
Integrated single-cell and
transcriptome sequencing analyses
develops a metastasis-based risk
score system for prognosis and
immunotherapy response in uveal
melanoma

Shuting Meng1†, Tianye Zhu2†, Zhiwei Fan3, Yulan Cheng4,
Yefeng Dong1, Fengxu Wang4, Xuehai Wang4, Deping Dong1*,
Songtao Yuan2* and Xinyuan Zhao4*
1Hai an People’s Hospital, Nantong, China, 2Department of Ophthalmology, The First Affiliated Hospital of
Nanjing Medical University, Nanjing, China, 3School of Medicine, Nantong University, Nantong, China,
4Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and
Environmental Toxicology, School of Public Health, Nantong University, Nantong, China

Background: Uveal melanoma (UM) is the most frequent ocular neoplasm with a
strong metastatic ability. The prognostic value of metastasis-associated genes
(MAGs) of UM remains unclear. It is urgent to develop a prognostic score system
according to the MAGs of UM.

Methods: Unsupervised clustering was used to identify MAGs-based molecular
subtypes. Cox methods were utilized to generate a prognostic score system. The
prognostic ability of the score system was detected by plotting ROC and survival
curves. The immune activity and underlying function were depicted by CIBERSORT
GSEA algorithms.

Results: Gene cluster analysis determined two MAGs-based subclusters in UM,
which were remarkably different in clinical outcomes. A risk score system
containing six MAGs (COL11A1, AREG, TIMP3, ADAM12, PRRX1 and GAS1) was set
up. We employed ssGSEA to compare immune activity and immunocyte infiltration
between the two risk groups. Notch, JAK/STAT and mTOR pathways were greatly
enriched in the high-risk group. Furthermore, we observed that knockdown of AREG
could inhibit UM proliferation and metastasis by in vitro assays.

Conclusion: The MAGs-based subtype and score system in UM can enhance
prognosis assessment, and the core system provides valuable reference for
clinical decision-making.
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Introduction

Uveal melanoma (UM), the major primary intraocular malignancy in adults, accounts for
83% of intraocular melanomas. Among them, choroidal, ciliary and iris melanomas account for
85%–90%, 5%–8%, and 3%–5%, respectively (Singh et al., 2011). Patients mostly complain of
decreased visual acuity, visual distortion, and loss of visual field, and 30% of patients may not
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have any ocular symptom, making them highly susceptible to
underdiagnosis and misdiagnosis. This highly malignant disease is
prone to invasive metastasis, mainly in the liver (89%) (Diener-West
et al., 2005). Once metastasized, the prognosis is extremely poor.
Currently, UM is mainly treated by ophthalmopexy, local tumor
resection, local radiation therapy (external scleral dressing or
stereotactic radiation therapy, proton beam treatment) and laser
photocoagulation treatment (transpupillary thermal or
photodynamic therapy) (Carvajal et al., 2017). The high
proliferative activity of UM cells and the extreme susceptibility to
extraocular metastasis are the main reasons for the therapeutic
difficulty and high mortality of this tumor. However, the current
treatments for UM are ineffective against tumor metastasis
(Augsburger et al., 2009), so most studies have diverted to
immunotherapy. Identification of probable biomarkers of UM may
offer key data for early recurrence monitoring or treatment (Bol et al.,
2016). Currently, though some key genes and pathways in UM are
identified, the prognosis remains unsatisfactory (Xue et al., 2019).
Hence, new markers are urgently needed to evaluate the prognosis
of UM.

With the fast advancement of immunotherapy recently, the tumor
microenvironment (TME) is reportedly pivotal in cancer growth and
therapeutic response (Arneth, 2019). Prognostic or predictive
biomarkers related to TME may largely help assess tumor
prognosis and advance oncology therapies.

TME is a complicated and integrated system consisting of various
stromal cells, such as fibroblasts, smooth muscle cells, immune and
inflammatory cells, glial cells, adipocytes, and some vascular cells
(Song et al., 2021a; Liu et al., 2022a). These cells can be initiated by
tumor cells to produce abundant growth factors, cytokines, and
stromal degrading enzymes around them, which facilitate the
division and invasion of tumor cells (Song et al., 2021b). TME is
the material basis for the survival and development of tumor cells, and
TME and tumor cells are an interdependent and mutually promoting
whole (Chen et al., 2021; Liu et al., 2022b). TME is physiologically
characteristic of low oxygen, low pH and high interstitial hydraulic
pressure, which provide the necessary material basis for tumor
formation, development, invasion, metastasis, drug therapy
resistance, and immune response (Watnick, 2012).

