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Background: Febrile seizures (FSs) are the most frequent type of seizures in
infancy and childhood. Epileptiform discharges (EDs) on electroencephalogram
at the time of first FS recurrence can increase the risk of epilepsy development.
Therefore, inhibition of EDs is important. Recently, WS-3, a transient receptor
potential melastatin 8 (TRPM8) agonist, reportedly suppressed penicillin
G-induced cortical-focal EDs. However, the effects of TRPM8 agonists on FSs
remain unknown. In this study, we aimed to clarify the effects of the
TRPM8 agonist, and the absence of TRPM8 channels, on hyperthermia-
induced FS by analyzing the fast ripple band.

Methods: Hyperthermia (43°C for 30 min) induced by a heating pad caused FSs in
postnatal day 7 wild-type (WT) and TRPM8 knockout (TRPM8KO) mice. FSs were
defined as EDs occurring during behavioral seizures involving hindlimb clonus and
loss of the righting reflex. Mice were injected with 1% dimethyl sulfoxide or 1 mM
WS-3 20min before the onset of hyperthermia, and electroencephalograms;
movies; and rectal, brain and heating pad temperatures were recorded.

Results: In wild-type mice, WS-3 reduced the fast ripple amplitude in the first FS
without changing rectal and brain temperature thresholds. In contrast, the anti-FS
effect induced by the TRPM8 agonist was not observed in TRPM8KO mice and,
compared with wild-type mice, TRPM8 deficiency lowered the rectal and brain
temperature thresholds for FSs, exacerbated the fast ripple amplitude, and
prolonged the duration of the initial FS induced by hyperthermia.

Conclusion: Our findings suggest that TRPM8 agonists can be used to treat
hyperthermia-induced FSs.
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Introduction

Febrile seizures (FSs) are the most frequent type of seizures in
infancy and childhood, and usually occur between 3 months and
5 years of age in association with a fever (Mewasingh, 2014). The
majority of FSs are simple and have a favorable prognosis,
although approximately 15%–20% are complex and can increase
the risk of epilepsy development (Camfield et al., 1994; Syndi
Seinfeld and Pellock, 2013; Camfield and Camfield, 2015; Ram and
Newton, 2015; Leung et al., 2018; Pavone et al., 2022). Another risk
factor for the development of epilepsy is epileptiform discharges
(EDs) on electroencephalogram (EEG) at the time of first FS
recurrence (Pavlidou and Panteliadis, 2013). Thus, inhibiting
EDs during FSs is important. Recently, icilin, a transient
receptor potential melastatin 8 (TRPM8) agonist, was shown to
suppress penicillin G-induced cortical-focal EDs (Moriyama et al.,
2019). However, the effects of TRPM8 agonists on FS remain
unknown.

TRPM8 is a cold receptor activated by temperatures of
10°C–26°C (McKemy et al., 2002; Bautista et al., 2007).
TRPM8 is also activated by TRPM8 agonists (McKemy et al.,
2002; Behrendt et al., 2004; McKemy, 2005) and is expressed in
areas of the rodent brain, including the hypothalamus,
hippocampus, and frontal cortex (Voronova et al., 2013; Wang
et al., 2017; Ordas et al., 2019). Icilin and WS-3, which are both
TRPM8 agonists, suppressed drug-induced EDs and epileptic
seizures (Moriyama et al., 2019, 2021), while a TRPM8 deficit
led to more severe drug-induced EDs and epileptic seizures
(Moriyama et al., 2021). In addition, cold-driven
TRPM8 channels are crucial for detecting warmth (Paricio-
Montesinos et al., 2020).

The above results suggest that TRPM8 deficits affect FSs, but the
mechanisms remain to be elucidated. Therefore, in this study, we
aimed to clarify the effects of a TRPM8 agonist, and the absence of
TRPM8 channels, on hyperthermia-induced FSs.

Materials and methods

Animals

Pregnant female C57BL/6N mice were purchased from CLEA
Japan Inc. (Tokyo, Japan). Male and female TRPM8 homozygous
knockout (TRPM8KO) mice were supplied by Thermal Biology
Group, Exploratory Research Center on Life and Living Systems.
(Okazaki, Japan). Mice were housed in cages, singly or in pairs,
and maintained under standard laboratory conditions in a
temperature- and humidity-controlled room (25°C ± 2°C and
55% ± 5%, respectively) under a 12-h light/dark cycle (lights on at
8:00 a.m.) (Dhaka et al., 2007). Adult mice had free access to food
and water. Newborn mice were co-housed and were free to
breastfeed from the dams. The animal care and experimental
procedures were approved by the Experimental Animal Care and
Use Committee of Yamaguchi University School of Medicine,
Japan. All experiments were performed in accordance with the
guidelines of the Japan Association of Laboratory Animal
Facilities of National University Corporations.

