis for examining the lipid metabolism and anti-inflammatory
mechanism of frog skin peptide temporin-1CEa and its analogs and
provide a new therapeutic strategy for the treatment of AS.

Materials and methods

Reagents

Ox-LDL was purchased from Yiyuan Biotechnology Co., Ltd.
(Guangzhou, China). Frog skin peptide temporin-1CEa and its
analogs were synthesized by GL Biochemistry Inc. (Shanghai,
China) and the purity of the peptide was greater than 95%.

Cell culture and proliferation analysis

Human leukemia monocytic cells line THP-1 and murine
macrophages RAW264.7 cell were purchased from Jiangsu Kaiji
Biology Co., Ltd. (Nanjing, China). Cells were cultured in 1,640
(THP-1) or DMEM (RAW264.7) contains penicillin and
streptomycin with 10% FBS, at 37°C in a humidified atmosphere
of 5% CO2. THP-1 cells were incubated with phorbol 12-myristate
13-acetate (PMA, 100 ng/mL) for 48 h. Then THP-1 cells were
adherent to the wall and differentiated into macrophages. Cells
were seeded in 96-well plates and cultured for 24 h. Then, the cells
were cultured in fresh serum-free 1,640 or DMEMmedium for 24 h
and treated with ox-LDL at concentrations of 50 μg/mL, 100 μg/mL
and 200 μg/mL, respectively. According to previous studies, the
concentration of temporin-1CEa and its analogs was selected as
1.56 μM, 3.125 μM and 6.25 μM for THP-1 cells, and 0.937 μM,
1.875 μM and 3.75 μM for RAW264.7 cells, respectively. Then,
10 μL of 5 mg/mL MTT was added to each well. After 4 h,
discard the supernatant and 150 μL of DMSO was added to each
well. The absorbance of each well was measured with Multiskan FC
microplate reader (Thermo Fisher Scientific, USA) at 490 nm.

Oil red O staining

Lipid droplets in ox-LDL stimulated macrophages were
observed by oil red O (ORO) staining (Solarbio, Shanghai,
China). Briefly, cells were seeded in 24-well plates, incubated for
24 h, and then treated with ox-LDL and/or temporin-1CEa and its
analogs for an additional 24 h. The cell supernatant was removed,
and cells in each group were cleaned twice with PBS. The cells were
fixed with ORO fixative solution for 20 min then soaked with 60%
isopropyl alcohol for 5 min, stained with ORO for 10 min, and then
stained with mayer hematoxylin. Images were observed using a light
microscope (Leica, GER).
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Cholesterol detection

Macrophages were treated with drugs in each group. Then, the
cells were lysed, and the free cholesterol (FC) and total cholesterol
(TC) levels in cell lysates were measured using cholesterol detection
kits according to the manufacturer’s instructions (Solarbio,
Shanghai, China). Cellular protein was measured with a BCA
protein assay kit according to the manufacturer’s instructions
(Meilunbio, Dalian, China). FC and TC were normalized to
cellular protein levels. Cholesterol ester (CE) levels were
calculated using the following formula: CE = TC-FC.

ELISA detection

The levels of inflammatory cytokine TNF-α and IL-6 in the
supernatants of THP-1 derived human macrophages and murine
macrophages RAW264.7 cells were measured using ELISA kits
according to the manufacturer’s instructions (Neobioscience,
Shenzhen, China) by a Multiskan FC microplate reader (Thermo
Fisher Scientific, USA).

Flow cytometry detection

Flow cytometry was used to detect the protein expression of
CD36 in THP-1 derived foam cells. THP-1 derived human
macrophages were seeded in 6-well plates with 1 mL per well and
cultured at 37°C in 5% CO2. After induced differentiation and drug
treatment, the cells were centrifuged at 1,000 rpm/min for 5 min and

incubated with 5% BSA at room temperature for 1 h. CD36 antibody
(Proteintech, Wuhan, China, 1:500 dilution) was added to THP-1 cells
and incubated at room temperature for 2 h. Then fluorescent antibody
(Proteintech, Wuhan, China, 1:300 dilution) was added to cells and
incubated at room temperature for 1 h. Flow cytometry was performed.