Tumor metastasis is a major factor contributing to the poor
prognostic outcome of various cancers. There are several
theoretical models about the mechanism of tumor metastasis, and
the most prevalent one is the epithelial-mesenchymal transition
(EMT) theory (Mittal, 2018). This theory suggests that first some
cells during tumor metastasis undergo EMT, which causes tumor cells
to lose their cell-to-cell adhesion and fall off from the tumor tissues
into the blood circulation system. Then the cells flow with the blood to
other suitable places for growth (Song et al., 2021c). EMT leads to
tumor cytoskeleton rearrangement, reduced cellular rigidity and cell/
cellular connectivity, facilitating tumor metastasis and invasion (Davis
et al., 2014).

Diverse developmental signaling pathways, such as tumor growth
factor (TGF)-β, WNT, NOTCH and growth factor receptor tyrosine
kinase, are associated with the induction of EMT in certain
physiological circumstances. TGF-β, a cytokine released by tumor
cells and stromal fibroblasts in the TME, is regarded a main cause of
EMT (Katsuno et al., 2013). Other signaling pathways involved in
EMT induction are inflammatory cytokines such as TNF-a via NF-jB
(Wu et al., 2009), IL-6/STAT pathways (Lo et al., 2007) and

extracellular matrix (ECM) stiffness (Wei et al., 2015). Then these
signaling molecules can stimulate various EMT transcribing factors
EMT-(tf) to start the EMT program, including inhibition of epithelial
markers and stimulation of mesenchymal markers.

The occurrence of CD4+ T lymphocyte inflammatory infiltration
in UM has been reported. Moreover, the ability of
CD4+CD25+FoxP3+ Treg cells to suppress Th1 or cytotoxic T
lymphocyte reactions is a main principle of tumor escape in many
cancers (Amaro et al., 2017). In cardiomyocyte studies, fibroblast
growth factor (FGF)-2 generation can be modulated transcriptionally
(Jin et al., 2000) and FGF-2 prevents UM cells from growth restriction
by bromodomain and extra-terminal protein inhibitors (Chua et al.,
2019). In addition, EMT may contribute to the transdifferentiation of
epithelial tumor cells, conferring their migration and invasiveness
(Smolkova et al., 2018).

In present academic research, two independent UM cohorts were
utilized explore the significance of metastasis-associated genes
(MAGs) in UM in order to explore new prognostic biomarkers.
We set up a MAGs-based risk score system for forecasting
prognosis of UM cases. Our data disclosed potential function and
prognostic power of MAGs in UM. Furthermore, AREG was selected
to confirm the model accuracy by various wet lab experiments.

Materials and methods

Data collection

The gene expression profile and relevant clinical data were
acquired from the GEO (https://www.ncbi.nlm.nih.gov/geo/) and
TCGA (https://portal.gdc.cancer.gov/) databases, respectively. The
TCGA-UM cohort including the gene expressions and clinical data
of 80 UM patients was chosen as the training set to build a prognostic
model. The GSE22138 with RNA sequencing of 63 UM samples was
used as the validating set. The metastasis-associated genes (MAGs)
obtained from MSigDB website (https://www.gsea-msigdb.org/gsea/
index.jsp) are provided in Supplementary Table S1.

Construction of MAGs-based risk score
system (MBRSS)

Prognostic genes in the training set were identified through
univariate Cox analysis. Then the coefficients of these model genes
were computed to construct a prognostic model via multivariate
analysis. The equation is: risk score � ∑n

i�1(coef × Expi), where
Expi and coef are the expression level and risk coefficient of each
gene respectively. The patients were classified by the median risk score
into high- and low-risk groups. An external dataset GSE68465 was
adopted to validate the predictive ability of signature.