Hyperthermia-induced FS model

To determine whether TRPM8 channel deficiency
exacerbates FSs in mice, we compared hyperthermia-induced
seizures between wild-type (WT) and TRPM8KO mice. FSs were
induced in accordance with previously reported methods
(Koyama et al., 2012; Kasahara et al., 2019) with the following
modifications. To minimize noise and artifacts during EEG
recording, FSs were induced by exposing postnatal day (P)
7 mice to hyperthermia using a heating pad. Before
hyperthermia induction, the P7 mice were acclimatized to a
cage at room temperature (25°C) for 20 min (Figure 1A).
Hyperthermia was induced by setting the heating pad to 43°C

FIGURE 1
Experimental protocol for inducing febrile seizures (FSs) via hyperthermia. (A) Protocols for recording electroencephalography data and movies,
measuring rectal, brain and heating pad temperatures, and analyzing the effects of transient receptor potential melastatin 8 agonist treatment. (B)
Postoperative images of postnatal day 7 mice and a typical FS involving loss of the righting reflex caused by hyperthermia.
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in an acrylic cylinder (16 cm in diameter × 20 cm high). The core
temperature of the mice was raised during 30 min of
hyperthermia. In accordance with previous reports, with some
modifications (Koyama et al., 2012; Kasahara et al., 2019), the FSs
were define as epileptic discharges occurring during behavioral
seizures involving the hindlimb clonus and loss of the righting
reflex (Figure 1B). FSs were frequently observed during
hyperthermia, as in previous reports (Koyama et al., 2012;
Kasahara et al., 2019).

Rectal and brain temperature sensor and
electrode implantation

The P7 mice were anesthetized with sevoflurane (1.5% for
induction and 0.5% for maintenance; Pfizer Japan, Tokyo, Japan).
A thin thermocouple (IT-23; Physitemp, Tokyo, Japan) was inserted
into the rectal passage and fixed to the tail using surgical tape. To
maintain the body and brain temperatures during operation, the
heating pad temperature was adjusted to 36.0°C ± 0.5°C to control
the rectal temperature of the mice in their home cages.

After performing a scalp incision, we created two slits in the soft
skull using tweezers. EEG recording and brain temperature sensors
were implanted through a slit in the right sensorimotor cortex and the
reference electrode was implanted through a slit in the cerebellum.
After surgery, the scalps were adhered using cyanoacrylate adhesive
(Tokyo Measuring Instruments Laboratory, Co., Ltd., Tokyo, Japan).
A ground electrode was placed under the back skin.

EEG recording

EEG was recorded by referring to a previously reported
method (Moriyama et al., 2021). EEG recording was started
immediately before the mice were moved to the cage
maintained under room temperature conditions (25°C). EEG
was continuously recorded for 50 min (20 min at room
temperature and 30 min under hyperthermic conditions). EEG
was amplified by a bio-amplifier (EX-1; Dagan Corporation,
Minneapolis, MN, United States) using an analogue-to-digital
converter at a sampling rate of 2 kHz (PowerLab 8/30; AD
Instruments, Castle Hill, Australia). The conditions for
recording EEGs were as follows: low-frequency filter, 0.1 Hz;
high-frequency filter, 10 kHz; and notch filter, off.

EEG analysis

To evaluate the effects of the TRPM8 agonist on hyperthermia-
induced FSs, the EEG was Fourier-transformed. The initial FSs were
analyzed to determine the effects of the TRPM8 agonist and
TRPM8 deficiency on the rectal and brain temperature
thresholds for FSs. We calculated the amplitude and duration of
the fast ripple (250–500 Hz) during the first FS using Lab Chart Pro
(ver. 8.1.21; AD Instruments) by referring to a previously reported

method (Sheybani et al., 2018; Kasahara et al., 2019). Because
evaluating fast ripples after resecting epileptogenic brain tissue
aids prediction of seizure recurrence (Burelo et al., 2021),
changes in fast ripples in EEG could serve as a pathological
indicator of FSs (Wu et al., 2001; Kasahara et al., 2019) and
epileptic seizures (Engel et al., 2009; Simeone et al., 2014).