Quantitative real-time PCR

THP-1 and RAW264.7 cells were treated with drugs in each
group. Total RNA was extracted with TRIzol reagent (Invitrogen,
Shanghai, China). Reverse transcription reaction was performed
using a Super Script™ III kit (Invitrogen, Shanghai, China).
Amplification of cDNA was performed in an ABI Prism
7,500 Fast sequence detection system (Applied Biosystems, USA)
using an SYBR Premix Ex Taq II kit (TaKaRa, Dalian, China). The
primer gene sequences were summarized in Table 1. The relative
mRNA expression levels are normalized to that of GAPDH (internal
control) by using the Ct values calculated according to the
manufacturer’s instructions.

Western blotting

The cells treated with drugs in each group were lysed in
radioimmunoprecipitation assay (RIPA) lysis buffer. The cellular
lysates were separated by 10%–12% SDS–PAGE before being
electro-transferred to a PVDF membrane using standard procedures.
After being blocked with 5% skim milk in TBST for 1 h at room
temperature, the membranes were incubated with specific primary

TABLE 1 Primer sequences.

Name Primer sequence Cell At (°C) Extension time s) NM NO.

CD36 F: 5′-GGCTGTGACCGGAACTGTG-3′ THP-1 60 39 NM_000072.3

R: 5′-AGGTCTCCAACTGGCATTAGAA-3′

SR-A1 F: 5′-GCAGTGGGATCACTTTCACAA-3′ THP-1 60 39 NM_001363744.1

R: 5′-AGCTGTCATTGAGCGAGCATC-3′

ABCA1 F: 5′-ACCCACCCTATGAACAACATGA-3′ THP-1 60 39 NM_005502.4

R: 5′-GAGTCGGGTAACGGAAACAGG-3′

ABCG1 F: 5′-ATTCAGGGACCTTTCCTATTCGG-3′ THP-1 60 39 NM_004915.4

R: 5′-CTCACCACTATTGAACT TCCCG-3′

NF-κB F: 5′-ATGTGGAGATCATTGAGCAGC-3′ THP-1 60 39 NM_001145138.2

R: 5′-CCTGGTCCTGTGTAGCCATT-3′

GAPDH F: 5′-GGAGCGAGATCCCTCCAAAAT-3′ THP-1 60 39 NM_001256799.3

R: 5′-GGCTGTTGTCATACTTCTCATGG-3′

NF-κB F: 5′-GGAGGAGTCTGGTCTCAGGAAGC-3′ RAW264.7 60 39 NM_009045.4

R: 5′-GGACACGGTGCTACATGCCTATTC-3′

GAPDH F: 5′-GCCAAAAGGGTCATCATCTC-3′ RAW264.7 60 39 NM_008084.3

R: 5′-GTAGAGGCAGGGATGATGTTC-3′

AT, annealing temperature.
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antibodies at 4°C overnight against p-NF-κB p65, NF-κB p65 (Cell
Signaling Technology, USA, 1:1,000 dilution), p-IκB, IκB (Abcam,
Shanghai, China, 1:1,000 dilution), p-JNK, JNK (Cell Signaling
Technology, USA, 1:1,000 dilution), p-ERK, ERK (Cell Signaling
Technology, USA, 1:1,000 dilution), p-p38, p38 (Cell Signaling
Technology, USA, 1:1,000 dilution) for THP-1 cells, and CD36 (Cell
Signaling Technology, USA, 1:1,000 dilution), SR-A1 (R&D Systems,
USA, 1:1,000 dilution), ABCA1 (R&D Systems, USA, 1:1,000 dilution),
ABCG1 (Abcam, Shanghai, China, 1:1,000 dilution), p-NF-κB p65, NF-
κB p65 (Abcam, Shanghai, China, 1:1,000 dilution), p-IκB, IκB (Abcam,
Shanghai, China, 1:1,000 dilution), p-JNK, JNK (Abcam, Shanghai,
China, 1:1,000 dilution), p-ERK, ERK (Abcam, Shanghai, China, 1:
1,000 dilution) and p-p38, p38 (Abcam, Shanghai, China, 1:
1,000 dilution) for RAW264.7 cells, respectively. Then incubated
with anti-rabbit, anti-mouse, or anti-goat IgG antibodies conjugated
to HRP. ATP1A1 (Proteintech, Wuhan, China, 1:5,000 dilution) or
GAPDH (Proteintech, Wuhan, China, 1:5,000 dilution) was used as an
internal control. Bands were visualized by an Azure Biosystems
c500 instrument using ECL-Plus detection reagents (Santa Cruz,
USA). Densitometric quantification of the protein was performed
using ImageJ software.