Functional enrichment analysis

GSEA was done to uncover the probable molecular mechanisms of
the prognostic genes at the cutoff value of adjusted p < 0.05. The
signaling pathways for UM were recognized using the Kyoto
Encyclopedia of Genes and Genomes (KEGG) on R clusterProfiler
and visualized on R ggplot2 (Yu et al., 2012).
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Determination of a prognostic nomogram

The independence of the model was determined via Cox
regression analyses. Then a nomogram was set up to strengthen
the predictive ability of the model based on diverse clinical traits.
The nomogram was verified via a calibration curves.

Immune activity analysis

Relative infiltration levels of 21 types of immune cells were
quantified using the CIBERSORT algorithm as described before
(Subramanian et al., 2005). The immune activities between groups,
as de-scribed by the normalized enrichment score (NES), were
compared with single sample gene set enrichment analysis (ssGSEA).

Single-cell analysis

To investigate the expression pattern of genes at single-cell level,
GSE139829 dataset including 11 samples was collected from GEO

database. We applied “Seurat” R package to conduct data quality
control and normalization. The UMAP algorithm was employed to
reduce the dimension of data. Next, cells were annotated according to
surface markers.

Cell culture and transfection

Human UM cell line (MUM-2B) was obtained from the Fuheng
Biology Inc., (Fuheng, Shanghai, China). For MUM-2B cell culture,
DMEM (keyGEN bioTECH, China) with 10% fetal bovine serum
(FBS) was used. Cells were transfected with the synthesized siRNAs
(GenePharma, China) targeting AREG by the
Lipofectamine3000 based on the manufacturer’s protocol. The
siRNA-AREG sequences are provided in Supplementary Table S2.

Quantitative real-time PCR

The cell total RNA of was collected using RNA easy reagent
(Vazyme, China) and cDNA was obtained using a PrimeScript RT

FIGURE 1
The flowchart of the present research.
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Reagent Kit (Takara, Japan). Then, qRT-PCR was performed through
a ChamQ SYBR qPCR Master Mix (Vazyme, China). The relative
expression levels of m RNA were normalized to GAPDH. The primer
sequences of AREG and GAPDH are shown in Supplementary
Table S1.

Cell capability assay
The transfected cells were seeded in a 96-well plate. Cell capability

was measured by CellTiter-Glo luminescent cell viability assay (CTG,
Promega, Germany). After CTG kit incubation, the luminescence was
detected multifunctional enzyme marker.

EdU assay
The transfected cells were seeded in a 96-well plate. Following

incubation in EdU reagent (Ribobio, China) for 2 h, cells were fixed

and permeated, and stained with Apollo reagent for half hour. Nuclei
were stained with Hoechst 33342.

Migration and invasion assays
A transwell insert with 8 mm pores (Millipore) was utilized. In the

upper chamber, 1 × 104 cells were seeded in 200 mLmedia without serum,
while 500 mL complete medium was supplied in the lower chamber.
Based on the manufacturer’s instructions, we performed Matrigel for the
invasion detection (BD Biosciences, United States).

Immunofluorescence (IF) assay
After 30 min of treatment with the blocking solution, cells were

incubated with primary antibody (E-cadherin and N-cadherin)
overnight. Fluorescence-labeled secondary antibodies and DAPI
were then applied for staining.

FIGURE 2
Determination of MAGs-based Molecular Subtype in UM. (A)GO analysis, (B) KEGG enrichment and (C) Consensus clustering analysis of MAGs. (D) PCA,
(E) survival analysis and (F) GSVA analysis of two subclusters.
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Statistical analysis

All statistical analyses were finished on R 4.0.5. The outcomes of
UM cases were compared between groups through Kaplan-Meier
(KM) analysis. The area under the curve (AUC) generated by ROC
analysis was computed to test the modeling accuracy. The AUCs for 1-
, 3-, and 5-year survival rates were estimated.

Results

MAGs-based molecular subtype in UM

The flowchart of the present research is shown in Figure 1.
Totally 200 MAGs were collected from MSigDB portal. GO and

KEGG analyses were employed to better understand the functions of
these MAGs. Results revealed that MAGs were mainly involved in
EMT-related biological process, including cell adhesion, wound
healing and cell migration (Figure 2A). As shown in Figure 2B,
MAGs may regulate TNF, PPAR, and Wnt pathways.