Rectal and brain temperature recording

Rectal and brain temperatures were recorded by referring to a
previously reported method (Moriyama et al., 2021), and started
immediately before the mice recovered from the anesthesia and
were moved to the cage maintained under room temperature
conditions (25°C). Both temperatures were continuously
recorded for 50 min.

Behavioral recording

Behavior was recorded using an iPad device (Apple Inc.,
Cupertino, CA, United States); recording began immediately
before the mice were moved to a new cage maintained under
room temperature conditions (25°C). Behavior was continuously
recorded for 50 min.

Drug

Vehicle (1% dimethyl sulfoxide [DMSO]; Merck KGaA,
Darmstadt, Germany) was prepared using saline, and 1 mM of
WS-3 (Funakoshi, Tokyo, Japan) was dissolved in the 1% DMSO
by referring to a previously reported method (Moriyama et al.,
2021).

Drug treatment

To evaluate the efficacy of the TRPM8 agonist against FSs, 1 mM
WS-3 (10 ml/kg) or 1% DMSO was subcutaneously (s.c.)
administrated 20 min before the onset of hyperthermia. The mice
were randomly assigned to the following experimental groups: S.c.
injection of 1% DMSO and 1 mM WS-3 in WT mice (WT/DMSO
group and WT/WS-3 group) and s.c. injection of 1% DMSO and
1 mM WS-3 in TRPM8KO mice (TRPM8KO/DMSO group and
TRPM8KO/WS-3 group).

Statistical analysis

Statistical analyses were performed using JMP Pro
16.1.0 software (SAS Institute Inc., Cary, NC, United States). All
results are expressed as mean ± standard error of the mean.
Statistically significant differences were evaluated by Tukey’s test
with p < 0.05 indicating statistical significance.
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Results

Changes of rectal and brain temperature
under room temperature and hyperthermic
conditions

To confirm that the hyperthermic condition was identical among
the groups, we measured the heating pad surface temperature in all
groups. The average temperature under the hyperthermic conditionwas
not different among the groups (WT/DMSO; 40.10°C ± 0.58°C, WT/
WS-3; 41.32°C ± 0.42°C, TRPM8KO/DMSO; 40.38°C ± 0.49°C, and
TRPM8KO/WS-3; 41.14°C ± 0.29°C, respectively; Figure 2A). Figures
2B, C shows the trends in rectal and brain temperatures under the
hyperthermic condition (43.0°C). To clarify the effects of the
TRPM8 agonist and TRPM8 deficiency on rectal and brain
temperature, the changes therein were compared among the groups;
there was no group difference at any timepoint (Figures 2B, C). Figures
2D–G shows representative examples of rectal and brain temperature
trends under the room temperature and hyperthermic conditions in
each group.

The TRPM8 agonist WS-3 did not affect the
rectal and brain temperature thresholds in
WT mice

We recorded the fast ripple amplitudes and power spectra,
and the rectal, brain, and heating pad temperatures. The fast

ripple band was color-coded according to intensity to clearly
show the effects of the TRPM8 agonist and TRPM8 deficiency on
FSs (Figures 3A–D). To reveal the effects of the TRPM8 agonist
on the rectal and brain temperature thresholds for the first FS, the
threshold temperatures were compared among the groups. With
DMSO administration to WT mice, the rectal and brain
temperature thresholds for the first FS were 39.27°C ± 0.22°C
and 37.52°C ± 0.17°C, respectively (Figures 3E, F). Subcutaneous
(s.c.) administration of the TRPM8 agonist did not affect the
rectal or brain threshold temperature for the first FS (38.97°C ±
0.36°C and 38.05°C ± 0.50°C, p = 0.981 and p = 0.952, respectively,
Tukey’s test; Figures 3E, F). The correlation coefficient between
the rectal and brain temperature thresholds for the first FS was
0.936 (n = 20; Figure 3G).