Statistical analysis

Statistical evaluation was performed using univariate analysis of
variance (ANOVA) to analyze ranked data and a t-test to
differentiate the means of different groups. The values were

considered significant when p < 0.05. Data was expressed as
mean ± SD and the experiment was repeated thrice to ensure the
reproducibility of results. SPSS 18.0 software for Windows (SPSS
Inc., Chicago, IL, USA) was used to analyze all data.

Results

The effects of frog skin AMPs on cholesterol
and lipid droplets in ox-LDL induced
foaming cells

First, the ox-LDL induced macrophage-derived foam cells
model was established. A treatment of ox-LDL decreased the cell
viability of THP-1 and RAW264.7 cells in a concentration-
dependent manner (Figure 1A). Cell viability was approximately
75% and 50% when the ox-LDL concentration was 200 μg/mL in
THP-1 and RAW264.7 cells, respectively. The ORO staining results
showed that the size and intracellular accumulation of lipid droplets
were increased in ox-LDL-induced foaming cells (Figure 1B).

One of the hallmarks of foam cells is that the proportion of
cholesterol in the cell is greater than 50% compared to that of normal
cells. The TC, FC and CE levels in normal cells and foam cells were
measured after the cells were incubated with ox-LDL for 48 h. As
shown in Figures 1C, D, the TC and CE levels were significantly
increased in a concentration-dose-dependent manner in ox-LDL-
induced THP-1 and RAW264.7 cells. When the ox-LDL
concentration was more than 100 μg/mL, the proportion of

FIGURE 1
Ox-LDL induced the foaming cell forming of THP-1 and RAW264.7 macrophages. Effects of ox-LDL on the cell viability of THP-1 and RAW264.7 (A);
ox-LDL induced cell morphological changes and lipid droplet formation analyzed by ORO staining (B, 400X); Levels of total cholesterol (TC), free
cholesterol (FC) and cholesterol ester (CE) in ox-LDL induced foaming cells (C,D). *p < 0.05 vs. the control (ctrl) group.
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cholesterol in THP-1 and RAW264.7 cells was greater than 50%
compared with that in untreated cells, suggesting that 100 μg/mL ox-
LDL induced foaming cell formation in THP-1 and RAW264.7 cells.