Next, we applied consensus cluster analysis of the 200 MAGs
and identified a novel molecular subtype. The UM cases were
clustered into two optimal subsets at k = 2 (Figure 2C). PCA
demonstrated that the two subsets can be effectively separated by
MAGs (Figure 2D). Survival curves suggest that cluster A has a
favorable survival outcome compared to cluster B (Figure 2E). In

addition, epithelial cell signaling and cell adhesion pathways were
great in cluster B (Figure 2F).

Establishment and validation of the MBRSS

The training cohort (TCGA-UM) was utilized to screen out
prognostic factors. Uni-variate Cox analysis was first applied to
determine a total of 94 MAGs with prognostic values. LASSO
regression was conducted to shrink the overfitting value of the
signature and screened out 12 candidate genes for next analysis
(Figures 3A, B). Finally, we obtained six MAGs (COL11A1, AREG,
TIMP3, ADAM12, PRRX1, and GAS1) from multivariate Cox analysis
to create the MBRSS: [COL11A1 × (−2.4808)] + [AREG × (5.1680)] +
[TIMP3 × (−1.1211)] + [ADAM12× (2.0108)] + [PRRX1 × (3.2377)] +
[GAS1 × (−1.3746)] (Figure 3C). Depending on the median risk score, all
UM samples were divided into high-risk and low-risk groups. KM
survival analysis disclosed three protective indicators and three risky
indicators (Figure 3D). Except for GAS1 and PRRX1, all other genes were
significant in DFS (Figure 3E).

In the training set, K-M curves illustrated that the MBRSS-low
subgroup presented favorable survival outcome (Figure 4A). The
AUCs of 1-, 3-, and 5-year survival were 0.949, 0.987, and 0.898,
respectively (Figure 4B). The risk score and clinical status of each case
from two risk groups were shown in Figure 4C. Moreover, we
confirmed the forecasting ability of MBRSS in the testing set

FIGURE 3
Development of the MAGs-based score system. (A–B) LASSO coefficient profile analysis. (C) Six MAGs identified for score system (*p < 0.05, **p < 0.01,
***p < 0.001). Kaplan-Meier curves of (D) OS and (E) DFS.
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(Figures 4D–F). The difference in clinical outcome be-tween groups
was further verified in the testing cohort. The AUCs were 0.712,
0.772 and 0.726 for 1-, 3-, and 5-year survival, respectively (Figure 4E).

Development t of an MBRSS-Associated
nomogram

Cox regression analysis was performed to confirm the independent
value of the MBRSS. Univariate regression unearthed that age, stage and
risk score were closely corre-lated to the survival outcome (Figure 5A).
After multivariate analysis, the risk score was still an independent
prognosis indicator in UM (Figure 5B). Then we set up an MBRSS-
based nomogram to enhance its capability of prognosis assessment
(Figure 5C). Calibration curves were plotted to demonstrate the
optimal forecasting effectiveness of the nomogram (Figure 5D).

GSEA enrichment of MBRSS

GSEA with hallmark gene sets was applied to better understand
the underlying functions in the MBRSS-high group. Results disclosed
that the high-risk UM samples were related to hallmarks including
IL6/JAK/STAT5, mTOR, Notch, and P53 signaling pathways
(Figure 6A). In addition, fatty acid metabolism, glycolysis,
inflammatory response and oxidative phosphorylation were
remarkably enriched in the MBRSS-high group (Figure 6B).

Characterization of Immune Landscape in UM

Given the essential effect of immune checkpoints in anti-tumor
immunotherapy, their correlation with MBRSS was detected. LAG3,
PDCD1, HAVCR2, CD276, CD274 and CTLA4 were highly expressed
in the high-MBRSS group (Figures 7A, B). Figure 7C presents the
differences in immunocyte infiltration level between the two groups.
As for the immune function of UM samples, APC stimulation,
checkpoint, HLA, II-IFN response were activated in the high-
MBRSS group (Figure 7D).

Clinical potency analysis of MBRSS

We further explored the relationship between TMB and
MBRSS and found that TMB value was lower in the high-
MBRSS group (Figures 8A, B). Survival curves illustrated that
the high-TMB UM patients presented favorable survival outcome
(Figure 8C). The UM cases with low TMB and high risk had the
lowest 5-year survival rate (Figure 8D). In addition, the
relationship between MBRSS and m6A regulators was analyzed.
Results revealed that YTHDF2, YTHDC2, ALKBH5 and
YTHDF1 were upregulated, and ZC3H13 was low expressed in
high-MBRSS group (Figure 8E). Drug sensitivity analysis
demonstrated that High-MBRSS group displayed high
IC50 value of Camptothecin, Doxorubicin, Etoposide and
Tipifarnib (Figure 8F).