In WT mice, the TRPM8 agonist reduced the
fast ripple amplitude during the first FS

To evaluate the effects of the TRPM8 agonist on seizure
activity, the amplitude and duration of the first ripple for the
first FS were analyzed in WT mice (Figures 4A–J). Figures 4A–C
shows the methods used to determine the maximum fast ripple
amplitude and duration of the first FS, and the power spectrum of
the fast ripple band. Figures 4D–G shows fast ripple spikes overlaid
with EEGs in each group. The TRPM8 agonist suppressed the
hyperthermia-induced hyperactivity in the fast ripple band in WT
mice (Figure 4H). With DMSO administration in WT mice, the

FIGURE 2
Effects of a transient receptor potential melastatin 8 (TRPM8) agonist and TRPM8 deficiency on rectal and brain temperatures under the
hyperthermic condition. (A) The surface temperature of the heating pad under the hyperthermic condition (43°C for 30 min) in wild-type (WT) mouse/
dimethyl sulfoxide (DMSO) (white: n = 5) andWT/WS-3 (blue: n = 5) groups, and TRPM8 knockout (TRPM8KO) mouse/DMSO (orange oblique line: n = 5)
and TRPM8KO/WS-3 (green squares: n= 5) groups. Changes of (B) rectal and (C) brain temperature in each group under room temperature (25°C for
20 min) and hyperthermia (43°C for 30 min) conditions. (D–G) Representative rectal and brain temperature trends under room temperature and
hyperthermic conditions in each group.
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fast ripple amplitude and duration were −0.221 ± 0.018 mV and
0.32 ± 0.10 s, respectively, under the hyperthermic condition
(Figures 4I, J). Pre-administration of the TRPM8 agonist

significantly reduced the fast ripple amplitude, but not
the fast ripple duration (−0.085 ± 0.011 mV and 0.24 ± 0.09 s,
p = 0.029 and p = 0.999, respectively, Tukey’s test; Figures 4I, J).

FIGURE 3
Effects of the transient receptor potential melastatin 8 (TRPM8) agonist and TRPM8 deficiency on rectal and brain temperature thresholds under the
hyperthermic condition. (A–D) Representative trends in fast ripple amplitudes, power spectra for the fast ripple band, and rectal, brain, and heating pad
temperatures in (A)wild-type (WT) mouse/dimethyl sulfoxide (DMSO) and (B)WT/WS-3 groups, and (C) TRPM8 knockout (TRPM8KO) mouse/(D) DMSO
and TRPM8KO/WS-3 groups. Red arrows and gray columns indicate the time required for hyperthermia to induce the first febrile seizure (FS) in each
group. Rectal (E) and brain (F) temperature thresholds for the first FS induced by hyperthermia in the WT/DMSO (white: n = 5) and WT/WS-3 (blue: n = 5)
groups, and TRPM8KO/DMSO (orange oblique line: n = 5) and TRPM8KO/WS-3 (green squares: n = 5) groups. (G) Correlation between the rectal and
brain temperature thresholds for the first FS induced by hyperthermia in each group in theWT/DMSO (white circle: n = 5) andWT/WS-3 (blue square: n =
5) groups, and TRPM8KO/DMSO (orange triangle: n = 5) and TRPM8KO/WS-3 (green rhombus: n = 5) groups.

Frontiers in Pharmacology frontiersin.org05

Moriyama et al. 10.3389/fphar.2023.1138673

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1138673


A lack of TRPM8 channels reduced the FS
thresholds

To reveal the effects of TRPM8 deficiency on the rectal and brain
temperature thresholds for the first FS, the thresholds were
compared between WT and TRPM8KO mice. Under the
hyperthermic condition, TRPM8 deficiency reduced both
thresholds (34.76°C ± 0.74°C and 33.11°C ± 0.61°C, respectively,
both p < 0.001, Tukey’s test; Figures 3E, F).

To evaluate the effects of TRPM8 deficiency on seizure activity,
the amplitude and duration of the first ripple for the first FS were
compared between WT and TRPM8KO mice. Compared with WT
mice, TRPM8 deficiency exacerbated the hyperthermia-induced
hyperactivity in the fast ripple band (Figure 4H). In TRPM8KO
mice, the TRPM8 agonist did not suppress the exacerbated
hyperactivity in the fast ripple band (Figure 4H).
TRPM8 deficiency led to a greater increase in fast ripple
amplitude and duration for the first FS induced by hyperthermia
compared with WT mice (TRPM8KO/DMSO; −0.589 ± 0.028 mV
and 2.69 ± 0.77 s, p < 0.001 and p = 0.007, respectively, Tukey’s test;

Figures 4I, J). In TRPM8KO mice, the TRPM8 agonist did not
suppress the increase in fast ripple amplitude (−0.493 ± 0.050 mV,
p = 0.164, Tukey’s test; Figure 4I). TRPM8 was also associated with a
prolonged fast ripple duration even with pre-administration of the
TRPM8 agonist (3.47 ± 0.40 s, p = 0.594, Tukey’s test; Figure 4J).