Subsequently, we examined the effects of three frog skin AMPs
at different concentrations on cell viability of THP-1 and
RAW264.7 cells. The results showed that the concentration of
three frog skin AMPs below 6.25 μM in THP-1 cells and 3.75 μM
in RAW264.7 cells did not have significant effects on cell viability
(Figures 2A, B). Importantly, three frog skin AMPs significantly
increase the cell viability of the ox-LDL-induced foaming
macrophages. As shown in Figures 2C, D, compared to the ox-
LDL group, frog skin AMPs increased the cell viability by 9.4%–
14.2% and 17.1%–18.8% at a concentration of 6.25 μM in THP-1
foam cells and 3.75 μM in RAW264.7 foam cells, respectively,
suggesting that temporin-1CEa and its analogs alleviated the
damages from ox-LDL on THP-1 and RAW264.7 cells.
Temporin-1CEa and its analogs reduced the formation of
intracellular lipid droplets (Figure 2E) and decreased the levels of
TC and CE in ox-LDL-induced foaming cells, but FC was not
significantly altered (Figures 2F, G). Free cholesterol can be
converted into cholesterol esters, causing the accumulation of
lipid droplets in macrophages. Compared to the ox-LDL group,
frog skin AMPs decreased the content of TC in a dose-dependent
manner by 32.7%–47.1% and 31.4%–43.3%, and the content of CE
by 52.9%–73.2% and 48.0%–72.4% at a concentration of 6.25 μM in
foaming THP-1 and RAW264.7 cells, respectively. Among them,
LK2(6)A(L) exhibited the best inhibitory effect on the levels of TC
and CE in foaming THP-1 and RAW264.7 cells.

Frog skin AMPs inhibited foaming formation
by reducing the uptake of ox-LDL in
macrophages

Accumulation of cholesterols in macrophages is because of an
imbalance between the uptake and efflux of lipids. Here, to
investigate the effects of temporin-1CEa and its analogs on the
cellular accumulation of cholesterols, the expression of CD36 and
scavenger receptors A1 (SR-A1), which are pattern-recognition
receptors for ox-LDL uptake in membrane surface receptors and
ATP binding cassette subfamily A/G member 1 (ABCA1/ABCG1)
which are critical proteins in the extracellular efflux of lipid droplets
was examined by real-time quantitative PCR, flow cytometry
analysis and Western blot. As shown in Figures 3A, B, temporin-
1CEa and its analogs downregulated the gene expression of
CD36 and SR-A1 in a dose-dependent manner but had no effect
on the gene expression of ABCA1 and ABCG1 compared to the ox-
LDL group. The results show that frog skin AMPs decreased the
expression of CD36 and SR-A1 by 22.6%–42.5% and 23.7%–50.9%
at a concentration of 6.25 μM in foaming THP-1 cells, respectively.
The same results were confirmed by Western blot experiments
(Figures 3C–E). Flow cytometry results showed that the flow
peak shifted to the right after the addition of ox-LDL, indicating
that ox-LDL induced the expression of CD36 in THP-1 cells. After
being treated with three different concentrations of temporin-1CEa
and its analogs, the peak shifted to the left, and CD36 expression
decreased in a concentration-dependent manner, indicating that
CD36 expression was inhibited (Figures 3F, G). The results

FIGURE 2
Effects of frog skin AMPs on ox-LDL induced foam cells. Effects of frog skin AMPs on the cell viability of THP-1 cells (A), RAW264.7 cells (B) and ox-
LDL induced foaming cells (C,D); Cell morphological changes and lipid droplet formation analyzed by ORO staining (E, 400X); Levels of total cholesterol
(TC), free cholesterol (FC) and cholesterol ester (CE) in the frog skin AMPs treated foam cells (F,G). *p < 0.05 vs. the ctrl group. #p < 0.05 vs. the ox-LDL
group.
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suggested that temporin-1CEa and its analogs reduced ox-LDL
uptake by downregulating the protein expression of CD36 in ox-
LDL-induced foam macrophages.

Frog skin AMPs alleviated the inflammatory
response induced by ox-LDL in foaming
macrophages

As shown in Figures 4A–D, ox-LDL induced the inflammatory
response in THP-1 and RAW264.7 cells, as a fact that the secretion
of pro-inflammatory cytokines TNF-α and IL-6 significantly
increased after cells were treated with 100 μg/mL ox-LDL.
Compared to the ox-LDL group, frog skin AMPs decreased the
expression of TNF-α in a dose-dependent manner by 33.4%–63.6%
and 44.8%–64.2%, and the expression of IL-6 by 47.2%–92.5% and
44.4%–62.4% at a concentration of 6.25 μM in THP-1 foam cells and
3.75 μM in RAW264.7 foam cells, respectively. Studies have shown
that the NF-κB and MAPK pathways are important mediators of
pro-inflammatory signals from the cell surface receptor to the