FIGURE 4
Evaluation of the MAGs-based score system. (A,D) Survival analysis for patients in the two subgroups. (B,E) ROC curves displayed the favorable ability of
the model. (C,F) Distribution of the risk score and survival status.
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Single-cell analysis of MBRSS

A total of 11 UM samples were collected from GSE139829.
Figure 9A presents a favorable integration effect of 11 samples,
suggesting this data can be utilized for next analysis. After
dimension reduction and the t-SNE clustering, all cells were
divided into 22 different clusters (Figure 9B). According to
different cell markers, 22 cell clusters were classified into 8 cell
populations including B cells, endothelial cells, iPS cells,
macrophage cells, monocyte cells, neurons, T cells and stem
cells (Figure 9C). Then, we explored the cell location of each
model genes. The results indicated that ADAM12 highly

expressed in macrophage cells, AREG mainly located in T cells
and TIMP3 highly expressed in neurons (Figure 9D).

Knockdown of AREG blocks UM proliferation
and metastasis

We selected AREG for in vitro experiments since it has the
highest HR score. Figure 10A shows the favorable silencing
efficiency by qRT-PCR assay. Then, we observed that MuM-2B
cells proliferation was greatly inhibited by silencing AREG based
on the results of CTG and EdU assays (Figures 10B–D). To evaluate

FIGURE 5
Establishment of the nomogram. (A–B) independent prognosis analysis by univariate and multivariate analyses. (C) Nomogram for improving prognosis
assessment. (D) Calibration curves of the nomogram.
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the role of AREG on MuM-2B cell metastasis, transwell assay was
conducted. The results indicated that cell migration and invasion
ability were remarkably suppressed in AREG knockdown group
(Figures 10E, F). Then, we explore the role of AREG in regulation of

cell metastatic ability by IF assay. The results disclosed that
silencing AREG blocked E-cadherin expression whereas
enhanced N-cadherin levels, indicating that AREG affects UM
cell metastasis through meditation of EMT process (Figure 10G).

FIGURE 6
GSEA of MBRSS. (A) Tumor-related pathways of hallmark. (B) Cellular biological process of hallmark.

FIGURE 7
Characterization of Immune Landscape in UM. (A–B) Immune checkpoints analysis. (C) Immunocyte infiltration analysis. (D) The relationship between
immune function analysis and MBRSS (ns > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001).
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Discussion

We probed into the prognostic characteristics of UM based on
comprehensive assay of TCGA and GEO. To investigate the
relationship between patient prognosis and gene expression in the
training set, we applied KM, univariate Cox analysis, and LASSO Cox
regression, which found 10 genetic features associated with prognosis.
Applying this signature to the training group, we found significant
differences in Cox regression, ROC, and KM analyses between the
high- and low-risk groups. The prognostic power of the ten-gene
markers was similarly verified in the validation set, which fully
demonstrated the validity of the ten-gene signature in forecasting
the prognosis of UM. GSEA and immune infiltration analysis
suggested that the ten-gene marker risk scores of UM patients may
be associated with the TME. This study plays a positive role in guiding
the further clinical treatment of UM.

Here, six genes were found to be strongly associated with tumor
development. Amphiregulin (AREG) gene, which belongs to the
epidermal growth factor (EGF) family, is overexpressed in many
cancer tissues. AREG participates in EMT in pancreatic cancer cells
through NF-κB signaling and facilitates the movement and spread of
pancreatic cancer cells (Wang et al., 2020). AREG upregulates ICAM-
1 expression via EGFR/PI3K/Akt/NF-κB signaling and promotes the
cancer cell viability of osteosarcoma (Liu et al., 2015). Paired related
homeobox 1 (PRRX1), is a key member of the homomeric protein
pairing family located at the nucleus. PRRX1 mediates cancer cell
invasion and metastasis by starting EMT (Meng et al., 2022). In