Discussion

This study compared changes in rectal and brain temperatures,
and FS severity, between WT mice and mice lacking
TRPM8 channels, and also investigated the effects of a
TRPM8 agonist on FS. There were three major findings. First,
the changes of rectal and brain temperature caused by
hyperthermia treatment were not different between the WT and
TRPM8KO mice. Second, TRPM8 deficiency lowered the rectal and
brain temperature thresholds for the first FS induced by
hyperthermia, independent of the changes in those temperatures.
Third, in WT mice, TRPM8 agonist administration before
hyperthermia resulted in lower-amplitude abnormal discharges.

FIGURE 4
A transient receptor potential melastatin 8 (TRPM8) agonist improved hyperthermia-induced febrile seizures (FSs), whereas TRPM8 deficiency led to
more severe FSs. (A–C) Maximum amplitude of the fast ripple and power spectrum of the fast ripple band during the first FS. (A) Example overlay of the
EEG on a fast ripple spike. (B) Representative trends in the fast ripple amplitude on electroencephalogram (EEG) and fast ripple band power spectrum for
the first FS. (C) Example power spectrum for the fast ripple band. (D–G) Examples of EEG and fast ripples, and of EEGs overlaid on fast ripple spikes, in
each group. (H) Example power spectra for fast ripple bands in each group. (I)Maximum fast ripple amplitude for the first FS and (J)Duration of the first FS
in wild-type (WT) mouse/dimethyl sulfoxide (DMSO) (white: n = 5) and WT/WS-3 (blue: n = 5) groups, and TRPM8 knockout (TRPM8KO) mouse/DMSO
(orange oblique line: n = 5) and TRPM8KO/WS-3 (green squares: n = 5) groups. The results are shown as mean ± standard error of the mean. *p < 0.05,
**p < 0.01, ***p < 0.001. All analyses were followed by Tukey’s test.
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In contrast, the anti-FS effect induced by the TRPM8 agonist was not
observed in TRPM8KO mice, and TRPM8 deficiency reduced the
fast ripple amplitude, and prolonged its duration, for the first FS
induced by hyperthermia compared with WT mice.

Our data indicate that the TRPM8 agonist reduced the fast ripple
amplitude for abnormal discharges induced by hyperthermia (43°C)
(Figure 4I). This result agrees with previous studies in which a
TRPM8 agonist suppressed induced epileptic discharges (Moriyama
et al., 2019, 2021). This reduction of the fast ripple amplitude of
abnormal discharges during FS was not observed in our TRPM8KO
mice even when the TRPM8 agonist was administrated before the
heat load test at 43°C (Figure 4I). Our result was supported by a
previous report, in which anti-epileptic effects of the TRPM8 agonist
in TRPM8KO mice were not detected even when the
TRPM8 agonist was administered to the epileptic focus
(Moriyama et al., 2021). The present data indicate that
TRPM8 agonists can inhibit excessive excitability in neurons, but
the mechanisms underlying the modulatory action of
TRPM8 agonists on anti-FS effects remain to be elucidated. The
mechanisms through which TRPM8 agonists affect abnormal
discharges also remain controversial. In the peripheral nervous
system, menthol and icilin increased the miniature excitatory
postsynaptic current (EPSC) frequency (Baccei et al., 2003;
Wrigley et al., 2009; Kumamoto et al., 2014), and these
TRPM8 agonists both enhanced glutamatergic neuronal
transmission. In contrast, TRPM8 agonists reduced cellular
excitability in other reports. A low concentration of icilin
(3 mmol·L−1) decreased the amplitude of evoked EPSCs in 23%
of lamina I and II dorsal horn neurons (Wrigley et al., 2009).
Menthol reduces the excitation of rat hippocampal neurons in
culture and suppresses the epileptic activity induced by
pentylenetetrazole injection and electrical kindling in vivo (Zhang
et al., 2008). These conflicting results regarding the effects of
TRPM8 agonists may depend on the pathways through which
TRPM8 agonists affect the excitability of neurons. Indeed,
menthol enhanced currents induced by low concentrations of
gamma-aminobutyric acid (GABA) and directly activated the
GABAA receptor in hippocampal neurons in culture (Zhang
et al., 2008).