nucleus during the inflammatory responses of macrophages
(Jayawardena et al., 2020). The results of this study showed that
the mRNA expression levels of NF-κB p65 were downregulated in a
concentration-dependent manner in foam cells treated with
temporin-1CEa and its analogs (Figures 5A, B). LK2(6)A(L) was
selected to detect the protein expressions of p-NF-κB p65 and p-IκB
in ox-LDL-induced foaming cells by Western blotting in
RAW264.7 cells. Consistent with the real-time qPCR results, the
phosphorylated levels of NF-κB p65 and IκB were decreased in a
concentration-dependent manner in both THP-1 and
RAW264.7 foaming cells (Figures 5C–F). LK2(6)A(L) showed the
best effects compared to temporin-1CEa and LK2(6) and reduced
the proteins expression of p-NF-κB p65 and p-IκB, and the
inhibition rate was more than 89.9% and 76.3% at a
concentration of 6.25 μM in THP-1 foam cells, and 53.9% and
54.2% at a concentration of 3.75 μM in RAW264.7 foam cells,
respectively.

Western blotting revealed that temporin-1CEa and its analogs
reduced the protein expression of p-JNK, p-ERK and p-p38 in a
concentration-dependent manner in ox-LDL-induced foaming

FIGURE 3
Effects of frog skin AMPs on lipid metabolism in ox-LDL induced foam cells. Gene expression of membrane proteins involved in ox-LDL uptake and
cholesterol efflux by real-time quantitative PCR in foaming THP-1 cells (A,B) and GAPDH was used as an internal reference; Expression of proteins
involved in ox-LDL uptake and cholesterol efflux by Western blot in foaming RAW264.7 cells (C–E) and ATP1A1 was used as an internal reference; Flow
cytometry analysis of CD36 expression in foaming THP-1 cells (F,G). *p < 0.05 vs. the ctrl group. #p < 0.05 vs. the ox-LDL group.
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THP-1 cells (Figures 6A, B). LK2(6)A(L) at a concentration of
6.25 μM reduced the expression of p-JNK, p-ERK and p-p38 by
71.0%, 69.5% and 74.6%, respectively. Similarly, the phosphorylated
levels of JNK, ERK and p38 were decreased in a concentration-
dependent manner in ox-LDL-induced foaming RAW264.7 cells
treated with LK2(6)A(L). 3.75 μM LK2(6)A(L) reduced the
expression of p-JNK, p-ERK and p-p38 by 43.5%, 47.9% and
53.8%, respectively (Figures 6C, D).

Discussion

AS is a chronic cardiovascular disease that endangers human health
and a multifactorial disease that is influenced by multiple
environmental and genetic factors (Jiang et al., 2020). In the early
stage of AS, LDL across the vascular endothelium by passive transport
or receptor-mediated transcytosis and retained in the arterial wall. In
the subendothelial space, LDL is oxidized to ox-LDL (Sima et al., 2009).
Ox-LDL accelerates the development of AS. Subsequently, endothelial
cells and smooth muscle cells are recruited and activated, and various
cytokines and chemokines released stimulate monocytes enter the
endothelium and transform into macrophages (Gupta and Sarangi,
2022). Macrophages with increased expression of scavenger receptors
take up cardiovascular risk factors ox-LDL, then cholesteryl esters
accumulate in macrophages and vascular cells, forming foaming cells
and atherosclerotic lesions, eventually (Ma et al., 2018).