addition, PRRX1 impacts the division and metastasis of various
tumor cells via Wnt/β-catenin and Notch pathways, and maintains
the characteristics of tumor stem cells to promote EMT (Du et al.,
2021). A disintegrin and metalloprotease12 (ADAM12) is implied in
the starting and advancement of many tumors. ADAM12 is
significantly more expressed in hepatocellular carcinoma (HCC)
tissues than in surrounding tissues, and a signal pathway related to
ADAM12 is found. The high ADAM12 gene expression in HCC
tissues is remarkably positively related with T stage, pathological stage
and residual tumor (Du et al., 2022). In breast cancer, hypoxia starts
HIF-dependent expression of ADAM12, which cleaves the
extracellular domain of membrane-bound heparin-bound EGF-like
growth factor (HB-EGF). The released extracellular domain of HB-
EGF connects to EGF receptor and triggers signal transduction
pathways that endow breast cancer cells with enhanced cell
migrating and invading abilities, resulting in distant metastasis
(Wang et al., 2021). TIMP3 is a main component of the tissue
inhibitors of the metalloproteinase (TIMP) family. It is mainly
enclosed in the extracellular matrix (ECM) of tissues and inhibits
abscission enzymes, transmembrane MMPs and membrane-bound
MMPs. TIMP3 promoter methylation is recently recognized as an
epigenetic candidate for the treatment of brca1 breast cancer.
Knockdown of lncRNA ROR regulates the division, death and
invasion of breast cancer cells by inhibiting TIMP3 (Hu et al.,
2021). Growth arrest specific 1 (Gas1) plays a key role in growth
inhibition. Gas1 negatively regulates glycolysis and provides energy for
tumor progression and metastasis. Gas1 negatively regulates the

FIGURE 8
Clinical potency analysis ofMBS. (A–B) The relationship between TMB andMBRSS. Survival analysis of different groups (C)with TMB and (D)with TMB and
risk score. (E) The relationship between m6A regulators and MBRSS (ns > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001). (F) Drug sensitivity analysis of MBS.
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AMPK/mTOR/p70S6K signaling axis andmodulates the proliferation,
metastasis and abnormal metabolism of malignant tumor cells (Li
et al., 2016). Collagen type X1 alpha 1 (COL11A1), from the collagen
family, is mostly expressed and released by cancer-related fibroblast
subsets, and modulates matrix-tumor interaction and the mechanical
characteristics of ECM. It is up-expressed in most human tumor cell
lines and tissues and can regulate cell cycle to promote cancer and
affect tumor cell proliferation. In ovarian cancer cells,
COL11A1 modulates TGF-β3 via the NF-κB/IGFBP2 axis, thereby
activating cancer-associated fibroblasts and influencing tumor
development and migration (Wu et al., 2021).

Immune checkpoints (ICPs), a class of immune-resisting
molecules, are expressed on immune cells and mediate the level of
immune stimulation. They are pivotal in avoiding autoimmunity (Zhu
et al., 2021). ICP molecules enable the immune system to be activated
within the normal range. Tumor cells express substances that activate
ICPs, which, upon activation, prevent antigen presentation to T cells
and in tumor immunity, thereby inhibiting the immune role of T cells
and allowing them to avoid surveillance and survive. Immunotherapy
through ICPs modulates T cell activity to kill tumor cells through a
series of pathways, such as co-inhibition or co-stimulatory signals. UM

is a highly metastatic cancer for which ICP therapy is largely
ineffective compared to cutaneous melanoma. ICPs are
epigenetically mediated via DNA methylation. Luka de Vos et al.
found that DNA methylation of CTLA4, PD-1, PDL1, PD-L2, LAG3,
TIGIT and TIM-3 was remarkably associated with mRNA
expressions, BAP1-apoptosis and prognosis of UM. Therefore, the
application of ICP gene DNA methylation assays to the biomarker
program of the ICP blockade (ICB) trial may help better explain the
underlying mechanisms of UM to ICB (de Vos et al., 2022).

The tumor immune microenvironment (TIME) consists of a diverse
array of cell types, including T lymphocytes, B lymphocytes, tumor-
associated macrophages (TAMs), natural killer cells (NKs), dendritic cells
(DCs), tumor-associated neutrophils (TANs), and myeloid-derived
suppressor cells (MDSCs). Various biochemical molecules released by
the abnormal metabolism of cancer cells reshape the TME and affect the
normal immune response of immune cells (Domblides et al., 2019).