To elucidate the effects of an absence of TRPM8 channels on
hyperthermia-induced FS, we compared the rectal and brain
temperature thresholds, and the fast ripple amplitude and
duration on EEG, between WT and TRPM8KO mice.
TRPM8 deficiency reduced the rectal and brain temperature
thresholds for the first FS, reduced the fast ripple amplitude of
EDs, and lengthened the fast ripple duration (Figures 3E, F, 4I, J);
these results indicate that FSs are worsened by TRPM8 deficits. Our
findings are supported by Moriyama et al. (2021), who found that
epileptic discharges and seizures were exacerbated in TRPM8KO
mice. Because the distribution of TRPM8 channels in the rodent
brain was reported relatively recently (Ordas et al., 2019), the
mechanisms through which TRPM8 deficits worsen FSs remain
unknown. Thus, further studies are required to determine how
TRPM deficiency promotes the development of FSs.

To clarify whether TRPM8 deficits affect heat dissipation and
storage in the heat load test, we evaluated changes in heating pad,
rectal, and brain temperatures in TRPM8KO mice during
hyperthermia. Our data showed that the changes of rectal and

body temperature under hyperthermia (43°C) were not different
between WT and TRPM8KO mice (Figures 2B, C). The relative lack
of effect of TRPM8 deficiency on the changes of rectal temperature
induced by hyperthermia may be explained by TRPM8 being
activated by temperatures of 8°C–28°C (McKemy et al., 2002;
Peier, 2002). Under an environmental temperature at 29°C,
changes in body temperature were not different between WT and
TRPM8KO adult mice, whereas the core body temperature
decreased more in TRPM8KO mice in a cold environment (17°C)
(Reimúndez et al., 2018). Cold-sensitive C-fibers are predominantly
TRPM8+ (Bautista et al., 2007; Dhaka et al., 2008) and loss of the
cold-driven TRPM8 channel abolished the ability to detect warmth
(Paricio-Montesinos et al., 2020); in line with this, TRPM8-deficient
mice showed reduced avoidance of noxious cold temperatures
(Dhaka et al., 2007).

We also found that s.c. injection of WS-3, a selective
TRPM8 agonist, did not affect the changes of rectal and brain
temperatures induced by the heat load test conducted at 43°C in
WT or TRPM8KO mice (Figures 2B, C). Our results suggest that
the changes of heat dissipation and storage associated with
TRPM8 deficiency do not worsen FSs. However, in a previous
report, a single application of the TRPM8 agonist menthol to the
human skin surface led to heat storage enhancement, which was
mediated by a vasoconstrictor response (Gillis et al., 2015). Icilin,
which is also a TRPM8 agonist, produced a significant increase of body
temperature at a dose of 8.2 mg/kg, whereas IGM-18, a
TRPM8 antagonist, produced a significant decrease at the highest
dose (10 mg/kg) (De Caro et al., 2019). These conflicting results
may be mainly explained by the drastic increase in rectal and brain
temperatures induced by the 43°C heat load test masking the effect of
the TRPM8 agonist on core body temperature. Our data showed that
the heat load test (43°C for 30 min) increased the rectal temperature by
11.11°C (from 28.46°C to 39.57°C) in WT mice following WS-3
administration (Figure 2B), whereas the rectal temperature did not
increase 30 min after icilin (7.5 mg/kg) administration (De Caro et al.,
2019). Taken together, our data suggest that FSs were rarely improved
by TRPM8 agonists through the regulation of rectal and brain
temperature; the improvements were mainly driven by suppression
of the excessive neuronal excitability induced by hyperthermia.

In summary, we compared changes in rectal and brain
temperature, and the effects of a TRPM8 agonist on FSs, between
WT and TRPM8KO mice. Our results showed that the FS-
suppressing effects of the TRPM8 agonist rarely involved
modulation of the rectal and brain temperatures. In addition,
TRPM8 deficits did not affect the changes of rectal and brain
temperature, but did reduce the latency to the initial FS and
increased seizure severity. These results indicate that FSs are
improved by TRPM8 agonists mainly via suppression of the
excessive neuronal excitability induced by hyperthermia. In
conclusion, TRPM8 agonists may be a new treatment option for
patients with hyperthermia-induced FS.
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