Antimicrobial peptides (AMPs) are an important part of innate
immunity and exhibit broad-spectrum antibacterial activity against

a wide range of microorganisms, as well as anti-inflammatory and
antitumor activity (Li, 2009; Mohanty et al., 2013; Sun and Shang,
2015; Dong et al., 2018). In recent years, AMPs have attracted
worldwide attention due to their potential use in the pharmaceutical
and biotechnology industries (da Costa et al., 2015). Temporin-
1CEa is a natural AMP that contains 17 amino acids with 4 net
positive charges and an amphiphilic α-helical structure. Through
substitution of amino acids, we increase the cationicity of temporin-
1CEa to get LK2(6). Based on LK2(6), the hydrophobicity was
increased by amino acid substitution, and LK2(6)A(L) was
obtained. In the present study, we first established the
macrophage foaming cells model including THP-1 derived
human macrophages and murine macrophages RAW264.7 cells
induced by ox-LDL. In this model, foaming cells became
increasingly enlarged, and intracellular lipid droplets, total
cholesterol and cholesteryl ester increased after the addition of
ox-LDL in THP-1 derived human macrophages and murine
macrophage RAW264.7 cells, respectively. But low concentrations
of temporin-1CEa and its analogs reduced the formation of
intracellular lipid droplets and the levels of TC and CE in foam
cells derived from ox-LDL-induced THP-1 derived human
macrophages and murine macrophages RAW264.7 cells,
suggesting that these antimicrobial peptides can inhibit foaming
cells formation.

Foam cells formation is dependent on increased uptake of ox-
LDL or reduced efflux of cholesterol in macrophages (Sanda et al.,
2021). Studies have shown that the uptake of modified LDL is
mediated by scavenger receptors on the cell surface, such as

FIGURE 4
Effects of frog skin AMPs on the inflammatory response in ox-LDL induced foam cells. Levels of TNF-α and IL-6 in foaming THP-1 cells (A,B); Levels
of TNF-α and IL-6 in foaming RAW264.7 cells (C,D). *p < 0.05 vs. the ctrl group. #p < 0.05 vs. the ox-LDL group.
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CD36 and SR-A1, but CD36-and SR-A1-mediated uptake is not
regulated by the negative feedback associated with intracellular
cholesterol (Syvaranta et al., 2014), Song et al. showed that
zafirlukast can prevent foam cells formation by reducing
CD36 protein expression and inhibiting the influx of cholesterol
in asthma treatment (Song et al., 2020). When macrophages
accumulate large amounts of cholesterol, ABCA1 and
ABCG1 promote the efflux of cholesterol, phospholipids, and
other substances from macrophages (Chistiakov et al., 2016). Li
et al. showed that protein arginine methyltransferase 2 (PRMT2)
inhibited the formation of ox-LDL-induced
RAW264.7 macrophage-derived foam cells through increased
ABCA1-mediated cholesterol efflux (Li Y. Y. et al., 2020).
Astragalus methionine may also promote cholesterol efflux and
inhibit foaming cells formation through the upregulation of
ABCG1 expression (Zhao et al., 2021). Therefore, decreased
expression of CD36 and SR-A1 or increased ABCA1 and
ABCG1 might inhibit forming of atherogenesis. Our results
showed that temporin-1CEa and its analogs significantly
decreased the expression of CD36 and SR-AI but had no effect
on the expression of ABCA1 and ABCG1 in foaming THP-1 cells.
There was no significant difference in the expression of SR-A1 in

foaming RAW264.7 cells, and the remaining results were consistent
with THP-1 cells. The above results indicated that temporin-1CEa
and its analogs mainly reduced ox-LDL uptake by inhibiting
CD36 expression in foaming macrophage.

Ox-LDL can induce the expression of PPARγ in macrophages,
which activates the downstream target gene CD36, thereby further
increasing the uptake of ox-LDL and aggravating the process of foam
formation of macrophages (Collot-Teixeira et al., 2007). Some studies
have shown that ox-LDL can upregulate ABCA1 and ABCG1 through
the PPARγ-LXRα signaling pathway in murine macrophages
RAW264.7 (Xu et al., 2009; Song et al., 2021). Macrophages are
important immune cells in the human body, which clear ox-LDL
accumulated in the sub-endothelium through the receptor CD36. In
addition, macrophages are involved in cholesterol efflux and transport
by transferring intracellular accumulated cholesterol to apoA-1 and
HDL via ABCA1 and ABCG1 (Yu and Tang, 2022). Ox-LDL can also
downregulate ABCA1 and ABCG1 in THP-1 derived human
macrophages resulting in lipid metabolism disorder in macrophages
(Wang et al., 2018; Cai et al., 2022). These results are consistent with the
results of our study.