Macrophages are important intrinsic immune cells that function
mainly through phagocytosis and intake of cellular debris and
pathogens, and activation of other immune cells against pathogen
invasion. TAMs infiltrating tumor tissues are highly plastic and
heterogeneous (Biswas et al., 2013). In the early tumor stage, pro-

FIGURE 9
Single cell sequencing analysis. (A) Data integration of 11 samples. (B) Dimensionality reduction and cluster analysis. (C) The cells were classified into
approximately 8 cell types, including B cells, endothelial cells, iPS cells, macrophage cells, monocyte cells, neurons, T cells and stem cells. (D) Cell location of
each model gene.
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inflammatory cytokines such as toll-like receptor (TLR) agonists can
promote TAM polarization to M-type, and NO and reactive oxygen
species (ROS) produced by M macrophages can considerably restrict
tumor cell division and kill tumor cells. The tumor cells are killed by
NO and ROS (Mantovani and Allavena, 2015). During tumor

progression, interleukin (IL)-4 and colony-stimulating factor (CSF)-
1 induce TAMs to polarize to M2 macrophages. M2 macrophages
secrete EGF, matrix metalloprotein 9 (MMP-9), and other proteins to
suppress antitumor effects and promote tumor progression
(Mantovani et al., 2017).

FIGURE 10
Silencing AREG inhibits UM proliferation andmetastasis. (A) Transfection efficiency was detected by qRT-PCR. Cell proliferation was detected by (B)CTG
and (C,D) EdU assays. Scale bar, 50 mm. (E,F) The role of AREG on cell metastasis was tested by transwell assay. (G) Downregulation of AREG enhanced
N-cadherin and inhibited E-cadherin by Immunofluorescence. Scale bar, 50 mm (**p < 0.01, ***p < 0.001).
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Tregs differentiate from initial CD4+ T cells, which are a class of
immunosuppressive T cells that highly express FOXP3, CD25, and
CD4. Tregs often accumulate in tumors, supply energy for immune
responses through lipid metabolism and the OXPHOS pathway,
maintain the immunosuppression of the TME, and promote tumor
infiltration and metastasis (Sharma et al., 2017).

As the first line of antitumor defense in the body, NKs can release
perforin on the surface of target cells, resulting in cell perforation,
allowing granzyme b to enter tumor cells to induce apoptosis and thus
non-specifically kill tumor cells. It also promotes the anti-tumor
behaviors of adaptive immune cells by secreting cytokines.
Defective transcription factor c-Myc protein (Loftus et al., 2018),
accumulation of lactate in the TME (Harmon et al., 2019), and
excessive lipid metabolism (Michelet et al., 2018) inhibit the
metabolic activity of NKs and affect their normal function.

Type 2 IFN, the main cytokine regulating the immune system,
mainly functions to upregulate the expression of MHC molecules and
activate macrophages. Type 2 IFN can intensify the activity of NK cells
and T cells, promoting the secretion of Thl cytokines, which is
conducive to the activation of anti-tumor immune pathway.
Additionally, high concentration of type 2 IFN or continuous low
dose of type 2 IFN is conducive to the formation of tumor cell immune
escape microenvironment. Our results show that type 2 IFN is lowly
expressed in the high-risk group and is potentially an early tumor
detection and molecular target (Corrales et al., 2017).

Furthermore, we selected AREG to confirm our proposed score
system in UM by a variety of in vitro experiments. In line with
previous studies (Wang et al., 2020; Bolitho et al., 2021), we observed
that downregulation of AREG remarkably blocked UM cell growth
and metastatic ability, further demonstrating the ability of AREG to
regulate proliferation, migration and invasion in tumors.

Nevertheless, there are some shortcomings in our project. Although
we performed experiments for validation, the main results were derived
from bioinformatics analyses based on public UM datasets. More clinical
data frommultiple centers need to confirm the ability and accuracy of our
proposed MBRSS. Moreover, animal experiments and patient specimens
need to further test the role of AREG in UM.

Conclusion

In conclusion, we successfully identified metastatic molecular
subtype in UM and further created a risk score system based on

MAGs with single-cell and transcriptome analyses bioinformatics
prediction and experimental validation. Further, we found that
RRM2 might be a future biomarker and a reference to predict
immune response. These findings may aid in understanding the
role of RRM2 and its clinical application in cancers.
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