Inflammation is a well-established risk factor for AS (Kong et al.,
2022). Ox-LDL can activate macrophages, make them differentiate

FIGURE 5
Effects of frog skin AMPs on NF-κB signaling pathway in ox-LDL induced foam cells. mRNA expression of NF-κB in the foaming THP-1 and
RAW264.7 cells by real-time quantitative PCR (A,B); Expression of p-NF-κB p65, NF-κB p65, p-IκB and IκB protein in the foaming THP-1 cells treated with
temporin-1CEa and its analogs by Western blot (C,D); Expression of p-NF-κB, NF-κB, p-IκB and IκB protein in the foaming RAW264.7 cells treated with
LK2(6)A(L) by Western blot (E,F) and GAPDH was used as an internal reference. *p < 0.05 vs. the ctrl group. #p < 0.05 vs. the ox-LDL group.
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into M1 inflammatory type, and trigger inflammatory response,
leading to the continuous release of inflammatory factors
(Bhattacharya et al., 2022). Foam cells can trigger inflammatory
responses, promoting the development of AS through synergistic
effects (Li T. et al., 2020). The mechanisms that link inflammatory
responses to lipid deposition in macrophages have not yet been
defined. Ox-LDL induces inflammatory response in foam cell and
the release of inflammatory factors such as TNF-α and IL-6 via the
NF-κB and MAPK signaling pathways (Wang et al., 2020; Zhang
et al., 2020). NF-κB normally binds with IκB in the cytoplasm,
preventing the entry of NF-κB into the nucleus. Phosphorylation of
the IκB kinase (IKK) complex and NF-κB activation leads to high
expression of inflammatory factors such as TNF-α and IL-6 (Sun
et al., 2017; Huang et al., 2019). Previous studies have suggested that
NF-κB nuclear localization sequence (NLS) peptide can targeting
NF-κB nuclear translocation hampers inflammation and
atherosclerosis development (Mallavia et al., 2013). Free
cholesterol in foam macrophages was increased and leads to the
induction and secretion of two inflammatory cytokines TNF-α and
IL-6. The increases in TNF-α and IL-6 mRNA and protein were
mediated by free cholesterol-induced activation of the IκB/NF-κB
signaling pathway (Li et al., 2005).

Likewise, MAPK signaling pathway is found to mediate
extracellular signaling and cellular and nuclear responses (Simion
et al., 2020; Zhao et al., 2020). Some drugs, such as Geniposide and
ginsenoside compound K, through the MAPK signaling pathway,
attenuate ox-LDL induced macrophage foaming and inflammation

(Jin et al., 2020; Lu et al., 2020). The MAPK signaling pathway is one
of the important pathways in the biological signal transduction
network, and it is the key signal pathway of cellular inflammatory
response. MAPK is an evolutionarily conserved group of serine-
threonine kinases that can be divided into JNK, ERK and p38MAPK
signaling pathways. MAPK signaling pathway is a cascade of
phosphorylation (Reustle and Torzewski, 2018). The JNK
signaling pathways play important roles in stress responses such
as inflammation and apoptosis, and can be activated by the cytokine
TNF-α (Wullaert et al., 2006; Reustle and Torzewski, 2018). Heat
shock protein 70 (HSP70) accelerates atherosclerosis by
downregulating the expression of ABCA1 and ABCG1 through
the JNK signaling pathway (Sharapova et al., 2021). ERK is
integral to the uptake of ox-LDL by human macrophages (Li
et al., 2010). Resveratrol and Tribulus terrestris L. extract
ameliorates atherosclerosis by inhibition of vascular smooth
muscle cell proliferation in ApoE−/− mice via suppression of ERK
signaling pathway (Guo S. et al., 2022; Zhang et al., 2022).
P38 MAPK signaling pathway activation is associated with the
release of inflammatory cytokines, which also activates
p38 MAPK in turn (Voutyritsa et al., 2021). The development of
AS tends to activate the MAPK signaling pathway, and geniposide
can reduce LPA-induced RAW264.7 macrophage-derived foam cells
formation through the p38 MAPK signaling pathway (Shen et al.,
2019). Increased mRNA and protein expression of inflammatory
factors such as TNF-α and IL-6 in foam cells was induced by FC,
which mediated the activation of JNK1/2, ERK1/2 and p38 MAPK

FIGURE 6
Effects of frog skin AMPs on the protein expression of MAPK signaling pathway in ox-LDL induced foam cells. Expression of p-JNK, JNK, p-ERK, ERK,
p-p38 and p38 protein in the foaming THP-1 cells treated with temporin-1CEa and its analogs by Western blot (A,B); Expression of p-JNK, JNK, p-ERK,
ERK, p-p38 and p38 protein in the foaming RAW264.7 cells treated with LK2(6)A(L) by Western blot (C,D) and GAPDH was used as an internal reference.
*p < 0.05 vs. the ctrl group. #p < 0.05 vs. the ox-LDL group.
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signaling pathways (Li et al., 2005). In our study, frog skin peptide
temporin-1CEa and its analogs reduced the expression of THP-1
derived human macrophages and murine macrophage
RAW264.7 cytokines TNF-α and IL-6 in a dose-dependent
manner. All the three frog skin AMPs decreased the mRNA
expression of NF-κB p65 in both foam cells and the protein
expression of p-NF-κB p65 and p-IκB in THP-1 cells. LK2(6)
A(L) decreased the protein expression of p-NF-κB p65 and p-IκB
in RAW264.7 cells. The results suggest that temporin-1CEa and its
analogs exert an inhibitory effect on NF-κB signaling pathway,
which in turn inhibits the release of downstream inflammatory
factors TNF-α and IL-6. The frog skin AMPs also had inhibitory
effects on MAPK signaling pathways, and reduced the expression of
p-JNK, p-ERK and p-p38 proteins, among which LK2(6)A(L) had
the most significant effect.

The above results suggested frog skin peptide temporin-1CEa
and its analogs might regulate the uptake of ox-LDL by foam cells
through CD36 and improve the accumulation of lipid droplets and
cholesterol in foam cells. It can inhibit ox-LDL-induced
phosphorylation of NF-κB p65 and MAPK signaling pathway
components in foam-derived macrophages. However, the present
study has several limitations. First, our study showed that frog skin
peptide regulated lipid uptake in foam cells through CD36, but the
regulationmechanism is unclear. PPARγ is an important regulator of
CD36, and studies suggested that ox-LDL regulated the expression of
CD36 through PPARγ (Collot-Teixeira et al., 2007), but it is unclear
whether frog skin peptide plays a role in the regulation of PPARγ.
Secondly, MAPK signaling pathway can regulate the inflammatory
response of foam cells through PPARγ phosphorylation (Hosooka
et al., 2008). The post-translational modification of PPARγ, especially
phosphorylation modification, plays an important role in the lipid
metabolism (Yang et al., 2022; Yin et al., 2022). The three frog skin
peptides could inhibit MAPK andNF-κB signaling pathways, but it is
unclear whether they regulated PPARγ phosphorylation through
MAPK signaling pathway, and inhibit the inflammatory response of
foam cells, which is worthy of further study. Finally, the occurrence
and development of AS are accompanied by lipid metabolism
disorders and inflammation. Although the mechanism by which
the three frog skin peptides affect lipid metabolism and anti-
inflammation of AS through NF-κB and MAPK signaling
pathways is still not fully elucidated, temporin-1CEa and its
analogs provide new candidate therapeutic drugs for the
treatment of AS, which need to be further studied.
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